
Chapter �

The State�Splitting Algorithm

In this chapter� we provide an exposition of the state�splitting algorithm� which implements
the proof of Theorem ���� for constructing �nite�state encoders� The steps in the algorithm
are summarized in Figure ����

The approach we will follow uses graph construction techniques� based on state splitting
and approximate eigenvectors� which have their roots in symbolic dynamics� where they
were introduced by R�F� Williams �Will	
� and Adler� Goodwyn� and Weiss �AGW		�� The
�rst application of state�splitting ideas in constrained coding was Patel�s construction of the
Zero�Modulation ZM� code �Patel	�� see Section ����� The state�splitting algorithm is also
related to earlier ideas of Franaszek �Fra��b�� �Fra���� �Fra����

For a given deterministic presentation G of a constrained system S and an achievable rate
p�q � capS�� we will apply a state�splitting transformation iteratively beginning with the
qth power graph Gq� the procedure culminates in a new presentation of Sq with minimum
out�degree at least �p� then� after deleting edges� we get an Sq� �p��encoder� which� when
tagged� gives our desired rate p � q �nite�state encoder for S�

Although the design procedure can be made completely systematic�in the sense of having
the computer automatically generate an encoder and decoder for any valid code rate�the
application of the method to just about any nontrivial code design problem will bene�t from
the interactive involvement of the code designers� There are some practical tools that can
help the designer make �good� choices during the construction process� We will discuss some
of these tools in Section ����

It should be stressed that the general problem of designing codes that achieve� for ex�
ample� the minimum number of encoder states� minimum sliding�block decoding window� or
the less precise feature of minimum hardware complexity� is not solved� This remains an
active research topic� as exempli�ed by recent papers where lower bounds on the number of
encoder states �MR��� and the minimum sliding�block decoder window are studied �Ash����

�
�
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�Kam���� �Imm���� �Holl���� �AM�	�� �AM���� See Chapters � and 	 for more on this�

��� State splitting

In this section� we de�ne state splitting of a labeled graph H and later apply it to H � Gq�
We begin with a simpli�ed special case�

Let H � V�E� L� be a labeled graph and denote by Eu the set of outgoing edges from
state u in H� A basic out�splitting at state u is determined by a partition

Eu � E���
u � E���

u

of Eu into two disjoint sets� This partition is used to de�ne a new labeled graph H � �
V �� E �� L�� that changes the local picture at state u� The set of states V � consists of all
states v �� u in H� as well as two new states denoted u��� and u����

V � � V � fug� � fu���� u���g �

The states u��� and u��� are called descendant states of state u� and state u is called the
parent state of u��� and u����

The edges in H � that do not involve states u��� and u��� are inherited from H� That is�
if there is an edge e from state v to state v� in H� with v� v� �� u� there is a corresponding
edge in H �� For edges involving state u� we consider the following three cases�

Case �� Let edge e in H start at a state v �� u and terminate in state u� This edge is
replicated in H � to produce two edges� an edge e��� from v to u��� and an edge e��� from v to
u����

Case �� Let edge e in H start at state u and terminate in a state v �� u� and suppose
e belongs to the set E�i�

u in the partition of Eu� We draw in H � a corresponding edge from
state u�i� to state v�

Case �� Let edge e be a self�loop at state u in H� and suppose that e belongs to E�i�
u �

In H � there will be two edges from state u�i� corresponding to e� one edge to state u���� the
other to state u����

As with states� we refer to descendant edges in H � and parent edges in H� In all cases�
the edge label of an edge in H � is the edge label of its parent edge in H�

In specifying the partitions in particular examples� we will refer to the edges by their
edge labels in cases where this causes no ambiguity�

The change in the local picture at state u is shown in Figures ��� and ���� In the �gures�
we have partitioned the set of edges Eu into subsets� E���

u � fa� bg and E���
u � fcg� The
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state u splits into two states� u��� and u���� according to the partition� It is evident that the
anticipation at states v� and v� may increase by one symbol� So� H � need not be deterministic
even if H is�
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Figure ���� Local picture at state u before splitting�
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Figure ���� Basic out�splitting at state u for Figure ����

In general� a state splitting may involve partitions into any number of subsets� and several
states may be split simultaneously� so� we have the following more general notion of state
splitting�

An out�splitting of a labeled graph H begins with a partition of the set� Eu� of outgoing
edges for each state u in H into Nu� disjoint subsets

Eu � E���
u � E���

u � � � � � E�N�u��
u �

From the partition� we derive a new labeled graph H �� The set of states VH� consists of the
descendant states u���� u���� � � � � u�N�u�� for every u � VH � Outgoing edges from state u in H
are partitioned among its descendant states and replicated in H � to each of the descendant
terminal states as follows� for each edge e from u to v in H� determine the partition element
E�i�
u to which e belongs� and endow H � with edges e�r� from u�i� to v�r� for r � �� �� � � � � Nv��

the label of e�r� in H � is the same as the label of e in H�
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Sometimes an out�splitting is called a round of out�splitting to indicate that several states
may have been split simultaneously�

The labeled graph H � obtained from H by out�splitting is sometimes called an out�
splitting of H� It has several important characteristics� relative to H� enumerated in the
following proposition�

Proposition ��� Let H be a labeled graph and let H � be obtained from H by out�splitting�
Then

�� SH �� � SH��

�� If H has anticipation A� then H � has anticipation at most A���

�� If H is m� a��de�nite� then H � is m� a����de�nite�

�� If H is irreducible� so is H ��

The key to this result is the following fact� which is a consequence of the de�nition of
out�splitting�

Lemma ��� Let H be a labeled graph and let H � be obtained from H by out�splitting�
Then e

�r��
� e

�r��
� � � � e

�r��
� is a path in H � if and only if e�e� � � � e� is a path in H and

ei�� � E
�ri�
��ei�

for i � �� �� � � � � ��� �

Moreover� both paths generate the same word�

We leave the proof of the lemma to the reader�

Proof of Proposition ���� �� This follows immediately from Lemma ����

�� Let e
�r��
� e

�r��
� � � � e

�rA���
A�� and �e

�s��
� �e

�s��
� � � � �e

�sA���
A�� be paths of length A�� in H � starting

at the same state and generating the same word� Then e�e� � � � eA�� and �e��e� � � � �eA�� are
paths in H that start at the same initial state and generate the same word� Thus e� � �e�
and e� � �e�� Since e� belongs to the partition element E

�r��
��e��

and �e� belongs to the partition

element E
�s��
���e��

� E
�s��
��e��

� it then follows that r� � s�� So� e
�r��
� � �e

�s��
� � Thus� H � has

anticipation at most A���


� The proof of this is similar to � and is left to the reader�

�� Let u�s� and v�t� be states in H � and let � � e�e� � � � e� be any path in H from u to v
such that e� � E�s�

u � Then� by Lemma ���� there is a path �� � e
�r��
� e

�r��
� � � � e

�r��
� in H � where
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the ri are determined by ei�� � E
�ri�
��ei�

for i � �� �� � � � ��� and r� � t� Observe that �� is a

path from u�s� to v�t� in H ��

The complete out�splitting of a labeled graph H is the out�splitting obtained from the
partition in which each set in the partition consists of a single� distinct edge� The resulting
graph is exactly the Moore co�form of H� as was de�ned in Section ����	�

We also have the notion of in�splitting obtained by reversing the roles of outgoing and
incoming edges in the de�nition of out�splitting�

Finally� we mention that the out�splitting graph transformation can be described in terms
of adjacency matrices as follows� A ��� matrix is called a division matrix if it has exactly
one � in each column and at least one � in each row� Now� given an out�splitting H � of H� let
D be the division matrix with rows indexed by states of H and columns indexed by states
of H �� de�ned by

Du�v�i� �

�
� if u � v
� if u �� v

�

and let C be the matrix with rows indexed by states of H � and columns indexed by states
of H� de�ned by

Cv�i��u � number of edges in E�i�
v which terminate in u �

Then one can check that
AH � DC and AH� � CD �

Conversely� if there is a division matrix D and a matrix C with nonnegative integer entries
such that AH � DC and AH� � CD� then H � is an out�splitting of H� we leave the proof of
this to the reader�

��� Approximate eigenvectors and consistent splitting

The state�splitting algorithm that we will present starts with a deterministic graph presen�
tation of a given constrained system S and� through a sequence of rounds of out�splitting�
ends up with an S� n��encoder� One key question to answer is which states to split and how
to split them� Approximate eigenvectors� to be discussed next� serve as such a guide� In
fact� as we show in Section ��� and Chapter 	� approximate eigenvectors are useful not only
for the synthesis of �nite�state encoders� but also for analyzing them�
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����� Approximate eigenvectors

Given a nonnegative integer square matrix A and an integer n� an A� n��approximate eigen�
vector is a nonnegative integer vector x �� � such that

Ax � nx �

where the weak� inequality holds componentwise� We refer to this inequality as the ap�
proximate eigenvector inequality� The set of all A� n��approximate eigenvectors is denoted
X A� n��

When A is the adjacency matrix of a graph G� the approximate eigenvector inequality
has a very simple meaning in terms of G� Think of the vector x � xu�u�VG as assigning
state weights� the weight of state u is xu� Now assign edge weights to the edges of the graph
according to their terminal states� the weight of an edge e is given by x�G�e�� Recalling
that Eu denotes the set of outgoing edges from state u in G� the approximate eigenvector
inequality can be written as the set of simultaneous scalar inequalities� one for each state u�

X
e�Eu

x�G�e� � nxu for every u � VG �

That is� the sum of the weights of the outgoing edges from a given state u is at least n times
the weight of the state u itself�

Example ��� Let G be the presentation of the �� ���RLL constrained system shown
in Figure ���� The third power of G is shown in Figure ����� and the adjacency matrix
AG� � A�

G of G� satis�es

A�
G

�
�
�

�
�

�

 �
� �

��
�
�

�
�

�
�
�

�
� �

�
�
�

�
�

Therefore� the vector x � � ��� is an AG� � ���approximate eigenvector�

The following result is straightforward�

Proposition ��� For a graph G� the all�one vector � is an AG� n��approximate eigen�
vector if and only if G has minimum out�degree at least n� Also� a �	� vector is an AG� n��
approximate eigenvector if and only if G has a subgraph with minimum out�degree at least
n�

The next result tells us that approximate eigenvectors exist when we need them�
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Theorem ��� Let A be a nonnegative integer square matrix and let n be a positive
integer� Then

X A� n� �� � if and only if �A� � n �

Furthermore� if A is irreducible and �A� � n� then every A� n��approximate eigenvector is
a right eigenvector associated with the eigenvalue n�

Proof� Su
ciency� Assume that �A� � n� We �rst show that there is an A� n��
approximate eigenvector under the assumption that A is irreducible� We distinguish between
the following two cases�

Case �� �A� � n� By Theorem 
���b�� A has a strictly positive right eigenvector y
associated with �A�� We �rst perturb the entries of y to obtain a new vector �y� with
positive rational entries� that satis�es the inequality A�y � n�y� Now� let x be the vector
obtained from �y by clearing denominators�i�e�� by multiplying �y by a common multiple of
the denominators of its entries� The vector x has positive integer entries� and it satis�es
the approximate eigenvector inequality since �y does� Thus� x is an A� n��approximate
eigenvector�

Case �� �A� � n� Since �A� � n is an eigenvalue of A� there is a nontrivial solution
i�e�� not the zero vector� to the homogeneous linear system of equations

A� nI�y � � �

Since the coe�cients of this linear system are rational numbers� we can assume� by applying
Gaussian elimination� that y has rational entries� Clearing denominators� we obtain a so�
lution x with integer entries� By Theorem 
���d� it follows that this solution is an integer
eigenvector associated with �A� � n� and by Theorem 
���b� it is strictly positive possibly
after multiplying each of its entries by ���� Hence� x is a positive integer eigenvector and�
as such� it is an A� n��approximate eigenvector� This completes the proof of su�ciency in
case A is irreducible�

If A is a k 	 k reducible matrix� then there is� by Theorem 
���a�� an irreducible
component B of A with �B� � �A� � n� Thus� by what we have just proved� there is a
B� n��approximate eigenvector x� We extend x to a vector with k entries simply by setting
to zero the entries that are indexed by columns of A that do not contain columns of B� This
new vector is an A� n��approximate eigenvector�

Necessity� Suppose �rst that A is irreducible and let x be an A� n��approximate eigen�
vector� Also� let z be a left eigenvector associated with the eigenvalue � � �A�� By
Theorem 
���b�� the eigenvector z can be assumed to be strictly positive� Hence�

�zx � z�x � zAx � nzx �

Noting that zx � �� we thus obtain � � n� with equality � � n� if and only if Ax � nx�
Therefore� if � � n� every A� n��approximate eigenvector is a right eigenvector associated
with the eigenvalue n�
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Finally� suppose that A is reducible and let �A be the matrix obtained by removing the
rows and columns of A that contain the irreducible components of A whose columns all index
zero components in x� Let B be an irreducible sink in �A and let y be the subvector of x
which is indexed by the columns of B in A� It can be readily veri�ed that the vector y is a
B� n��approximate eigenvector and� so� n � �B� � � �A� � �A��

����� Computing approximate eigenvectors

In this section� we describe an algorithm for computing A� n��approximate eigenvectors�
The algorithm is due to Franaszek �Fra��� Appendix� see also �ACH�
� Appendix��� and its
running time is proportional to the values rather than the size of the bit representations�
of the computed approximate eigenvector �MR����

The Franaszek algorithm is presented in Figure ��
� The input to the algorithm is a

y � ��

x� ��

while �x �� y� f
x� y�

y � min
��

�

n
Ax
�
�x
�
� �� apply b�c and minf�� �g componentwise ��

g
return x�

Figure ��
� Franaszek algorithm for computing A� n��approximate eigenvectors�

nonnegative integer square matrix A� a positive integer n� and a nonnegative integer vector
�� The output is a nonnegative integer vector x� the properties of which are summarized in
Proposition ���b� below�

For a nonnegative integer square matrix A� a positive integer n� and a nonnegative integer
vector � � �u�u� let X A� n� �� denote the set of all elements x � xu�u of X A� n� that are
dominated by � i�e�� xu � �u for all u� or� in short� x � ��� Also� for a vector y � yu�u� we
will use the notations kyk� and kyk� for

P
u jyuj and maxu jyuj� respectively�

Proposition ��� Let A be a nonnegative integer square matrix and let n be a positive
integer�

�a� If x�x� � X A� n�� then the vector de�ned by Biglmaxxu� x
�
u�
�
u
belongs to X A� n��

Thus� for any nonnegative integer vector � there is a largest �componentwise� element of
X A� n� �� �provided of course that X A� n� �� �� ���

�b� The Franaszek algorithm eventually halts for any input vector � and the output is ei�
ther the zero vector �if X A� n� �� � �� or the largest �componentwise� element of X A� n� ���
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Proof� Part a� is a straightforward computation� As for part b�� let x be an element
of X A� n� �� and let ym denote the value of y at the beginning of the mth iteration of the
main loop of the algorithm� We show inductively on m that x � ym� Clearly� this holds for
m � �� where we have y� � �� Now� assuming that x � ym� we also have x � �

n
Ax � �

n
Aym�

Since x is an integer vector we obtain

x � min
�	

�

n
Aym



�ym

�
� ym�� �

It remains to show that the algorithm halts and produces the required vector x� Assume
�rst that ym�� �� ym� Recalling that ym�� is dominated by ym� we must have kym��k� �
kymk�� Now� all vectors involved are nonnegative integer vectors and� therefore� the algo�

rithm must eventually halt with ym�� � ym� At this point we have ym � ym�� �
j
�
n
Aym

k
�

Hence� either ym � X A� n� �� or ym � �� Furthermore� if X A� n� �� �� �� we must have
ym �� �� as ym dominates any vector in X A� n� ���

By the proof of Proposition ���� it also follows that the number of iterations of the main
loop of the algorithm is at most k�k� � ��

Now� suppose that A is a nonnegative integer k	k matrix and we would like to compute
the vector in X A� n� with the smallest norm kxk�� In order to �nd such a vector� we apply
the Franaszek algorithm to vectors of the form � � � � � namely� to integer multiples of the
all�one vector�� searching for the smallest positive integer � for which the algorithm produces
a nonzero vector x� By Theorem ���� there exists such � if n � �AG�� Performing a binary

search on �� the number of integer operations thus totals to O
�
k� �kxk� log kxk�

�
� We point

out� however� that there are families of k 	 k matrices A for which the computed vectors x
are such that kxk� is exponential in k� Such a family is described in Example 	���

Example ��� Let G denote the third power of the Shannon cover of the �� 	��RLL
constrained system� The adjacency matrix of G is given by

AG �


BBBBBBBBBBBBB�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
CCCCCCCCCCCCCA

�

We apply the Franaszek algorithm to AG and n � �� with vectors of the form � � � � �� The
smallest value of � that results in a nonzero output is � � 
� in which case the output of the
algorithm is

x � � 
 
 
 � � � ��� �
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We can now try to �nd other AG� ���approximate eigenvectors whose largest entry is 
 by
applying the Franaszek algorithm with � � xi for i � �� �� �� � � � � 	� where

xi�u �

�
x�u if u �� i
x�u � � if u � i

�

That is� in each application of the algorithm� we start with a vector � obtained by subtracting
� from one of the entries of x� When doing so� we �nd that � � x� is the only case for which
the algorithm produces a nonzero output� that output is x� itself� namely�

� 
 
 
 � � � ��� �

It follows that there are only two AG� ���approximate eigenvectors� x and x�� whose largest
entry is 
�

Example ��� Let G be now the second power of the Shannon cover of the �� 	��RLL
constrained system� By applying the Franaszek algorithm we �nd that X AG� �� � � �� is
nonempty if and only if � � �� The output of the algorithm for � � � is

x � � 
 � � 
 
 � ��� �

There is another AG� ���approximate eigenvector�

� 
 � � 
 
 � ��� �

whose largest entry is ��

Recall from Section ��� that a necessary and su�cient condition for the existence of a rate
p � q deterministic encoder for a constrained system S is the existence of a set of principal
states� the de�nition of such a set given in Section ���� depends on p� q and a deterministic
presentation G of S recall also that this condition was necessary for the existence of a block
decodable encoder� in particular the existence of a block encoder�� From Proposition ��
� it
is evident that such a set exists if and only if there is an Aq

G� �
p��approximate eigenvector

with ��� entries� Thus� the question of existence of a rate p � q deterministic encoder can be
answered by applying the Franaszek Algorithm to the vector � � �� such an encoder exists
if and only if the algorithm does not return the zero vector�

����� x�consistent splitting

Let H be a labeled graph and let x � xv�v�VH be an AH � n��approximate eigenvector� A
basic x�consistent partition at state u is a partition of Eu into

Eu � E���
u � E���

u �
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with the property thatX
e�E

���
u

x��e� � n y��� and
X

e�E
���
u

x��e� � n y��� �

where y��� and y��� are positive integers and

y��� � y��� � xu �

The out�splitting determined by this partition is called a basic x�consistent splitting at
state u� and we denote the resulting labeled graph by H �� It is straightforward to check that
the induced vector x� � x�v�v� indexed by the states of H �� de�ned by

x�v �

���
��

xv if v �� u
y��� if v � u���

y��� if v � u���
�

is an AH�� n��approximate eigenvector�

The cube of the �� ���RLL graph presentation is shown in Figure ��� which is identical
to Figure ������ Figure ��� shows the result of a basic x�consistent splitting for Figure ����
with respect to the A�

G� �
���approximate eigenvector x � � ���� State � is split into

two descendant states� ���� and ����� according to the partition E
���
	 � f���� ���� ���g and

E
���
	 � f���� ���g� The induced vector is x� � � � ���� and the resulting labeled graph

therefore has minimum out�degree at least �� � ��

��
��

� ��
��

�
�� ����

�� �
���
	
 �

���

� �
���

�
 �

W���

� �O ���� ��
���

��� ���

Figure ���� Cube of �� ���RLL graph presentation�

The notion of x�consistency can be extended to out�splittings in general as follows�

Given a labeled graph H� a positive integer n� and an AH � n��approximate eigenvector
x � xv�v�VH � an x�consistent partition of H is de�ned by partitioning the set� Eu� of
outgoing edges for each state u in H into Nu� disjoint subsets

Eu � E���
u � E���

u � � � � � E�N�u��
u �

such that X
e�E

�r�
u

x��e� � nx�r�u for r � �� �� � � � � Nu� � ����
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Figure ���� Basic x�consistent splitting for Figure ����

where x�r�u are nonnegative integers and

N�u�X
r
�

x�r�u � xu for every u � VH � ����

The out�splitting based upon such a partition is called an x�consistent splitting� The vector
x� indexed by the states u�r� of the split graph H � and de�ned by x�

u�r�
� x�r�u is called the

induced vector�

An x�consistent partition or splitting is called non�trivial if for at least one state u�
Nu� � � and x���u and x���u are positive� Observe that any basic x�consistent splitting is a
non�trivial x�consistent splitting�

Figures ��� and ��	 give an example of an x�consistent splitting in which two states� �
and �� are split simultaneously� An AG� ���approximate eigenvector is x � � � ��� in
this particular case� it is actually an eigenvector�� An x�consistent splitting for states �

and � can be carried out as follows� State � splits according to the partition E
���
	 � fag

and E
���
	 � fb� cg� State � splits� simultaneously� according to the partition E

���
� � fdg and

E
���
� � feg� This yields a new labeled graph H � with induced vector x� � � � � � ���� and

the resulting labeled graph therefore has minimum out�degree at least ��

We summarize in Proposition ��� the important features of x�consistent out�splittings�

Proposition ��� Let H be a labeled graph and let x be an AH � n��approximate eigen�
vector� Suppose that H � is obtained from H by an x�consistent splitting and x� is the induced
vector� Then
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Figure ���� Labeled graph to be split�
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Figure ��	� x�consistent splitting for Figure ����

�� x� is an AH� � n��approximate eigenvector�

��
P

u�VH xu �
P

v�V
H�
x�v�

Proof� �� The inequality ���� says precisely that AH�x��u�r� � n x�
u�r�

for each state u�r�

of H �� So� x� is an AH� � n��approximate eigenvector�

�� This follows immediately from �����

��� Constructing the encoder

The key result needed for the construction of our encoders is as follows�
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Proposition ��� Let H be an irreducible labeled graph and assume that the all�one vector
� is not an AH � n��approximate eigenvector� Let x be a strictly positive AH � n��approximate
eigenvector� Then� there is a basic x�consistent splitting of H�

Before giving the proof� we describe how we will make use of it in an iterative fashion to
construct �nite�state encoders with �nite anticipation�

Let G be a deterministic labeled graph presenting S and let p and q be integers such
that p�q � capS�� So� Gq is a deterministic labeled graph presenting Sq� Let x � xv�v�VG
be an Aq

G� �
p��approximate eigenvector which exists by Theorem ����� If x is a ��� vector�

then some subgraph of Gq has minimum out�degree at least �p� and we are done� So� we
may assume that there is no ��� Aq

G� �
p��approximate eigenvector� Let G� be the labeled

subgraph of Gq corresponding to the states of G with nonzero entries of x� The vector
x� obtained by restricting x to the states in G� is a strictly positive AG�� �p��approximate
eigenvector�

If G� is irreducible� then we will be in a position to apply Proposition ��	 for H � G�

and n � �p� Otherwise� we can restrict to a sink G	 of G�� recall that a sink is an irreducible
component all of whose outgoing edges terminate in the component� and recall that every
graph has a sink� Since G	 is an irreducible component of G�� and� by assumption� there is
no ��� Aq

G� �
p��approximate eigenvector� it follows that � is not an AG� � �

p��approximate
eigenvector� Moreover� since G	 is a sink� it follows that the restriction� x	� of x

� to G	 is
a strictly positive AG� � �

p��approximate eigenvector� Proposition ��	 can now be applied to
carry out a basic x	�consistent splitting of G	� producing an irreducible labeled graph G��

By Proposition ���� a basic x	�consistent splitting decomposes an entry of x	 into strictly
smaller positive integers� So� iteration of this state�splitting procedure will produce a se�
quence of labeled graphs G�� G�� � � � � Gt� where the graph Gt has an adjacency matrix AGt

with an all���s AGt
� n��approximate eigenvector� Therefore� by Proposition ��
� the graph Gt

has minimum out�degree at least n � �p� Since� by Proposition ���� out�splitting preserves
�nite anticipation� the graph Gt has �nite anticipation� Deleting excess edges� we pass to a
subgraph of G�

t which is an Sq� �p��encoder� Now� tag this encoder with input labels� and
we have our rate p � q �nite�state encoder for S with �nite anticipation�

Having now completely described the construction of the encoder� we have completed the
proof of Theorem ��� modulo the proof of Proposition ��	�

Note that the number of iterations required to arrive at the encoder graph is no more
than

P
v�VGxv � ��� since a state v with entry xv will be split into at most xv descendant

states throughout the whole iteration process� So� by Proposition ���� the anticipation of Gt

is at most
P

v�VGxv � ��� For the same reason� the number of states in the encoder graph
is at most

P
v�VG xv�

If we delete the self�loop at state � and assign input tags to the labeled graph in Figure ����
we obtain a rate � � 
 �nite�state �� ���RLL encoder shown in Figure ���� We indicate� for
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this example� how the encoding and decoding is implemented�
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Figure ���� Tagged �� ���RLL encoder�

If we initialize to state ����� the data sequence of ��blocks� �� �� �� ��� encodes to the
�� ���RLL sequence of 
�codewords

��� ��� ��� ��� �

We decode the �� ���RLL codeword sequence just generated� Starting at state ����� the edge

determined by the codeword ���� with upcoming codeword ���� is the self�loop ����
		�	��
�
 �����

so the decoder will generate the input tag ��� Proceeding� the codeword ���� with upcoming

word ���� determines the edge ����
�	���	
�
 �� The reader can decode the next codeword ��� in

a similar matter� and that is as far as we can go without knowing more upcoming codewords�

As we will see� the encoder of Figure ��� is not the smallest in terms of number of states�
rate � � 
 �nite�state �� ���RLL encoder� We now proceed with the proof of Proposition ��	�

Proof of Proposition ���� Let xmax �� � be the maximum of the entries of x� We will
show that there is a state u with the following properties�

xu � xmax ��
�

and
AH�u�v �� � for some state v with xv � xmax � ����

We then show that there is a basic x�consistent splitting at each such state u�

Assume that no such state exists� Then� the outgoing edges for every state u with
component xmax must terminate only in states with the component xmax� Since the graph H
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is assumed to be irreducible� this implies that the approximate eigenvector x is a constant
vector� with all of its components equal to xmax� If we divide both sides of the approximate
eigenvector inequality AHx � nx� by xmax� we see that the all���s vector � is also an
approximate eigenvector� However� this contradicts our assumption about AH �

Let u be a state satisfying properties ��
� and ����� We claim that jEuj � n� To see
this� observe that the approximate eigenvector inequality asserts

X
v�VH

AH�u�vxv � nxu �

Thus� by property ��
� above�

jEuj xmax �
X
v�VH

AH�u�vxv � nxu � nxmax �

Dividing by xmax gives the desired conclusion jEuj � n actually� with the help of property
���� above one can show that jEuj � n��� but this is not really needed now��

Let M � jEuj � n� Write Eu � fe�� e�� � � � � eMg and assume that e� terminates in state
v i�e�� a state satisfying ������ so x��e�� � xmax� Consider the partial accumulated weights

	m �
mX
i
�

x��ei� � m � �� �� � � � �M

and their residues modulo n


m � 	m mod n� � m � �� �� � � � �M �

The pigeon�hole principle�which states that if one distributes n pigeons into n pigeon�holes�
then either every hole has a pigeon� or some hole contains two or more pigeons�implies that
the n residues� 
�� 
�� � � � � 
n� satisfy one of the following conditions�

�� 
m � � mod n� for some � � m � n� or�

�� 
m� � 
m� mod n� for some � � m� � m� � n�

In the former case� we de�ne a partition of Eu by setting

E���
u � feig

m
i
� and E���

u � Eu � E���
u �

In the latter case� we set

E���
u � feig

m�
i
m��� and E���

u � Eu � E���
u �
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In either case� the sum of weights of the edges in E���
u is divisible by n�

X
e�E

���
u

x��e� � rn �

Next we claim that
� � r � xmax �

Clearly � � r since E���
u is nonempty� To see that r � xmax� observe that in the �rst case�

E���
u contains at most n edges and includes e� for which x��e�� � xmax� and in the second

case� E���
u has strictly fewer than n edges� each contributing at most xmax to the sum�

Now�

X
e�E

���
u

x��e� �
X
e�Eu

x��e� �
X

e�E
���
u

x��e�

� xun� rn

� xu � r�n �

Letting y��� � r and y��� � xu � r� we conclude that the partition�

Eu � E���
u � E���

u �

de�nes a basic x�consistent splitting�

The discussion in this chapter implies a encoder construction procedure is known as the
state�splitting algorithm or the Adler�Coppersmith�Hassner �ACH� algorithm� This algo�
rithm is summarized in Figure ����

Hints when constructing an encoder	

� In the course of a sequence of state splittings� the resulting graphs may become too
unwieldy to draw� Instead� it may be more convenient to represent the graphs by
tables� such a table has rows and columns indexed by the set of states with the u� v��
entry containing the list of labels of all edges from u to v� Both the untagged encoder
and the tagged encoder can also be represented in this way�

� If more then one round of splitting is required� it is convenient at each round to use
the notation ui�j for each state� For instance� if state u has weight � and is split in the
�rst round into two states� one of weight 
 and the other of weight �� then after the
�rst round� denote one of the descendant states by u��� and the other by u���� After
the sequence of splittings is completed� the descendant states of u are denoted u�� u��
u�� u�� u��
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�� Select a labeled graph G and integers p and q as follows�

�a� Find a deterministic labeled graph G �or more generally a labeled graph with �nite anticipation�
which presents the given constrained system S�

�b� Find the adjacency matrix AG of G�

�c� Compute the capacity cap�S� � log��AG��

�d� Select a desired code rate p � q satisfying

cap�S� �
p

q

�one usually wants to keep p and q relatively small for complexity reasons��

�� Construct Gq �

	� Using the Franaszek algorithm of Figure 
�	� �nd an �Aq
G� �

p��approximate eigenvector x�

� Eliminate all states u with xu � � from Gq� and restrict to an irreducible sink H of the resulting
graph� Restrict x to be indexed by the states of H �


� Iterate steps 
a�
c below until the labeled graph H has minimum out�degree at least �p�

�a� Find a non�trivial x�consistent partition of the edges in H �the proof of Proposition 
�� shows
how to �nd such a partition in at least one state��

�b� Find the x�consistent splitting corresponding to this partition� creating a labeled graph H � and
an approximate eigenvector x��

�c� Let H � H � and x � x��

�� At each state of H � delete all but �p outgoing edges and tag the remaining edges with binary p�blocks�
one for each outgoing edge� This gives a rate p � q �nite�state encoder for S�

Figure ���� State�splitting algorithm�

��� Strong decoders

We begin this section by proving Theorem ���� thereby showing how to achieve sliding�block
decodability for �nite�type constraints�

The proof is obtained by applying the state�splitting algorithm to any presentation of
S with �nite memory� Recall from Propositions ��	 and ��� that higher powers and out�
splitting preserve de�niteness although the anticipation may increase under out�splitting��
Thus� the Sq� �p��encoder constructed in Section ��
 is m� a��de�nite for some m and a and
so� by Proposition ���� is sliding�block decodable� This completes the proof of Theorem ����

Note that we can decode a q�block w as follows� observe the m previous q�blocks and the
a upcoming q�blocks to determine the unique edge that produced w� then read o� the input
tag on this edge� This de�nes an m� a��sliding�block decoder�
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As an example� by examining Figure ���� one can see that the �� ���RLL encoder has a
sliding�block decoder with window length �� as shown in Table ����

Next� we give a very simple example to illustrate how a tagged encoder can be non�
catastrophic without being sliding�block decodable�

Consider the constrained system S which is presented by the labeled graph of Figure �����
Figure ���� exhibits a tagged S� 
��encoder E which has �nite anticipation� in fact it is
deterministic� We claim that E is non�catastrophic� To see this� �rst observe that every
symbol� except for d� is decoded consistently wherever it appears� so� the only decoding
ambiguity is caused by the appearance of d as the label of two di�erent edges with di�erent
input tags namely� the edges labeled d outgoing from states � and 
�� Now� suppose that
two right�in�nite sequences� y� � y�y� � � � and z� � z�z� � � �� that can be generated by right�
in�nite paths in E � di�er in only �nitely many places� then for some N and all i � N � we
have yi � zi� We must show that when we decode y� and z� in a state�dependent manner�
we get only �nitely many di�erences in their decodings� more precisely� we must show that
when e�e� � � � and e��e

�
� � � � are right�in�nite paths in E with output labels y� and z�� then

their input tags di�er in only �nitely many places� Well� ei and e�i will have the same input
tag for N � i � K� where K is the �rst time after N that the symbol d appears in y�

equivalently� z��� i�e�� K is the smallest integer such that K � N and yK � d� if d does not
appear at all after time N � then ei and e�i will have the same input tag for i � N � and we
will be done� Now� at time K� we may decode yK � zK � d in two di�erent ways� But both
occurrences of d in Figure ���� appear on edges with the same terminal state� So� for i � K�
we will have ei � e�i� and decoding will be synchronized� Thus� the number of di�erences
between the decodings of y� and z� will be at most N��� and therefore our tagged encoder
E is indeed non�catastrophic�
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Figure ����� Graph presentation of constrained system S�

On the other hand� we claim that E is not sliding�block decodable� This follows imme�
diately from the fact that for each �� the symbol d in the word a�dea� can appear on either
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Figure ����� S� 
��encoder for constrained system S presented in Figure �����

edge labeled d� yielding di�erent decodings� In fact� for this particular constraint S� it turns
out that there is no sliding�block decodable S� 
��encoder at all �KarM����

We remark that if this code were to be used in conjunction with a noisy channel� then an
isolated channel error would cause at most two �bursts� of decoding errors� one burst from
the channel error itself followed by a second burst caused by the ambiguity of decoding one
occurrence of the symbol d� This �two�burst� feature holds for the non�catastrophic encoders
produced by the construction in Theorem �����

We now give a very rough outline of the proof of Theorem ����� for details� see �KarM����
Let S be an irreducible constrained system and let G be the Shannon cover of S� For sim�
plicity� we assume that q � � otherwise� by Theorem 
�	� we take an irreducible constrained
system S � � Sq with capS �� � capS��� We must show that when logn � capS�� there is
a non�catastrophic S� n��encoder E � and if either logn � capS� or S is almost��nite�type�
then there is a sliding�block decodable S� n��encoder�

If logn � capS�� then it follows from Theorem ��� and Proposition 
��� that there is a
sliding�block decodable S� n��encoder� So� we may suppose that capS� � logn�

We need to introduce some terminology� A generalized homing word for a labeled graph
is a word w � w�w� � � � w� such that for some � � r � �� whenever e�e� � � � e� and e��e

�
� � � � e

�
�

are paths which generate w� then �er� � �e�r�� the integer r is called a homing coordinate
for w� Observe that in the special case that r � �� a generalized homing word is a homing
word as in Section ����
�

Our tagged encoder E will satisfy the following property�

y� There is a generalized homing word w � SE� � S for the encoder E and a positive
integer M such that whenever a word z � z�Mz�M�� � � � zM of length �M�� in SE�
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does not contain w� and e�Me�M�� � � � eM and e��Me
�
�M�� � � � e

�
M are encoder paths

which generate z� then e	 and e�	 have the same input tag�

Such an encoder is bound to be non�catastrophic for roughly the same reason as the
example above in that example d is the generalized� homing word�� suppose that y� �
y�y� � � � and z� � z�z� � � � are two right�in�nite sequences that can be generated by the
Shannon cover G such that yi � zi for all i greater than some N � if we decode y� and z�

then we will obtain the same decoded input tag sequence except possibly for two bounded
bursts� a burst from time � to time N�M and a burst from time K�M to time K�r where
r is a homing coordinate for w and K is the �rst time after N at which w appears in y��
i�e�� K is the smallest integer such that K � N and yKyK�� � � � yK���w��� � w� after time
K�r� our decodings of y� and z� will be synchronized and we will get the same decoded
symbol� Thus� our tagged encoder will indeed be non�catastrophic�

How do we construct a tagged encoder which satis�es y� Well� recall from Section ���
that there is a homing word w for the Shannon cover G� Let Sw denote the constrained
system obtained from S by forbidding the appearance of the word w� Since capS� � logn�
it follows that capS

w
� � logn� From this� using a state splitting argument� starting with G�

and deleting edges� see �Mar����� we construct a graph V�E� endowed with two labelings�
input labeling LI and output labeling LO�both with �nite anticipation� such that

�� the labeled graph V�E� LO� presents Sw�

�� the labeled graph V�E� LI� presents some proper constrained sub�system of the set of
all n�ary words� and�


� whenever � and �� are bi�in�nite paths in V�E� with the same LO�labeling� they have
the same LI �labeling�

Then� by a long and delicate sequence of state splittings� both out�splitting and in�splitting�
see �KarM����� the labeled graph V�E� LO� is transformed and extended to a presentation
V �� E �� L�O� of all of S� moreover� this presentation has �nite anticipation and constant out�
degree n� At the same time� the labeling LI is transformed to a deterministic labeling which
serves as an input tagging L�I of V �� E �� L�O�� This gives our tagged S� n��encoder E � While
w need not be a generalized homing word for V�E� LO�� it does determine a longer word
which is a generalized homing word for V �� E �� L�O� and such that the condition y� holds�
This completes our outline of the construction of a non�catastrophic S� n��encoder E �

It remains to show that if S is almost��nite�type� then E is actually sliding�block decod�
able� By de�nition� S is presented by some labeled graph with �nite anticipation and �nite
co�anticipation in fact� by Proposition ����� the Shannon cover G is such a presentation��
Our encoder E is constructed from such a presentation by a sequence of state splittings� and
thus it too has �nite anticipation and �nite co�anticipation� To show that it is sliding�block
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decodable� it su�ces to show that whenever � and �� are bi�in�nite paths in E with the same
sequence� y� of output labels� then they have the same sequence of input tags�

There are two cases to consider� If y contains w�the generalized homing word for E�
then � and �� must arrive at the same state at some time� and so� by �nite anticipation and
�nite co�anticipation� we must have � � ��� clearly then � and �� have the same sequence of
input tags� Otherwise� y does not contain w and so by y�� � and �� again have the same
sequence of input tags� thus� E is indeed sliding�block decodable� as desired�

��� Simpli�cations

����� State merging

In practice� it is desirable to design �xed�rate encoders with a small number of states� For
a given labeled graph G � V�E� L�� with an AG� n��approximate eigenvector x � xv�v�V �
we have shown that the state�splitting algorithm can produce an encoder E with jVE j states
where

jVE j �
X
v�V

xv �

This gives an upper bound on the number of states in the smallest S� n��encoder� Often�
however� one can reduce this number substantially by means of state merging� Although
there is not yet a de�nitive solution to the problem of minimizing the number of encoder
states� there are techniques and heuristics that have proved to be very e�ective in the con�
struction of encoders�

One situation where we can merge states in a labeled graph H is the following� Let u and
u� be two states inH and suppose that there is a ��� correspondence ei 
 e�i between the sets
of outgoing edges Eu � fe�� e�� � � � � etg and Eu� � fe��� e

�
�� � � � � e

�
tg such that for i � �� �� � � � � t

we have �ei� � �e�i� and Lei� � Le�i�� Then� we can eliminate one of the states� say
u�� and all of its outgoing edges� and redirect into u all incoming edges to u�� Clearly� the
new labeled graph presents the same constraint� but with one fewer state� Note that this
procedure is precisely the inverse of an in�splitting�

Example ��� Consider again the �� ���RLL constrained system S� If we delete the self�

loop �
��	
�
 � from Figure ���� we can see that states ���� and � can be merged� according to the

merging criterion just discussed� The resulting two�state labeled graph is the one shown in
Figure ����� Tagging the latter� we obtain a tagged S�� ����encoder as shown in Figure ���
�
this is the same encoder presented in Figure ���� As mentioned in Example ���� this encoder
is �� ���de�nite� Hence� it is also �� ���sliding�block decodable� and the respective decoding
table is shown in Table ���� Note that the encoder of Figure ���
 has fewer states than the
encoder previously shown in Figure ����
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� Rate � � 
 tagged two�state encoder for �� ���RLL constrained system�

Example ��� The second power of the Shannon cover of the �� 
��RLL constrained
system is given by the graph G in Figure ����� One can verify that

x � x	 x� x� x��
� � � � � ���

is an A�
G� ���approximate eigenvector� After deleting state 
 from G� we obtain an SG�� ���
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Figure ����� Second power of the Shannon cover of the �� 
��RLL constrained system�

encoder in which states � and � are equivalent� When these two states are merged� we end
up with the graph in Figure ����� This graph is an untagged version of the MFM encoder
in Figure ����

One key idea for merging states involves ordering the states in a labeled graph to re!ect
the inclusion relations among the follower sets at each state de�ned in Section ����� given
two states u and u� in a labeled graph G� we say that u � u� if the follower sets FGu�
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Figure ����� Untagged MFM encoder�

and FGu
�� satisfy FGu� � FGu

��� This partial ordering of sets was used by Freiman and
Wyner �FW��� in the construction of optimal block codes� mentioned in Section ����

We now generalize the merging operation illustrated above as follows� Let G be a labeled
graph and let u and u� be two states in G such that u � u�� The u� u���merger of G is the
labeled graph H obtained from G by�

�� eliminating all edges in Eu� �

�� redirecting into state u all remaining edges coming into state u��


� eliminating the state u��

Figures ���� and ���	 show a schematic representation of a u� u���merger�before and
after merging�
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Figure ����� Local picture at states u and u� before merging�
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Figure ���	� u� u���merger for Figure �����
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It is not hard to see that the merging of states performed on Figure ��� to obtain Fig�
ure ���� is a ����� ���merger�

The following result shows how we can reduce the �nal number of encoder states by
u� u���merging�

Proposition ��
 Let G be a labeled graph� with an AG� n��approximate eigenvector x�
and let u and u� be states in G satisfying

�a� u � u�� and �

�b� xu � xu��

Let H denote the u� u���merger of G� Then

�� SH� � SG� and

�� The vector y de�ned by yv � xv for all vertices v of H is an AH � n��approximate
eigenvector�

Proof� �� Let w � w�w� � � � w� be a word generated in H by a path � � e�e� � � � e��
If � does not contain any edge derived from an edge in G terminating in state u�� one can
immediately �nd a corresponding path �� in G that generates w� Otherwise� let et be the last
edge of � that terminates in state u in H and comes from an edge �et in G that terminates
in state u�� By hypothesis a� we have FGu� � FGu

��� so there is a path �et���et�� � � � �e�
in G emanating from state u� and generating wt��wt�� � � � w�� If e�e� � � � et�� contains no
redirected edges� then e�e� � � � et���et�et�� � � � �e� is a path in G generating w� If it does� let ek
be the last such edge� Then ek��ek�� � � � et���et�et�� � � � �e� is a path in G that begins at state
u and generates wk��wk�� � � � w�� By hypothesis a�� there is another path e�k��e

�
k�� � � � e

�
� in

G emanating from u� that also generates wk��wk�� � � � w�� Continuing in this manner� we
eventually produce a path in G that generates the entire word w�

�� Let v be a state in H� By hypothesis b��

AHy�v � AGx�v � nxv � nyv �

so y is an AH � n��approximate eigenvector� as desired�

So� if states u and u� satisfy hypotheses a� and b� of the preceding result� then the
number of �nal encoder states in the state�splitting construction is reduced by xu�

In a set with partial ordering� there is the possibility of having minimal elements� a state
u is weight�minimal� with respect to the partial ordering by follower sets and approximate
eigenvector x� if� for any other state v� the conditions v � u and xv � xu imply that u � v�
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Proposition ��� shows that� by means of preliminary state merging� encoder construction by
the state�splitting algorithm can be accomplished using only the subgraph restricted to the
weight�minimal states� This reduces the number of �nal encoder states to the sum of the
weights of the weight�minimal states�

Example ��� Let G be some power of the Shannon cover of the d� k��RLL constrained
system� Denoting the states by � through k as in Figure ��
�� it is easy to verify that

i� � � i

for every d � i � k�

Consider now the special case d� k� � �� 	� and let G be the third power of this con�
strained system� We have mentioned in Example ��� that

� 
 
 
 � � � ��� ����

is an AG� ���approximate eigenvector� With respect to this vector� the weight�minimal states
in G are �� 
� �� and 	� We now delete state 	 whose weight is zero� and merge the other
states into the three remaining weight�minimal states as follows� states � and � are merged
into state 
 to form state ��
� and states � and � are merged into state � to form state
���� This� in turn� yields a graph G� with only three states� as shown in Figure ����� The

��
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Figure ����� Merged graph G� for the �� 	��RLL constrained system�

adjacency matrix of G� is given by

AG� �


B� � � �

� � �
� � �

�
CA �

with an AG� � ���approximate eigenvector � 
 ���� in fact� this is a true eigenvector of AG�

associated with the Perron eigenvalue ��

If we now apply the state�splitting algorithm to the graph G�� we can obtain a rate � � 

encoder for the �� 	��RLL constrained system with at most ��
�� � 	 states� This upper
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bound on the number of states is far better than the bound� �	� which we would obtain if the
state�splitting algorithm were applied to the original presentation G with the approximate
eigenvector in �����

By applying further merging in the course of the state�splitting rounds of G�� Weathers
and Wolf obtained in �WW��� the encoder of Figure ���� which has only four states� It will
follow from the discussion in Chapter 	 Example 	��� that no rate � � 
 encoder for the
�� 	��RLL constrained system can have less than four states�

The partial ordering on weight�minimal states also suggests certain out�splitting rounds
and further state merging rounds than can simplify the �nal encoder graph� For instance�
if u � v and xu � xv� it would be tempting to try to split state v into two states v��� and
v��� with weights xu and xv � xu such that v��� can be merged with state u� This would
then further reduce the number of encoder states by xu� In most cases of practical interest�
this can be done� The paper �MSW��� describes one situation in general and several speci�c
examples where the operations suggested by the partial ordering of the weight�minimal states
can actually be implemented those ideas were used by Weathers and Wolf in �WW��� to
obtain their encoder in Figure ����� So� the merging principle is a valuable heuristic in
encoder design�

However� as we show in Chapter 	� given a constrained system S and a positive integer
n� there are lower bounds on the number of states that any S� n��encoder can have� In
particular� there are limits on the amount of state merging that can be carried out�

Example ��� Let G be the ��th power of the �� ����RLL constrained system� One can
verify through the Franaszek algorithm that

� � � � � � � � � � ���

is an AG� �
���approximate eigenvector� The weight�minimal states in G are �� �� �� and ���

and by deleting states � and �� and merging states � through 	 into state � we obtain a
labeled graph G� with three states� �� �� and ���� The adjacency matrix of G� is given by

AG� �


B�

�
 �	 ��	
��� �
 �	�
� �� �	


�
CA �

By further deleting edges we can obtain the 
�EFM��� code see Sections ��	�� and �����

In Section ��	�
� we showed how bit inversions in the output sequence of the encoder can
reduce the DSV after precoding� such inversions e�ectively map certain input tags bytes�
into two possible codewords that di�er in one bit� It was also mentioned� however� that
the DSV reduction that can be obtained with the 
�EFM��� code is not enough for optical
applications�
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The approach adapted in the DVD was designing an SG�� n��encoder where n is signif�
icantly� greater than ���� The excess out�degree then allows to have n���� input bytes each
of which can be mapped into two di�erent codewords� this !exibility in selecting the encoded
codeword can then be used to reduce the DSV� especially if the two codeword candidates
are such that one contains an even number of ��s while the other contains an odd number�

By Franaszek algorithm we obtain that there exists an AG� n��approximate eigenvector
whose largest component is � if and only if n � ���� yet� an out�degree ��� is still too close
to ���� Allowing the largest component in the approximate eigenvector to be �� the values
of n can go up to 
��� For n � 
�� we obtain the approximate eigenvector

� � � � � � � � � � ��� �

and the respective weight�minimal states in G are �� �� �� �� and ��� By deleting state ��
and merging states� we obtain a labeled graph H with four states� �� �� ���� and ���� whose
adjacency matrix is given by

AH �


BBB�

�
 �	 �� ��
��� �
 ��� 
�
��� ��
 ��� ��
�	 �	 ��
 ��

�
CCCA

and the respective AH � 
����approximate eigenvector is

� � � ��� �

Next� we obtain a labeled graph H � by splitting state ��� into two descendant states�
������ and ������� with out�degrees 
�� and 
��� In fact� the splitting can be such that

FH�������� � FH����� �

thereby allowing merging� By deleting excess edges we thus obtain a four�state SG�� 
����
encoder that is �� ���sliding�block decodable� In particular� we can obtain in this manner
the EFMPlus code� which is used in the DVD� see Section ��	�
 and �Imm��b�� �Imm���
Section ��������

����� Sliding�block decoder window

When a �nite�state encoder with sliding block decoder is used in conjunction with a noisy
channel� the extent of error propagation is controlled by the size of the decoder window� How
large is this window Well� suppose that we start the state�splitting algorithm with some
labeled graph G presenting a constrained system of �nite�type and Gq has �nite memory
M �MGq� measured in q�blocks�� If t is the number of rounds of� out�splitting used to
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construct the encoder� then the encoder graph E is M� t��de�nite measured in q�blocks�� It
follows that we can design a sliding�block decoder with decoding window lengthW satisfying
the bound

W �M� t� �

again� measured in q�blocks�� Recall from Section ��
 that an upper bound on the number
of rounds of� out�splitting required is

t �
X
v�VG

xv � �� �

so�
W �M�

X
v�VG

xv � �� � � � ����

The guarantee of a sliding�block decoder when S is �nite�type and the explicit bound
on the decoder window length represent key strengths of the state�splitting algorithm� In
practice� however� the upper bound ���� on the window length often is larger�sometimes
much larger�than the shortest possible�

For the �� ���RLL encoder in Figure ���� where referring to Figure ���� M � �� x	 � ��
and x� � �� this expression gives an upper bound of 
 codewords� on the window length�
However� we saw� in Table ���� a decoder with window length of W � �� For the rate � � 

�� 	��RLL encoder mentioned in Example ��� the initial labeled graph has memory M � 
�
and the approximate eigenvector is

� 
 ��� �

The number of rounds of splitting turns out to be only �� implying

W �M� 
 � � �

which is� again� less than the upper bound ���� gives� In fact� a window length of W � 

was actually achieved �AHM���� �WW���� For the rate � � � �� G�I� � �� 
�
� encoder for
PRML discussed in �MSW���� the bound ���� was ��� but a window length of W � � was
achieved �MSW����

These reduced window lengths were achieved by trying several possibilities for the choices
of presentation� approximate eigenvector� out�splittings� elimination of excess edges and
input tagging assignment see� for instance �MSW���� �WW����� In �KarM��� and �AM����
in�splitting was another tool used in reducing the window length�although for those codes�
the ordinary state�splitting algorithm applied to a �very large� approximate eigenvector will
yield codes with the same sliding block decoding window� Recently� Hollmann �Holl���
has found an approach that combines aspects of the state�splitting algorithm with other
approaches and has been demonstrated to be of use in further reducing the window length�

To illustrate the importance of the input tagging assignment� consider the encoders in
Figures ���� and ����� In Figure ���� which is the same as the MFM code of Figure ����� the
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decoder window length is one codeword� but in Figure ����� the minimum decoder window
length is two codewords one codeword look�back�� The di�erence is that the assignment in
the former is done in a more consistent manner� edges that have the same output label are
assigned the same input tag�
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�� �����

�����
�

����

��� ����

Figure ����� One choice of input tags�
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�� �����

�����
�

����

��� ����

Figure ����� Another choice of input tags�

There is a �brute�force� procedure for deciding if� given m and a� there is an input tagging
assignment of a given S� n��encoder G which is m� a��sliding block decodable� for each edge
e in G� let Le�m� a� denote the set of all words generated by paths e�m � � � e	 � � � ea such that
e	 � e� it is straightforward to verify that an input tagging assignment on G is m� a��sliding
block decodable if and only if whenever Le�m� a� and Le��m� a� intersect� e and e� have the
same input tag�

In Figure ����� we exhibit an S� ���encoder which is not block decodable i�e�� �� ���
sliding block decodable�� the reader can easily verify that it is impossible to assign ��bit
input tags in such a way that the sliding�block decoder will have no look�back and no look�
ahead� However� since the encoder is �� ���de�nite� any input tag assignment allows a
decoder window of length ��
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Figure ����� Encoder requiring decoder window length � ��

Theorem ��� shows that in general there is not much hope for simplifying the brute�
force procedure� described above� when n � 
 see the paragraph following the statement of
Theorem �����
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��� Universality of the state�splitting algorithm

We end our treatment of the state�splitting algorithm by reviewing� without proof� some
results from �AM��� and �RuR��� on the universality of the state�splitting algorithm�

Given a deterministic graph G� an integer n� and an AG� n��approximate eigenvector x�
we say that the triple G� n�x� splits into an S� n��encoder E if there is sequence of rounds
of out�splitting that can be applied to G such that the following holds�

�� The �rst round is consistent with x� and each subsequent round is consistent with the
respective induced approximate eigenvector�

�� The last round ends produces a labeled graph H in which each state has out�degree at
least n�


� The encoder E can be obtained from H by deleting excess edges and�in case E is
tagged�by assigning input tags to the edges�

����� Universality for sliding�block decodable encoders

For integers m� a� and a function D from m�a����blocks of S to the n�ary alphabet such as
a sliding�block decoder�� we de�ne Dm�a

� to be the induced mapping on bi�in�nite sequences
de�ned by�

Dm�a
� � � �w��w	w� � � �� � � � � s��s	s� � � � �

where
si � Dwi�m � � � wi��wiwi�� � � � wi�a� �

Sometimes� we simply write D� � Dm�a
� � For a tagged S� n��encoder E with sliding�block

decoder D� we then have the mapping D�� and we take its domain to be the set of all bi�
in�nite output� symbol sequences obtained from E � When we refer to D�� we tacitly assume
that its domain is included� We say that a mapping D� is a sliding�block S� n��decoder if
D is a sliding�block decoder for some tagged S� n��encoder�

We have the following positive results from �AM����

Theorem ��� Let S be an irreducible constrained system and let n be a positive integer�

�a� Every sliding�block S� n��decoder has a unique minimal tagged S� n��encoder �here
minimality can be taken to be in terms of number of states��

�b� If we allow an arbitrary choice of deterministic presentation G of S and AG� n��
approximate eigenvector x� then the triple G� n�x� splits into a tagged S� n��encoder for
every sliding�block S� n��decoder� If we also allow merging of states �i�e�� u� v��merging
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as in Section ������� then that triple splits into the minimal tagged S� n��encoder for every
sliding�block S� n��decoder�

�c� If we �x G to be the Shannon cover S� but allow arbitrary AG� n��approximate eigen�
vector x� then G� n�x� splits into a tagged S� n��encoder for every sliding�block S� n��
decoder D� modulo a change in the domain of D�� possibly with a constant shift of each
bi�in�nite sequence prior to applying D� �but with no change in the decoding function D it�
self�� If we also allow merging of states� then� modulo the same changes� the triple G� n�x�
splits into the minimal tagged S� n��encoder for every sliding�block S� n��decoder� In par�
ticular� the triple splits into a sliding�block S� n��decoder with minimal decoding window
length�

On the other hand� we have the following negative results from �AM����

�� If we �x G to be the Shannon cover of an irreducible constrained system S� then
G� n�x� need not split into a sliding�block S� n��decoder with smallest number of
encoder states in its minimal tagged S� n��encoder�

�� If we �x G to be the Shannon cover of an irreducible constrained system S and we �x
x to be a minimal AG� n��approximate eigenvector in terms of the value of kxk���
then G� n�x� may fail to split into a sliding�block S� n��decoder with minimum de�
coding window length� examples of this kind were �rst found by Kamabe �Kam��� and
Immink �Imm���� but in �AM��� an example is given where capS� � logn�

����� Universality for encoders with �nite anticipation

Let u and u� be states in labeled graph G� We say that u and u� are ��strongly equivalent if
they are follower�set equivalent states� namely� FGu� � FGu

���

States u and u� in G � V�E� L� are t�strongly equivalent if the following conditions hold�

�� A one�to�one and onto mapping � � Eu 
 Eu� can be de�ned from the set of outgoing
edges of u to the set of outgoing edges of u�� such that for every e � Eu� both e and
�e� have the same label�

�� For every e � Eu� the terminal states of e and �e� are t����strongly equivalent�

States that are t�strongly equivalent are also r�strongly equivalent and in particular they
are equivalent states� for every r � t�

We say that two states are strongly equivalent states if for every t � � the states are
t�strongly equivalent� So� when states are strongly equivalent� the in�nite trees of paths that
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start in those states are the same� In a deterministic graph� two states are equivalent if and
only if they are strongly equivalent� On the other hand� in a nondeterministic graph there
may be two states that are equivalent but not strongly equivalent�

The following result is proved in �Ru��� and �RuR����

Theorem ���� Let S be an irreducible constraint and let n be a positive integer where
capS� � logn� Suppose there exists some irreducible S� n��encoder E with AE� � t ���
Then there exists an irreducible deterministic �not necessarily reduced� presentation G of S
and an AG� n��approximate eigenvector x that satisfy the following�

�a� kxk� � nt�

�b� The triple G� n�x� splits in t rounds into an S� n��encoder EG such that AEG� � t�

�c� In each of the splitting rounds� every state is split into at most n states�

�d� In the ith round� the induced approximate eigenvector x�i� satis�es kx�i�k� � nt�i�

�e� The encoder E can be obtained from EG by merging strongly equivalent states�

Theorem ���� establishes the universality of the state�splitting algorithm for encoders
with �nite anticipation� every S� n��encoder with �nite anticipation can be constructed
using the state�splitting algorithm� combined with merging of strongly� equivalent states�
where the input to the process is some irreducible deterministic presentation G of S and
an AG� n��approximate eigenvector x� However� as shown in �RuR���� not always can the
Shannon cover be taken as the graph G in Theorem ������

Another application of Theorem ���� is obtaining lower bounds on the anticipation of
any S� n��encoder� We elaborate more on this in Section 	���
�

Problems

Problem ��� Construct the graph that is obtained by a complete out�splitting of the Shannon

cover of the ��� ���RLL constrained system in Figure �����

Problem ��� Let E� be an �S� n��encoder with 	nite anticipation� What can be said about the

graph E� that is obtained from E� by complete out�splitting


Problem ��� Let G � �V�E�L� be an irreducible graph with � � ��AG� and let n be a positive

integer such that n � �� Denote by � the largest out�degree of any state in G�

Let x � �xv�v�V be a strictly positive right eigenvector of AG associated with the eigenvalue �
and let xmin the smallest entry in x� Normalize the vector x so that xmin � ����� n� and de	ne
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the integer vector z � �zv�v�V by zv � bxvc where byc stands for the largest integer not greater

than y�

�� Show that

AGz � nz � �

�that is z is an �AG� n��approximate eigenvector whose entries of are all positive��

�� Show that the sum of the entries in z satis	es the inequality

X
v�V

zv �
�

�� n
�
�jV j � �

�� �
�

Problem ��� Let S be the ����� ���RLL constraint� that is S consists of all binary words in

which the runs of ��s in between consecutive ��s have even length� Denote by G the Shannon cover

of S�

�� Construct the graphs G and G��

�� Are there any values m and a for which G� is �m� a��de	nite


�� Compute the base�� capacity of S�

�� Construct a ��� ���de	nite �S�� ���encoder with three states�

�� Does there exist an �S�� ���encoder that is block decodable


Problem ��� Let S be the constrained system presented by the graph G in Figure �����

�� Construct an �S�� ����encoder �i�e� a rate � � � 	nite�state encoder for S� with two states�

�� Assign input tags to the encoder found in � so that it is block decodable �i�e� ��� ���sliding
block decodable��

Problem ��� Let S be the constrained system presented by the graph G in Figure �����

��
��
A

�� �a ��
��
B

� �
W

b

� c
�

d

��� a
��� b

Figure ����� Graph G for Problem ����

�� Compute the eigenvalues of AG�
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�� Construct a three�state �S� n��encoder with n � ��AG� by applying the state�splitting algo�

rithm to G�

�� What is the anticipation of the encoder found in �


�� Let H be the graph in Figure ����� Is H an �S� n��encoder


��
��
A

�� �b
�� �

a ��
��
B

� �
W

b

� c
�

d

��� a

Figure ���
� Graph H for Problem ����

�� What is the anticipation of the graph H


�� Can H be obtained by applying a sequence of rounds of state splitting to G �and merging

equivalent states if there are any�
 If yes specify the sequence of state�splitting rounds�

otherwise explain�

Problem ��� Let S be the constrained system generated by the graph G in Figure �����

�� Let E be an �S� ���encoder with the smallest number of states that can be obtained by an
application of the state�splitting algorithm �without merging equivalent states� to the graph

G� What is the number of states in E


�� Repeat � except that now E is an �S�� ����encoder with the smallest number of states obtained

by an application of the state�splitting algorithm �without merging equivalent states� on G��

�� Repeat � except that now E is an �S�� ���encoder obtained from G��

�� What can be said about the anticipation of the encoder in �


Problem ��	 Let G be the graph in Figure ���� in which the edges are assumed to have distinct

labels�

�� Compute an �AG� ���approximate eigenvector x in which the largest entry is the smallest

possible�

�� Apply the state�splitting algorithm to G and the vector x from � and construct an �S�G�� ���
encoder using a minimal number of state�splitting rounds� What is the adjacency matrix of

the resulting encoder


�� Show that the encoder found in � satis	es the minimality criterion of number of rounds� that

is explain why no other �S�G�� ���encoder can be obtained from x by less state�splitting

rounds�
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Problem ��
 Let G be the graph in Figure ���� with labels over fa� b� c� dg�

�� What is the anticipation of G


�� Compute the base�� capacity of S�G��

�� Compute an �AG� ���approximate eigenvector in which the largest entry is the smallest pos�

sible�

�� Apply the state�splitting algorithm toG and the vector found in � and construct an �S�G�� ���
encoder with anticipation which is the smallest possible�

�� The anticipation of the encoder found in � is smaller than the anticipation of G� Explain

how this could happen in spite of obtaining the encoder by splitting states in G�

Problem ���� Let G be a deterministic graph and let x be an �AG� n��approximate eigenvector�

Further assume that an �S�G�� n��encoder E can be obtained from G by one x�consistent round of

state splitting �and deleting redundant edges� and the resulting �AE � n��approximate eigenvector

is a ��� vector�

�� Show that x must satisfy the inequality

AG� � x �

where � is the all�one vector�
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�� Suppose that in addition x does not satisfy the inequality

AG� � �x �

Show that one of the entries in x is at least n�

Hint� Show that there is a state u in G such that every x�consistent partition of the outgoing

edges from u must contain a partition that consists of exactly one edge�

Problem ���� Let S be the constrained system presented by the graph G in Figure �����

�� Construct an �S�� ����encoder �i�e� a rate � � � 	nite�state encoder for S� with two states�

�� Is it possible to assign input tags to the encoder found in � so that it is block decodable �i�e�

��� ���sliding block decodable�
 If yes suggest such a tag assignment� otherwise explain�

Problem ���� Let S be the constrained system generated by the graph G in Figure �����
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Figure ����� Graph G for Problem �����

�� Find the smallest value ofM for which there exists an �AG� ���approximate eigenvector whose

largest entry equals M �

�� Among all �AG� ���approximate eigenvectors whose largest entries equal the value M found

in � 	nd a vector x whose sum of entries is minimal�

�� Construct an �S� ���encoder E by applying the state�splitting algorithm to G and the vector

x found in ��

�� How many state�splitting rounds were required in �
 Why can�t an �S� ���encoder be obtained
from G and x using a smaller number of rounds


�� What is the anticipation of E


�� An �m� a��sliding block decoder is sought for the encoder E � Find the smallest possible values

of m and a for which such a decoder exists regardless of the tag assignment to the edges in
E �
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�� Is it possible to have an �m� a��sliding block decoder for E with a smaller m by a clever tag

assignment to the edges in E
 If yes suggest such a tag assignment� Otherwise explain�

�� Repeat � with respect to the parameter a�

Problem ���� Let S be the constrained system presented by the graph G in Figure ���� �which

is the same as Figure ������
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Figure ���	� Graph G for Problem ���
�

�� Compute the base�� capacity of S�

�� Compute an �AG� ���approximate eigenvector in which the largest entry is the smallest pos�

sible�

�� Show that an �S� ���encoder can be obtained by four rounds of splitting of G�

�� Construct a ��� ���de	nite �S�� ���encoder with two states�

Problem ���� Let S be the constrained system presented by the graph G in Figure �����

�� Compute the base�� capacity of S�

�� Using the state�splitting algorithm construct an �S�� ���encoder �i�e� a rate � � � 	nite�state
encoder for S� with six states and anticipation at most ��

�� Is it possible to assign input tags to the encoder in � so that it is block decodable
 If yes

suggest such an assignment� otherwise explain�

�� Show how to construct an �S�� ���encoder with 	nite anticipation yet that anticipation is

greater than ��

�� Is there a positive integer � for which there exists a block �S��� ����encoder �i�e� a rate � � ��
one�state encoder for S�
 If yes construct such an encoder� otherwise explain�

Problem ���� Let S be the constrained system generated by the graph G in Figure �����

�� What is the memory of G
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�� Compute the base�� capacity of S�G��

�� Compute an �AG� ���approximate eigenvector x in which the largest entry is the smallest

possible�

�� Apply the state�splitting algorithm to G and the vector x from � and construct an �S�G�� ���
encoder using a minimal number of state�splitting rounds� Merge states to obtain an encoder

with three states� What is the anticipation of this encoder


�� Assign input tags to the encoder found in � so that it is �m� a��sliding�block decodable with

the smallest possible window length m� a� ��

�� Is there a positive integer � for which there exists a deterministic �S�� ����encoder
 If yes

construct such an encoder� otherwise explain�

Problem ���� Let G be the second power of the Shannon cover of the ��� ���RLL constrained

system and let bldx be the vector

�� � � � � � � ��� �

As mentioned in Example ��� this vector is an �AG� ���approximate eigenvector�

�� Find the weight�minimal states in G with respect to x�

�� By merging states in G into its weight�minimal states construct a deterministic graph G�

with 	ve states such that S�G�� � S�G� and cap�S�G��� � ��


