
Chapter �

Finite�State Encoders

As described in Section ���� an encoder takes the form of a �nite�state�machine �see Fig�
ure ����� In this chapter� we make the de�nition of �nite�state encoders more precise and
then discuss special types of �nite�state encoders and various levels of decoding capabilities�

��� De�nition of �nite�state encoders

Let S be a constrained system and n be a positive integer� An �S� n��encoder is a labeled
graph E such that 	

� each state of E has out�degree n


� S�E� � S


� E is lossless�

A tagged �S� n��encoder is an �S� n��encoder E where the outgoing edges from each state

in E are assigned distinct input tags from an alphabet of size n� The notation u
s�a� v stands

for an edge in E from state u to state v which is labeled a and tagged by s� The tag s is
supposed to represent an input and the label a is supposed to represent an output� We will
sometimes use the same symbol E to denote both a tagged �S� n��encoder and the underlying
�S� n��encoder�

A rate p � q �nite�state encoder for S is a tagged �Sq� �p��encoder� where we assume that
the input tags are the binary p�blocks�

A tagged �S� n��encoder �or a rate p � q �nite�state encoder for S� is deterministic or has
�nite anticipation or is de�nite according to whether the �S� n��encoder �or �Sq� �p��encoder�

��
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satis�es these conditions� In particular� only the �output� labels �and not the input tags�
play a role in these properties�

As mentioned in Section ���� we sometimes use the term rate to mean the ratio p�q�
instead of the pair of block sizes p � q� It will be clear from the context which version of the
term rate we mean�

Example ��� Figure ��� depicts a rate � � � two�state encoder for the ��� ���RLL con�
strained system� The input tag assigned to each edge is written before the slash� followed by
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Figure ���� Rate � � � two�state encoder for ��� ���RLL constrained system�

the label of the edge� The encoder in the �gure is known as the Modi�ed Frequency Modu�
lation �MFM� code and is due to Miller �Mill���� This encoder is actually deterministic�

Given a rate p � q �nite�state encoder E for S� encoding is accomplished as follows�

�� Select an arbitrary initial state u� in E �
�� If the current state is u and the input data is the p�block s� �nd the outgoing edge e

from state u in E with input tag s� The codeword generated is the q�block that labels
the edge e� The next encoder state is �E�e��

�� Repeat Step � as long as input is provided�

With only the losslessness assumption� decoding can be implemented� but it is terribly
impractical because one cannot decode any symbols at all until an entire codeword sequence
�i�e�� sequence of q�blocks� is received
 also� one can decode only those codeword sequences
that are labels of paths that start at u� and terminate in a particular state� However� if
an encoder E has �nite anticipation A � A�E�� then we can decode in a state�dependent
manner as follows �this kind of decoding was discussed brie�y in Section �����

�� Use the initial state u� of E as the initial state of the decoder�

�� If the current state is u� then the current codeword to be decoded� together with the
A upcoming codewords� constitute a word of length A�� �measured in q�blocks� that
is generated by a path that starts at u
 by de�nition of anticipation� the initial edge e
of such a path is uniquely determined
 the reconstructed �decoded� data is the input
tag of e
 the next decoder state is �E�e��
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�� Repeat Step � as long as codewords are provided�

The anticipation of an encoder E measures the decoding delay of the corresponding state�
dependent decoder� Note that the decoder will recover all but the last A encoded q�blocks�

The encoder in Example ��� is deterministic �equivalently� �nite anticipation withA � ��
and so can be decoded by a state�dependent decoder with no decoding delay at all� To
illustrate non�trivial decoding delay� we revisit Example ��� of Section ����

Example ��� Figure ���� which is the same as Figure ���� depicts a rate � � � two�state
encoder for the �� ���RLL constrained system �Sie��a�� This encoder is not deterministic�
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Figure ���� Rate � � � two�state encoder for �� ���RLL constrained system�

but has anticipation �� for any path� the initial state and the �rst two ��bit output labels
uniquely determine the initial edge� So� this encoder can be decoded with delay equal to one
block�

Perhaps the simplest class of encoders is that of block encoders� A block �S� n��encoder
E is an �S� n��encoder with only one state� Such an encoder can be viewed as simply a
dictionary L� consisting of n symbols� Denote by L� the set of words that are obtained by
concatenation of words in L� Clearly� L� � S�E� � S� which means that the codewords of
the dictionary L are freely�concatenable� every concatenation of the codewords in L produces
a word in S�

As with the more general class of �nite�state encoders� we can speak of a tagged block
encoder and therefore also a rate p � q block encoder� Such an encoder amounts to a one�to�
one mapping from the set of all �p binary words of length p to the q�blocks in the dictionary�
Note that the inverse of this mapping serves as a decoder�

Shannon �Sha��� showed that whenever there is a rate kp � kq block encoder� for some k�
we must have p�q � cap�S� �we will give a stronger version of this in Theorem ��� below��
Conversely� he proved �nonconstructively� that whenever p�q � cap�S�� there is an integer
k and a rate kp � kq block encoder �see Theorem ��� below�� The following result improves
upon this�
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Theorem ��� �Finite�state coding theorem� Let S be a constrained system� If p�q �
cap�S�� then there exists a rate p � q �nite�state encoder for S with �nite anticipation�

Theorem ��� is proved in Chapter �
 it guarantees encoders which are state�dependent
decodable at any rate up to capacity� It can be derived as a weaker version of the main
theorem of �ACH���� It improves upon the earlier coding results� in particular Shannon�s
result mentioned above� in three important ways�

� It is fairly constructive� it e�ectively provides encoders whose number of states is close
to the smallest possible �see also Section �����

� It proves the existence of �nite�state encoders that achieve rate equal to the capacity
cap�S�� when cap�S� is rational�

� For any positive integers p and q satisfying the inequality p�q � cap�S�� there is a rate
p � q �nite�state encoder for S that operates at rate p � q� In particular� choosing p
and q relatively prime� one can design an encoder�decoder using the smallest possible
codeword length �namely� q� compatible with the chosen rate p�q�

For the purposes of constructing �S� n��encoders� we could restrict our attention to irre�
ducible components of a labeled graph presenting S� We do not pay any price in terms of
achievable rate in doing so� because we can always choose an irreducible component with a
maximum largest eigenvalue �see Theorem �����

Moreover� when G is irreducible� but Gq decomposes into irreducible components� then�
as in Theorem ���� the components are isolated and all have the same largest eigenvalue� So�
for encoding purposes� we are free to use any such component� although some components
may result in simpler encoders than others �see �How���� �WW�����

Example ��� Let G be the Shannon cover in Figure ��� of the ��charge constrained
system and consider the two irreducible components in Figure ����� G� and G�� of G

�� The
edges of the component G� can be tagged so as to give a rate � � � block encoder for the
��charge constrained system�

The following is the converse to Theorem ����

Theorem ��� �Finite�state converse�to�coding theorem� Let S be a constrained system�
If there exists a rate p � q �nite�state encoder for S� then p�q � cap�S��

Proof� Let E be a rate p � q �nite�state encoder for S� We may assume that E is
irreducible
 for otherwise� replace E by one of its irreducible sinks �recall the notion of sink
from Section ������� By Theorem ���� since E is lossless�

log��AE� � cap�S�E��� �����
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But since each state of E has exactly �p outgoing edges� we have

AE� � �p� �

where � is the column vector of all ��s� Thus� by the Perron�Frobenius Theorem �Theo�
rem ������ we have�

��AE� � �p �

Putting this together with ������ and observing that S�E� � Sq� we obtain

p � cap�S�E�� � cap�Sq� �

and so p�q � cap�S��

In Example ���� we exhibited a rate � � � �nite�state encoder for the ��� ���RLL con�
strained system� So� the capacity of this system must be at least ���� Indeed� from Table ���
we see that the capacity is approximately ������ Similarly� from Example ��� it follows that
the capacity of the �� ���RLL constrained system must be at least ���� and we know already

that this capacity equals log
�
���

p
����

�
� ������

Recall from our discussion in Section ��� that if encoded data is corrupted by noise�
then a state�dependent decoder may lose track of the correct state information and therefore
propagate errors inde�nitely without recovering� Since state�dependence is not involved in
decoding a block encoder� such encoders will limit error propagation �in fact� error propa�
gation will be con�ned to a single block�� For this reason� we will �rst spend some time
discussing block encoders before we pass to the more general framework of encoders which
limit error propagation �in Section �����

��� Block encoders

Let S be a constrained system presented by a deterministic graph G and let q be a positive
integer� We can obtain a rate p � q block encoder for S as follows� We pick an arbitrary state
u in G and �nd the largest integer p such that �Aq

G�u�u � �p� Then� we construct the encoder
dictionary by taking �p words of length q that are generated by cycles in G that start and
terminate in u� In fact� if we choose these words in consecutive lexicographic order� then a
codeword can be reconstructed e�ciently from its index in the dictionary� This technique
is known as enumerative coding �see �Cov���� �Imm��� p� ����� �TB��� and Problem �����
The question is whether the attainable rate p�q can be made large enough so that we can
approach capacity� The answer turns out to be positive� as summarized in the following
theorem�

Theorem ��� �Block coding theorem �Sha���� Let S be a constrained system� There
exists a sequence of rate pm � qm block encoders for S such that limm�� pm�qm � cap�S��
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Proof� Let G be an irreducible deterministic graph such that cap�S�G�� � cap�S�
 by
Theorem ���� such a graph indeed exists� We will further assume that G is in fact primitive

the general irreducible case can be deduced by appealing to Theorem ����

By Theorem ����� it follows that for every state u in G we have

lim
���

�

�
log�A�

G�u�u � log��AG� � cap�S� �

Hence� for every state u in G and � � � there exist integers q and p � bq�cap�S�� ��c such
that

�Aq
G�u�u � �q�cap�S���� � �p �

Hence� our block encoder construction approaches capacity when q ���

The following result provides a characterization of the existence of block encoders for a
given constrained system�

Proposition ��� Let S be a constrained system with a deterministic presentation G and
let n be a positive integer� Then there exists a block �S� n��encoder if and only if there exists
a subgraph H of G and a dictionary L with n symbols of ��S�� such that L is the set of
labels of the outgoing edges in H from each state in H�

Proof� If there is such a subgraph H and a dictionary L� then any concatenation of
words of L yields a word in S� Hence� L is a dictionary of a block encoder�

Conversely� suppose there exists a block �S� n��encoder E with a dictionary L� By
Lemma ���� there is an irreducible component G� of G such that L� � S�E� � S�G���
Hence� by Lemma ����� there is a state u in G� such that L� � FG��u�� In particular� there
must be an edge u

w� uw in G� for every w � L� Continuing from the terminal states of these
edges� there must be edges uw

z� uwz in G� for every w� z � L� Iterating this process� we
end up traversing a subgraph of G�� where each state in the subgraph has jLj � n outgoing
edges labeled by L�

For a given constrained system S� and a given choice of p and q� Proposition ��� gives a
decision procedure for determining if there is rate p � q block encoder for S �and if so how
to construct one� as follows� Let G be a deterministic presentation of S and� for two states
u and v in G� let F q

G�u� v� denote the set of all words of length q that can generated in G by
paths that start at u and terminate in v� Searching for the states of the subgraph H of Gq

in Proposition ���� we look for a set P of states in G for which
���
�
u�P

� �
v�P

F q
G�u� v�

� ��� � �p �

We call such a set P of states a �p� q��block set� and the set on the left�hand side of this
inequality the corresponding dictionary�
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While there are exponentially many �as a function of the number of states ofG� subsets to
search over� the following result of Freiman and Wyner �FW��� Lemma �� �see also �MSW���
Section V and Appendix B�� simpli�es the procedure in many cases�

Proposition ��� Let S be a constrained system with a �nite memory essential presen�
tation G �in particular� G is deterministic�� Let p and q be positive integers� and assume
that q is at least as large as the memory of G� If there is a �p� q��block set of vertices in
G� then there is a �p� q��block set P with the following property� whenever u is in P and
FG�u� � FG�u

��� then u� is also in P �

A set of states that satis�es the property� stated in the conclusion of Proposition ���� is
called a complete set of states�

Proof of Proposition ���� Let u and u� be states in G such that FG�u� � FG�u
���

Since q is at least as large as the memory of G� it follows that any word of length q generated
by a path from state u to some state v can also be generated by a path from state u� to v�
Thus� if P is a �p� q��block set� u � P � and u� � VG� then the set P � � P 	 fu�g is also a
�p� q��block set� So� any �p� q��block set can be iteratively enlarged until it is complete�

We show how this method works in the next example�

Example ��� Let S be the �����RLL constrained system� presented by the deterministic
graph G in Figure ���� Note G has memory M � �� From Table ���� we see that cap�S� �
������ and so it makes sense to ask if there is a rate p � q block encoder for S with p � � and
q � �� For this� �rst observe that the follower sets of states in G satisfy

FG��� 
 FG��� 
 FG�� �

and so the only complete sets are P� � fg� P� � f� �g� and P� � f� �� �g� Now� the
adjacency matrix for G and its �fth power are

AG �

�
B�

� � 
�  �
�  

�
CA

and

A�
G �

�
B�

�� � �
�� � �
� � �

�
CA �

For P�� the corresponding dictionary is the set of labels of the self�loops in G� at state �
The number of such self�loops is �A�

G���� � �� � �� � ��
 so� P� is not a �p� q��block set�



CHAPTER �� FINITE�STATE ENCODERS ���

��
��
 ��
��
� ��
��
�� �

�� ������

�� ��

Figure ���� Presentation G of �� ���RLL constrained system�

For P�� since F��� 
 F�� and q � � � � �M� the corresponding dictionary is the set of
labels of paths that start at state � and end at either state  or �� The size of this dictionary
is the sum of the ��� �� and ��� �� entries of A�

G� and this is �� � �� � ��� Thus� P� is a ��� ���
block set and de�nes a rate � � � block encoder for S by deleting one word from the dictionary
and then assigning ��bit tags to the remaining codewords� A particular assignment for such
a code� that was actually used in practice� is shown in �MSW��� Table III��

For P� the corresponding dictionary is the set of labels of paths that start at state � and
end at any of the states � �� or �� Thus� the size of the dictionary is the sum of the entries
in the third row of A�

G� Since this is only ��� P� fails to be a ��� ���block set� So� of the three
complete sets� only one of them� P�� yields a rate ��� block encoder�

The same method can also be applied to give a rate � � � block encoder for the �� ���RLL
constrained system� with capacity approximately �����
 see �MSW��� p� ���� Yet� in both
of these examples the rates of the codes ���� � �� for �� ���RLL and ��� � ����� for �� ���
RLL� are quite far from capacity ������ for �� ���RLL and ����� for �� ���RLL�� In order
to get code rates much closer to capacity� it typically requires much longer block lengths�

The problem with longer block lengths is twofold� First� one must deal with the problem
of designing a practically implementable assignment of a very large number of user words�
Secondly� while errors can not propagate beyond a block boundary� if the block length is
large� then a large number of bits may be corrupted by a single channel error�

For these reasons� �nite�state encoders based on relatively short block lengths can o�er
an attractive alternative to block encoders based on long block lengths	provided that error
propagation can still be controlled satisfactorily� Indeed� this is the role of sliding�block
decodability� a sliding�block decoder with small window size will control error propagation�
For instance� in Example ���� we gave a rather simple rate � � � two�state encoder for the
�� ���RLL constrained system
 this rate is relatively close to capacity �� ������� and we
saw in Section ��� that there is a corresponding sliding�block decoder with a very small
window� In contrast� to obtain a rate p � q block encoder for this system with p�q � ��� �
������ the procedure outlined above reveals that it requires block lengths of size p � �� and
q � ��� As another example� consider the ��� ���RLL constrained system� whose capacity
is approximately ������ In Section ���� we will exhibit a relatively simple rate � � � six�
state encoder with a sliding�block decoder with small window� In contrast� using a result by
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Lee �Lee��� �see also �LW����� one can show that the smallest block lengths for a rate ���
block encoder for this system are p � �� and q � ���

��� Sliding�block decodable encoders

Let S be a constrained system over an alphabet � and let m and a be integers such that
m�a � � A tagged �S� n��encoder is �m� a��sliding�block decodable� if the following holds� for
any two paths e�me�m�� � � � e� � � � ea and e��me

�
�m�� � � � e

�
� � � � e

�
a
that generate the same word�

the edges e� and e�� have the same �input� tag� We will use the shorter term sliding�block
decodable encoder to denote a tagged encoder which is �m� a��sliding�block decodable for some
m and a�

A sliding�block decoder for a tagged �S� n��encoder E is a mapping D from the set S�E��
�m�a�� to the set of input tags� such that� if w � w�w�w� � � � is any symbol sequence
generated by the encoder from the input tag sequence s � s�s�s� � � �� then� for i � m�

si � D�wi�m� � � � � wi� � � � � wi�a� �

We call a the look�ahead of D and m the look�behind of D� The sum m�a�� is called
the decoding window length of D� It is easy to verify that a tagged �S� n��encoder has a
sliding�block decoder if and only if it is sliding�block decodable�

A tagged encoder is called block decodable if it is �� ��sliding�block decodable� equiva�
lently if whenever two edges have the same �output� label� they must also have the same
�input� tag�

The following proposition is straightforward�

Proposition ��� If a tagged �S� n��encoder is �m� a��de�nite� then it is �m� a��sliding�
block decodable for any tagging of the edges�

Notions of sliding�block decodability naturally extend to rate p � q �nite�state encoders
as follows� Let S be a constrained system over an alphabet �� A sliding�block decoder for a
rate p � q �nite�state encoder E for S is a mapping

D � S�E� � ��q�m�a�� �� f� �gp

such that� if w � w�w�w� � � � is any sequence of q�blocks �codewords� generated by the
encoder from the input tag sequence of p�blocks s � s�s�s� � � �� then� for i � m�

si � D�wi�m� � � � � wi� � � � � wi�a� �

Figure ��� shows a schematic diagram of a sliding�block decoder�
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Recall that a single error at the input to a sliding�block decoder can only a�ect the
decoding of q�blocks that fall in a �window� of length at most m�a��� measured in q�blocks�
Thus� error propagation is controlled by sliding�block decoders�

Example ��� The encoder in Figure ��� is ��� ��de�nite� Hence� it is ��� ��sliding�
block decodable for any tagging of the edges� Moreover� for the speci�c tagging shown in
Figure ���� the encoder is actually block decodable� the second bit in each label equals the
input tag�

Example ��� The tagged encoder given in Example ��� is not sliding�block decodable�
To see this� observe that an arbitrarily long sequence of a�s can be generated by the self�loops
at each state� and yet the self�loops have di�erent input tags�

Example ��� Let E be the encoder in Figure ���� This encoder is �� ���de�nite and
therefore �� ���sliding�block decodable� Table ���� which we showed earlier in Section ����
de�nes a sliding�block decoder

D � S�E� �
�
f� �g�

�� �� f� �� �� ��g �

Entries marked by �	� in the table do not a�ect the value of the decoded input tag si�

wi wi�� si � D�wi� wi���

�current codeword� �next codeword� �decoded input tag�

��� � ��

��� ��� or ��� ��

��� ���� ���� or ��� ��

��� ��� or ��� ��

��� ���� ���� or ��� ��

��� � ��

��� ��� or ��� ��

��� ���� ���� or ��� ��

Table ���� Sliding�block decoder for encoder in Figure ����

The following result shows that for encoders� sliding�block decodability implies �nite an�
ticipation� So� sliding�block decodability is indeed a stronger property than state�dependent
decodability�

Proposition ��� If an essential tagged �S� n��encoder is �m� a��sliding�block decodable�
then it has anticipation at most a�
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wi wi�� wi�� wi�� si
�� �� �� � �
�� �� �� � �

�� �� �� �� �

�� �� �� �� �

�� �� � � �

�� �� � � �

�� �� �� � �

�� �� �� � �

�� �� �� �� �

�� �� �� �� �

�� �� �� � �

�� �� �� � �
�� �� �� �� �

�� �� �� �� �

�� �� � � �

Table ���� Decoding function of encoder in Figure ����

Proof� The proof is similar to that given for De�nite  Finite anticipation in Proposi�
tion ����

Example ��� The capacity of the ��� ���RLL constrained system is approximately �����
�see Table ����� Figure ��� presents a rate � � � six�state encoder for this constrained system�
The encoder is �� ���sliding�block decodable and its decoder� si � D�wi� wi��� wi��� wi���� is
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Figure ���� Rate � � � six�state encoder for ��� ���RLL constrained system�

presented in Table ���� By Proposition ���� the anticipation of this encoder is at most � and�
in fact� it is exactly � �see Problem ���� the graph in Figure ��� is an untagged version of
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Figure ���� with the labels a� b� and c standing for � �� and �� respectively�� The encoder
in Figure ��� is due to Franaszek �Fra��� and has been used in several commercial products�

Figure ��� shows another rate � � � �untagged� encoder for the ��� ���RLL constrained sys�
tem� This encoder� which is due to Howell �How���� has only �ve states� Yet� its anticipation
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Figure ���� Rate � � � �ve�state encoder for ��� ���RLL constrained system�

is � �see Problem �����

Example ��	 The capacity of the ��� ���RLL constrained system is approximately ������
Figure ��� presents a rate � � � four�state encoder for this constrained system� This encoder
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Figure ���� Rate � � � two�state encoder for ��� ���RLL constrained system�

is due to Weathers and Wolf �WW��� and is �� ���sliding�block decodable �a sliding�block
decoder can be found in �WW�����
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For �nite�type constrained systems� Theorem ��� can be improved�

Theorem ��� �Adler� Coppersmith� and Hassner �ACH���� Let S be a �nite�type con�
strained system� If p�q � cap�S�� then there exists a rate p � q �nite�state encoder for S with
a sliding�block decoder�

This result is proved in Section ����

We remark that except in trivial cases it is impossible to have a � � On the other hand�
it is quite possible to have m �  �but still having m�a � �� A value m �  corresponds
to the case where the sliding�block decoder reconstructs a tag which was input way back in
the past	i�e�� m time slots earlier than the �oldest� symbol in the examined window� See
Section ���� where we brie�y discuss how this is used to reduce the decoding window length�
m�a��� of the decoder and therefore also the error propagation�

Next� we point out that there is an algorithm for testing whether a given tagged �S� n��
encoder is �m� a��sliding�block decodable� When m is nonnegative� this is a simple modi��
cation of that described in Section ����� �see Problem ����
 when m � � this is given in
Proposition ��� below� In contrast� however� we have the following�

Theorem ��	 �Siegel �Sie��b�� �AKS���� Given an untagged �S� n��encoder E � the prob�
lem of deciding whether there is a tag assignment to the edges of E such that E is block
decodable �namely� �� ��sliding�block decodable� is NP�complete�

In fact� the proof of this result shows that the input tag assignment problem in Theo�
rem ��� is NP�complete even for �xed n � �� But the problem becomes polynomial if we �x
the size of the alphabet of S�

Finally� we outline here the algorithm to test whether a tagged �S� n��encoder is �m� a��
sliding�block decodable when m � � For a tagged �S� n��encoder E � let RE�E be the jVE j� �
jVE j� matrix whose rows and columns are indexed by the states of E � E � and for every

u� u�� v� v� � VE � the entry �RE�E�hu�u�i�hv�v�i equals the number of pairs of edges u
s�a� v and

u�
s��a�� v� in E � with distinct input tags s �� s� �but not necessarily with the same label��

Also� denote by AE �AE the Kronecker product of AE with itself	i�e�� �AE �AE�hu�u�i�hv�v�i �
�AE�u�v�AE�u��v� for every u� u�� v� v� � VE �

Proposition ���
 A tagged �S� n��encoder E is �m� a��sliding�block decodable with m � 
if and only if RE�E �AE � AE�

�m��Am�a��
E�E � �

The full proof of Proposition ��� is left as an exercise �Problem �����
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��� Block decodable encoders

Recall that a tagged encoder is block decodable if it is �� ��sliding�block decodable� While a
block decodable encoder is state dependent� it can be decoded just like a block encoder� and
thus block decodable encoders limit error propagation to the same extent as block encoders�
The following example shows why block decodable encoders might provide an advantage over
block encoders�

Example ���
 Consider the constrained system S over the alphabet fa� b� c� dg which
is presented by the labeled graph G of Figure ����

��
��
 ��

��
�

�� �a �b
�

c
��� d

Figure ���� Graph presentation for Example ����

Now� suppose we would like to construct a rate p � q block encoder for S� Since the
follower sets of the two states in G are disjoint� then� by Proposition ���� the codewords of
the dictionary must all be generated by cycles that start and terminate in the very same
state of G� However� for each of the two states u in G� there are �Aq

G�u�u � �q�� cycles of
length q that start and terminate in u� Hence� the best we can achieve is a rate �q��� � q
block encoder for S� which� evidently� does not achieve the capacity cap�S� � ��

On the other hand� any tagging of the edges of G yields a rate ��� block decodable encoder
and so achieves capacity�

As another example� consider the ��� ���RLL constrained system S� The rate ��� two�
state encoder for S in Figure ��� is block decodable� but is not a block encoder� In fact� we
leave it to the reader to verify that there is no rate ��� block encoder for this system �to see
this� use Proposition ��� and the procedure described immediately afterwards��

Block�decodable encoders form a class somewhere intermediate between block encoders
and sliding�block decodable encoders� The following result gives a characterization� similar
to Proposition ���� for the existence of block decodable encoders�

Proposition ���� Let S be a constrained system with a deterministic presentation G
and let n be a positive integer� Then there exists a block decodable �S� n��encoder if and only
if there exists such an encoder which is a subgraph of G�

Proof� The su�ciency of the condition is obvious� The proof of necessity is similar
to that of Proposition ���� First� we may assume that there exists an irreducible block
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decodable �S� n��encoder E � By Lemma ����� for each state v in E � there is a state u in G
such that FE�v� � FG�u�
 while there may be many such states u� just pick one� and call
it u�v�� Now� for every symbol a which appears as a label of an outgoing edge in E from
v� there is a unique edge in G outgoing from u�v� with label a
 call this edge e�v� a�� Then
the set of edges fe�v� a�g obtained in this way de�nes a subgraph of G� These edges inherit
tags from the corresponding edges in E � and it is evident that this tagged subgraph de�nes
a block decodable �S� n��encoder�

Example ���� Let S be the �� ���RLL constrained system and let G be the Shannon
cover of S� as shown in Figure ���� We have presented a rate � � � two�state encoder for S in
Example ���� Note that this encoder is not block decodable� We claim that there is no block
decodable� rate � � � �nite�state encoder for S� For if there were such an encoder� then by
Proposition ���� there would be a subgraph H of G�� with each state of H having outdegree
� �� But there is no such subgraph� G� is shown in Figure ���
 it has outdegree � at state
 and outdegree � at state �� and the deletion of state � would leave state  with outdegree
only ��

It follows from Proposition ���� that if G is the Shannon cover of a constrained system
S and there is a block decodable rate p � q �nite�state encoder for S � then there exists a set
P of states in G such that

���
�
v�P

F q
G�u� v�

��� �
X
v�P

�Aq
G�u�v � �p for every u � P �

A set of states P which satis�es this inequality is referred to in �Fra��� as a set of principal
states� Note that any �p� q��block set� as de�ned in Section ���� is necessarily a set of
principal states� The existence of a set of principal states is necessary for the existence of
a block decodable encoder� in particular for a block encoder� In fact� it is necessary and
su�cient for the existence of a deterministic encoder� but in general it is not su�cient for
the existence of a block decodable encoder� However� it turns out �see �Fra��� and �Fra���
that for a special class of irreducible constrained systems� including powers of �d� k��RLL
constrained systems� the existence of a rate p � q deterministic encoder is equivalent to the
existence of a rate p � q block decodable encoder� So� for these systems� one can obtain block
decodable encoders by searching for a set of principal states� We will see in Section �����
that a set of principal states� if any exists� can be found e�ciently�

An explicit description of block decodable codes for �d� k��RLL constrained systems is
given by Gu and Fuja in �GuF���� and also by Tjalkens in �Tja���� Their constructions
are optimal in the sense that for any given �d� k��RLL constrained system� and given q�
they achieve the highest possible p for a rate p � q block decodable encoder� The Gu Fuja
construction is a generalization of a coding scheme due to Beenker and Immink �BI����

We now describe the Beenker Immink construction �see also �Imm��� pp� ��� ������
Let L�q
 d� k
 r� denote the set of all q�blocks in the �d� k��RLL constrained system� with
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at least d leading zeroes and at most r trailing zeroes� We assume that q � k � �d and
that d � �� and set r � k�d� Encoding is carried out by a one�to�one mapping of the
p � blog jL�q
 d� k
 k�d�jc input bits �tags� into q�blocks� or codewords� in L�q
 d� k
 k�d��
Such a mapping can be implemented either by a look�up table �of size �p� or by enumerative
coding� However� since the codewords in L�q
 d� k
 k�d� are not freely�concatenable� the
encoded codeword needs to be adjusted� when the concatenation of the previous codeword
with the current codeword causes a violation of the �d� k��RLL constraint� we invert one of
the �rst d zeroes in the latter codeword� The condition q � k � �d guarantees that such
inversion can always resolve the constraint violation� The �rst d bits in each codeword �which
are initially zero� are referred to as merging bits� Since encoding of a current codeword
depends on the previous codeword� the Beenker Immink encoder is not a block encoder

however� it is block decodable�

We can use Example ��� to illustrate how this scheme works �even though the condition
q � k is not met�� In the example� the set L��
 �� �
 �� consists of the two codewords 
and �� When the codeword  is to be followed by another � we resolve the constraint
violation by changing the latter codeword into ��

A well�known application of the Beenker Immink method is that of the ��EFM���� code
that was described in Section ������ The codewords of this code are taken from the set
L���
 �� �
 ��� which is of size ���� thus yielding a rate � � �� block decodable encoder for
the ��� ���RLL constrained system�

In their paper �GuF���� Gu and Fuja show that� for any �d� k��RLL constrained system
S with k � d � �� and for any q � d� a block decodable �Sq� n��encoder exists if and only
if n � jL�q
 d� k
 k���j �Tjalkens presents a similar result in �Tja��� for the range q � k �
�d � ��� Hence� the Beenker Immink construction is optimal for d � � and sub�optimal for
d � �� The construction presented in �GuF��� that attains the equality n � jL�q
 d� k
 k���j
requires more than just inverting a merging bit
 still� as shown in �GuF���� it can be e�ciently
implemented� See also �Tja����

��� Non�catastrophic encoders

A tagged �S� n��encoder is a non�catastrophic encoder if it has �nite anticipation and when�
ever the sequences of output labels of two right�in�nite paths di�er in only �nitely many
places� then the sequences of input tags also di�er in only �nitely many places� A rate p � q
�nite�state tagged encoder for S is non�catastrophic if the corresponding tagged �Sq� �p��
encoder is non�catastrophic�

Observe that non�catastrophic encoders restrict error propagation in the sense that they
limit the number of decoded data errors spawned by an isolated channel error� In general�
however� such encoders do not necessarily limit the time span in which these errors occur�
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On the other hand� tagged encoders which are sliding�block decodable do limit the time span
as well and therefore are preferable�

The following result shows that� with the standard capacity assumption� we can always
�nd non�catastrophic encoders and that whenever there is excess in capacity or whenever the
constraint is almost��nite�type �such as the charge�constrained systems�� the decoder can be
made sliding�block� ensuring that decoder error propagation is limited in both number and
time span�

Theorem ���� Let S be a constrained system� If p�q � cap�S�� then there exists a
non�catastrophic rate p � q �nite�state encoder for S� Moreover� if� in addition� either p�q �
cap�S� or S is almost��nite�type� then the encoder can be chosen to be sliding�block decodable�

So� for general constrained systems� the error propagation is guaranteed to be limited
only in number� Indeed� in �KarM��� �see Section ����� an example is given of a constrained
system with rational capacity� for which there is no sliding�block decodable encoder with rate
equaling capacity �of course� by Theorem ����� such a constrained system cannot be almost�
�nite�type�� In the non�catastrophic encoders constructed in Theorem ����� the decoding
errors generated by an isolated channel error are con�ned to two bounded bursts� although
these bursts may appear arbitrarily far apart �see Section �����

The notion of non�catastrophic encoder is a standard concept in the theory of convolu�
tional codes� In that setting� it coincides with sliding�block decodability �LinCo��� Ch� ���

The proof of Theorem ���� is fairly complicated� We give an outline in Section ����
Although it does not exactly provide a practical encoder synthesis algorithm� the proof makes
use of some very powerful techniques that can be brought to bear in particular applications�
Several of the ideas in the generalization to almost��nite�type systems have also played a
role in the design of coded�modulation schemes based upon spectral�null constraints� See�
for example� �KS��a��

The quest for a sliding�block decodable encoder with rate equaling capacity for a partic�
ular example provided the original motivation for Theorem ����� The example is as follows�

Let S be the � ��� ���CRLL constrained system �see Section ����� and Problem ������ It
turns out that cap�S� � ��� �see Problem ������ In fact� the only non�trivial B �d� k��CRLL
constrained systems with rational binary capacity are the � �� ���CRLL and the � ��� ���
CRLL systems� both with capacity ��� �AS����AHPS���� For this constraint� Patel �Patel���
constructed a particular rate � � � �nite�state �S� ���encoder� So� the rate of this encoder is
as high as possible� Unfortunately� this encoder does not have �nite anticipation� However�
Patel was able to modify the encoder to have �nite anticipation and even a sliding�block
decoder with very small decoding window length� at the cost of only a small sacri�ce in rate
�although there is an additional cost in complexity�� This modi�ed encoder� known as the
Zero�Modulation �ZM� code� was used in an IBM tape drive �Patel����
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Recall that charge�constrained systems are almost��nite�type and that runlength�limited
systems are �nite�type and therefore almost��nite�type� Now� the intersection of two almost�
�nite�type constrained systems is again almost��nite�type �see Problem ����
 so� the � ��� ���
CRLL constrained system S is almost��nite�type� It then follows from Theorem ���� that
there actually is a rate � � � tagged �nite�state �S� ���encoder which is sliding�block decodable�
However� the encoding decoding complexity of such a code appears to be enormous� On the
other hand� there is a rate � � � tagged �nite�state �S� ���encoder which is sliding�block de�
codable� with only moderate encoding decoding complexity �see �KS��b� and Problem �����

We remark that Ashley �Ash��� has proved a far�reaching generalization of Theorem �����

��� Relationships among decodability properties

Finally� in the following result� which we leave as an exercise for the reader� we summarize
the relationships among the decodability properties that we have considered in this chapter�

Proposition ���� Let E be an essential tagged encoder� Then

De�nite  Sliding�block
decodable

 Noncatastropic

� �
Block
encoder

 Block
decodable

 Deterministic

�						

						�

 Finite
anticipation

 Encoder �

��	 Markov chains on encoders

In Section ���� we introduced Markov chains on graphs� Clearly� the de�nitions apply to
�S� n��encoders as special cases of graphs�

In particular� given a tagged �S� n��encoder E � �V�E� L�� we can obtain a Markov chain
on E by assuming that the input tags within an input sequence are statistically independent
and uniformly distributed� This model is commonly used in analyzing encoders� and it
can be approximated rather well in reality by �scrambling� the sequence of input tags �e�g��
assuming that the input tags take values on ! � f� �� �� � � � � n��g� the ith input tag in the
sequence is added modulo n to the ith symbol in some �xed pseudo�random sequence over
!�� Equivalently� in this Markov chain� the conditional probability� qe� of each edge e � E
is equal to ��n�

Example ���� We analyze here the ��EFM���� code that was described in Section ������
Recall that this encoder has three states� � �� and � �� with out�degree n � ��� at each
state� The edges are labeled by ���bit codewords from the ��� ���RLL constraint�
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The adjacency matrix of E is given by

AE �

�
B�

�� �� ���
�� �� ���
�� �� ���

�
CA �

Indeed� the number of edges from state u to state v in E is independent of u
 in fact� the
dependency on u of the labels of those edges is restricted only to the merging bits� which
are the �rst two bits of those labels�

A uniform distribution over the input tag sequences induces a Markov chain on E whose
transition matrix is given by

QE � �
��	
� AE

�see Section ����� By Proposition ��� it follows that as the path length � increases� the
probability of ending at state u in E converges to the component 	u in the following vector

�
� � �	� 	� 	��
� � � 
�

��	
��
��	

��	
��	

� � � ���� ���� ���� � �

In fact� in our case the rows of QE are all equal� so Proposition ��� holds not only in the
limit� but rather for every particular path length � � �

As pointed out in Section ������ there are ��� outgoing edges from state � in E whose
labels can be altered in their second bit �i�e�� in the second merging bit� without violating
the constraint� Therefore� the probability of allowing such a bit inversion is

���
��	
� 	� � ��� �

It follows that approximately once in every � codewords� on the average� a merging bit can
be inverted� The law of large numbers �Theorem ����� can now guarantee an arbitrarily
small deviation from this average with probability approaching one as the path length � goes
to in�nity�

��
 Spectral analysis of encoders

One important application of Markov chains on encoders is the spectral analysis of the
output sequences that are generated by an encoder� Let S be a constrained system whose
alphabet is a subset of the real �eld IR� and let E � �V�E� L� be an �Sq� n��encoder� Each
path of length � in E generates a sequence of length � over IRq
 yet� for the purpose of spectral
analysis� we will regard those sequences as words of length q� over IR� That is� we will be
interested in the constrained system S � that is generated by a graph E � whose set of states
is given by

V 	 fue�ige�E� ��i�q �
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and each edge e in E with a label L�e� � w�w� � � � wq becomes a path 
e in E � that takes the
form

�E�e�
w�� ue��

w�� ue��
w�� � � �

wq��� ue�q��
wq� �E�e� �

Every Markov chain P on E can be easily transformed into a Markov chain P � on E � with
P ��
e� � P�e� 


indeed� de�ne P ��e�� � P�e� for the �rst edge e� in 
e� and let all the other edges along 
e
have conditional probability �� Note that P � is an irreducible Markov chain on E � if and only
if P is irreducible on E � Also� the period of an irreducible P � is q times the period of P�

Next we recall the de�nition of power spectral density from Problem ���� and apply it
to E � and P �� assuming that P � is an irreducible Markov chain on E �� For simplicity� we will
assume here that for each equivalence class C of the congruence relation on the states of E �
we have

EP � fL��e�� j �E ��e�� � Cg �  �

Let
X � X����X���� � � � X�X� � � �X�

denote a random word of length ���� taking values on S � with a probability distribution as
induced by P �� The autocorrelation of X is given by

RX�t� � EP � fXiXi�tg � t � ������� � � � ��� 

by stationarity� RX�t� does not depend on i �provided that �� � i� i�t � ��� The power
spectral density f �� "X�f� of X is the two�sided Fourier transform of RX�t�
 namely�

"X�f� �
�X

t���

RX�t�e
����tf �

where � �
p��� The power spectral density can also be expressed as

"X�f� � lim
���

�

����
EP �

n
j#X�f�j�

o
� �����

where f �� #X�f� is the �two�sided� Fourier transform of X� i�e��

#X�f� �
�X

i���

Xie
����if

�see Problem ������

The value "X�� is commonly referred to as the dc component of the power spectral
density� It follows from ����� that

"X�� � lim
���

�

����
EP �

n
Y �
�

o
�
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where

Y� �
�X

i���

Xi �

Now� EP �fXig �  implies that EP �fY�g � � Hence� we can guarantee that the dc component
be zero by requiring that the digital sum variation �DSV� of X be bounded by a prescribed
parameter B �see Section �������

As mentioned in Section ������ the suppression of "X�f� for values of f near zero is
desirable in optical recording� To this end� we could use in such applications a B �d� k��
CRLL encoder �for� say� �d� k� � ��� ���� but the charge constraint B could result in a very
complex encoder� An alternate solution was presented in Section ������ where we showed how
the DSV can be reduced by bit inversions in the �d� k��RLL sequence before it is precoded
�see Example ������ This method can be applied in the EFM code through the occasional
freedom in selecting the merging bits �see Example ������

We note� however� that the reduction of the DSV through bit inversions requires� in
principle� the knowledge of all future bits in the sequence� Clearly� this is impractical and�
therefore� bit inversions are carried out based only on a limited look�ahead at the generated
sequence�

Figure ��� shows the power spectral density �obtained by simulation� at the low�frequency
range of the bipolar output of the ��EFM���� code after precoding� The merging bits in
every encoded codeword are selected �when possible� as to minimize the absolute value of
the sum of the symbols in the bipolar output� There are two curves in the �gure� and both
are shown in the dB scale� One curve has been generated without look�ahead� namely� it is
assumed that the output sequence ends in the currently�encoded codeword
 the second curve
has been generated by looking ahead at two upcoming codewords�

The suppression of the low�frequency range in the curves of Figure ��� is still insu�cient
for optical recording applications� This was resolved in the compact disk by inserting three
merging bits instead of two� resulting in the �proper� EFM code�

Another possible solution is relaxing the requirement that the modi�cation of a codeword
is limited only to inverting one of its �rst two bits� Such a relaxation allows to have codes
such as the ��� ���RLL encoder in �Roth�� The encoder therein is a rate � � �� block
decodable encoder with four states� � �� � �� and � � �with notations bearing the meaning
as in the EFM code�� Assuming a uniform distribution on the input bytes� almost every
second input byte �on average� can be encoded into two di�erent codewords that di�er in
the parity of the number of ��s in them �namely� for one codeword that number is even while
it is odd for the other�� The power spectral density of this encoder is shown in Figure ����
and the power spectral density of the ��EFM���� code is also included for comparison
 in
both encoders� the DSV reduction is obtained by looking ahead at two upcoming codewords
�note that due to scaling� the power spectral density values in �Imm��b� and �Roth� are
shifted by �dB compared to the �gures herein�� The curve in Figure ��� is very similar to the
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Figure ���� Power spectral density of the ��EFM���� code�

power spectral density of the EFMPlus code� which is used in the DVD �yet� the EFMPlus
code is not block decodable��

Problems

Problem ��� Recall that the �d� k� s��RLL constraint is a subset of the �d� k��RLL constraint where

the runlengths of ��s must be of the form d� is	 with i a nonnegative integer


Let S be the �s����� s��RLL constraint for a prescribed positive integer s


�
 Show that the capacity of S is ��s


�
 Construct a rate � � s block encoder for S


Problem ��� �Enumerative coding� Let  be a �nite alphabet and assume some ordering on the

elements of 
 Let L be a set of distinct words of length � over 
 The ordering over  induces

the following lexicographic �dictionary� ordering over L� given two words w � w�w� � � � w� and

z � z�z� � � � z� in L	 we say that w � z if there is i � f�� �� � � � � �g such that wj � zj for � � j � i
and wi � zi
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Figure ���� Improvement on the dc suppression compared to the ��EFM���� code�

For a word w � L	 denote by IndL�w� the index of w in L	 according to the induced lexico�

graphic ordering �starting with zero as the smallest index�
 Also	 for a word w�w� � � � wi of length

i � � over 	 denote by NL�w�� w�� � � � � wi� the number of words in L whose pre�x of length i is
given by w�w� � � � wi


�
 Show that for every word w � w�w� � � � w� � L	

IndL�w� �
�X

i��

X
a�� �a�wi

NL�w�� w�� � � � � wi��� a�

�a sum over an empty set is de�ned to be zero�


�
 Given an integer r in the range � � r � jLj	 show that the algorithm in Figure �
�� produces

the word w � L such that IndL�w� � r


�
 LetG � �V�E�L� be a deterministic graph and assume an ordering on the range of L � E � 


Given two states u� v � V and a positive integer �	 let L � LG�u� v� �� be the set of all words
of length � that can be generated from state u to state v in G


Write an e�cient algorithm for implementing an enumerative coder� the algorithm accepts

as input the quadruple �G�u� v� �� and an integer r in the range � � r � jLG�u� v� ��j	 and
produces as output the word w � L � LG�u� v� ��j such that IndL�w� � r
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s� r�
i� ��
while �i � �� f

a� smallest element in ��
while �s � NL�w�� w�� � � � � wi��� a�� f

s� s�NL�w�� w�� � � � � wi��� a��
increment a to the next element in ��

g
wi � a�
i� i� ��

g
return w � w�w� � � � w��

Figure ���� Enumerative coding�

Write also an algorithm for implementing the respective enumerative decoder


Problem ��� Explain how an �S�� n���encoder E � �V�E�L� can be transformed into an �S� n��
encoder E �
 Write an upper bound on the number of states of E � as a function of jV j	 n	 and
�


Hint� Start with the Moore co�form of E 
 Then replace the outgoing edges from each state by

a respective tree


Problem ��� Let S be the constrained system generated by the graph G in Figure �
��
 Since

log � � ��� then	 by Shannon�s coding theorem	 there is a positive integer � such that there exists

a rate ���� � ���� block encoder for S� i
e
	 there is an �S��� �����encoder with only one state


The goal of this question is �nding the smallest value of the integer � for which such a block

encoder exists


�
 Let � be a positive integer for which there is a rate ���� � ���� block encoder E for S
 Show
that there is a state u in G such that all the codewords in E �of length �� over the alphabet
 of S� are generated by cycles in G that originate and terminate in state u


�
 Show that the number of cycles of length �� in G that originate and terminate in state B
equals

�

�
�
�
� � �� � � � �����

�
�

Hint� AG� � P�P��	 where � is a diagonal matrix� what is P �

�
 Obtain expressions	 similar to the one in �	 for the number of cycles of length �� in G that

originate and terminate in�

�a� state A�
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�b� state C


�
 Apply the results in ��� to �nd the smallest value of the integer � for which there is a rate

���� � ���� block encoder for S


Problem ��� Let S be an irreducible constrained system with �nite memory M and let G be

the Shannon cover of S
 Assume there exists a block �S�� n��encoder E �with one state�	 where n
and � are positive integers and � � M
 Denote by L the set of n words of length � that label the
edges of E 
 Show that if a word w in L is generated in G by a path that terminates in state u	
then L � FG�u�� recall that FG�u� denotes the set of words that can be generated in G by paths

originating in state u


Problem ��� Let S be the constrained system presented by the graph G in Figure �
��


��
��
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��
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�
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� �
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�d
�

e� �O
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Figure ����� Graph G for Problem ����

�
 What is the period of G�

�
 What is the memory of G�

�
 Compute the capacity of S


�
 Obtain the entries of the adjacency matrix of G�� as expressions in �
 Simplify those expres�

sions as much as possible


Hint� Find a diagonal matrix � and a nonsingular matrix P such that AG� � P�P��


�
 For states u and v in G and a positive integer �	 let N�u� v� �� denote the number of distinct
words of length �� that can be generated in G both from state u and state v� that is	

N�u� v� �� � jFG�u� � FG�v� � ��j �

For every two states in G	 obtain the values of N�u� v� �� as expressions in �
 Simplify those

expressions as much as possible


�
 Based on �	 and �	 and Problem �
�	 show that there is no block �S��� �����encoder �with one

state� for any positive integer �


�
 Construct a rate � � � block encoder for S
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Problem ��� Let E be a tagged �S� n��encoder and let AE�E be the adjacency matrix of E 	 E
�the input tags are ignored when constructing the �ber product�
 Denote by TE�E the jVE j

�
 jVE j
�

matrix with rows and columns indexed by the states of E 	 E and entries de�ned as follows� for

every u� u�� v� v� � VE 	 the entry �TE�E �hu�u�i�hv�v�i equals the number of �ordered� pairs of edges u�v
and u��v� in E that have the same label yet are assigned distinct input tags
 Show that E is

�m� a��sliding�block decodable if and only if

Am

E�E TE�E A
a

E�E � � �

Problem ��� Prove Proposition �
��



