
Chapter �

Other Code Construction Methods

In Chapter �� we focused on the state�splitting algorithm which gives a rigorous proof of the
general existence theorems �Theorems ��� and ���� for constrained code constructions� The
algorithm has other virtues	 it is fairly easy to use� it has yielded many codes of practical
interest� and� as stated in Section ��
� it is a universal method of constructing every sliding�
block decoder� However� as pointed out in Section ���� there are lots of choices in the
algorithm	 the presentation� the approximate eigenvector� the sequence of out�splittings� the
deletion of excess edges� and the input�tagging assignment� It is not known how to make
these choices to yield optimal encoders�decoders�

There have been many other important and interesting approaches to constrained code
construction�far too many to mention here� In this chapter we review� without proof� some
alternative methods for constructing constrained codes �see also Sections ��
 and ����� Since
these methods are all aimed at the same goal� it is perhaps not surprising that they have a
lot in common� In fact� other methods are probably just as universal as the state�splitting
algorithm� Some of these methods give very useful heuristics for constructing sliding�block
decodable encoders with small decoding window length as well as some rigorous upper bounds
on the smallest possible anticipation �or decoding delay� and decoding window length�

We will focus on constructions of tagged �S� n��encoders� So� throughout this chapter�
we will always assume that S is an irreducible constrained system with cap�S� � logn� For
rate p 	 q �nite�state encoders for S� one can apply the results and methods of this chapter
by passing to the power Sq�

��� IP encoders

We start with an encoder construction due to Franaszek that is very closely related to the
state�splitting construction� We need the following notation	 for a path � in a labeled graph

���
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G � �V�E� L�� let �� denote the truncation of � obtained by deleting the last edge� and for a
set � of paths in G� let �� denote the set f�� 	 � � �g�

Now� for each state u � V � let N � N�u� be a positive integer and let �u �
f����

u �����
u � � � � ���N�

u g be a partition of a set of paths outgoing from u� of some �xed length
T � subject to the following condition	

IP condition� Whenever e is an edge from state u to state v and �� and �� are paths that
belong to the same element of �v �in particular� they both have initial state v�� then
e��� and e��� belong to the same element of �u�

Note that this is a condition imposed on the entire collection of partitions� f�ugu�V �
not on an individual partition �u� The IP condition was developed by Franaszek �Fra��a��
�Fra��b�� �Fra�
�� who called the individual partition elements� independent path sets or
IP sets� The IP condition was called the left Markov property in �AM����

Now suppose that f�ugu�V is a collection of partitions satisfying the IP condition� Con�
struct the following labeled graph G� � �V �� E �� L��	 the states in G� are the independent

path sets ��i�
u � there is an edge ��i�

u
b
� ��j�

v in G� for each edge e labeled b from state u to
state v in G such that

e b��j�
v � ��i�

u �

Now� it can be shown that G� is lossless �Problem 
���� Moreover� if the vector x de�ned
by xu � N�u� is an �AG� n��approximate eigenvector� then G� has minimum out�degree at
least n� so� by deleting edges and adding input tags� we obtain an ordinary tagged �S� n��
encoder� which we call an IP encoder� If G has �nite memory M� then this encoder is
sliding�block decodable with decoding window length �M�T���

It turns out that any IP encoder can also be constructed by x�consistent out�splittings
�see �AM��� and �Holl����� It follows from this result and the state�splitting construction in
Chapter � that the IP approach is bound to succeed provided that T is taken su�ciently
large� In fact� one can view the state�splitting algorithm as giving a constructive procedure
for manufacturing IP sets� Recently� Franaszek and Thomas �FT��� discovered an algorithm
which reduces the search required for �nding IP sets�

��� Stethering encoders

Next� we describe a more general framework of encoder construction within which the state�
splitting construction �ts� Let G � �V�E� L� be a deterministic labeled graph with S � S�G�
and let x � �xu�u�V be an �AG� n��approximate eigenvector� As usual� we may assume that
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the entries of x are all strictly positive� We describe a particular class of �S� n��encoders E �
built from x� as follows� The set of states of E is given by

VE �
n
�u� i�

��� u � VG and i � �� �� � � � � xu��
o
�

Recall that Eu denotes the set of edges outgoing from a state u� and we will use L�Eu�
here to denote the set of L�labels of edges in Eu� Since G is deterministic� the mapping
Eu � L�Eu� de�ned by e �� L�e� is one�to�one and onto� So� it makes sense� for each
u � VG and a � L�Eu�� to de�ne ��u� a� to be the terminal state of the unique edge outgoing
from u with label a� Now� let

�u � f�a� j� 	 a � L�Eu� and j � �� �� � � � � x��u�a���g �

By de�nition of approximate eigenvector we have j�uj � nxu� Thus� we can partition �u

into xu�� subsets ����
u �����

u � � � � ���xu�
u such that j��i�

u j � n for each i� except for i � xu
���xu�

u may be empty�� Now� for each i � �� �� � � � � xu�� and �a� j� � ��i�
u � we endow E with

an edge �u� i�
a
� ���u� a�� j�� This completely de�nes E �

It turns out that E is an �S� n��encoder �the proof is essentially contained in �AGW����
see also �AMR����� in fact� if G were merely lossless� then one could modify the construction
so that E would still be an �S� n��encoder� Also� it is not hard to see that the �S� n��encoders
constructed by the state�splitting algorithm are of this type� Clearly the construction of this
type of encoder is somewhat easier than the state�splitting construction	 there is no iterative
process to go through� However� there are lots of examples of encoders of this type that do
not have �nite anticipation� it is not at all clear how to choose the partitions of each �u to
achieve �nite anticipation�

On the other hand� if we have su�cient excess capacity and we choose our partitions of
�u with some extra care� then it turns out that E will have �nite anticipation� and if G has
�nite memory �more generally� if G is de�nite�� then E will be de�nite� and so any tagging
of E will yield a sliding�block decodable encoder� We describe this special construction as
follows�

The de�nition of the partitions assumes some ordering on the edges in Eu for each
u � VG�equivalently� in light of the assumption that G is deterministic� an ordering on
the symbols in L�Eu�� We allow symbols to have di�erent ordering relations in L�Eu� for
di�erent states u� For u � VG and a � L�Eu�� de�ne ��u� a� by

��u� a� �
X

fb�L�Eu� � b�ag

x��u�b� �

where the sum is zero on an empty set� For i � �� �� � � � � xu��� let

��i�
u � f �a� j� 	 a � L�Eu� and in � ��u� a� � j � �i� ��n g �

and ��xu�
u is whatever is left over� This means that for each u� v � VG� � � i � xu� � � j � xv�

and symbol a� we have one edge �u� i�
a
� �v� j� in E if and only if

a � L�Eu� � v � ��u� a� � and in � ��u� a� � j � �i� ��n � �
���
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Such an encoder is called a stethering �S� n��encoder because the elements of each partition
element ��i�

u form a contiguous interval and thus are �stuck together�� This construction is
illustrated in Figure 
��	 there is an edge from each state �u� i� in the �rst row to each state
in the second row that sits below �u� i��

� � ��� n�� � � ��� n�� � � ��� n��

�u� �� � � � �u� xu���
�v��� �v��� � � � �v�xv��� �v���� � � � �v��x

v���� �v����� �v����� � � �
�a��� �a��� � � � �a�xv��� �a���� � � � �a��x

v���� �a����� �a����� � � �
�� ����

u �� �� ����
u �� �� � � � ��

Figure 
��	 Stethering encoders�

Suppose that we have enough excess capacity that cap�S� � log �n���� Then� using an
�AG� n����approximate eigenvector� we can form a stethering �S� n����encoder E � Now� for
each state u� the ordering on L�Eu� induces a lexicographic ordering on �u� and hence an
ordering on each ��i�

u � We tag E by assigning the input tags f�� �� � � � � ng in an ordering�
preserving way to the outgoing edges speci�ed by each ��i�

u � From E we form an �S� n��
encoder E � by deleting all edges in E tagged by the input symbol n� We call such an encoder
a punctured stethering �S� n��encoder� In �AMR���� it is shown that any punctured stethering
�S� n��encoder has �nite anticipation�

Now� what is the advantage of such an encoder� Well� not only is it easy to construct� but�
as we will discuss in Section ���� its anticipation is in some sense �small�� especially compared
to the upper bound on anticipation that we gave in Section ���� Also� with su�cient excess
capacity� this construction leads to sliding�block decoders with �small� decoding window
length �see the discussion in Section �����

��� Generalized tagged �S� n��encoders

In order to describe some of the other approaches to code construction� we will now formulate
what appears to be a more general notion of tagged �S� n��encoder� However� these more
general encoders can be transformed to ordinary tagged �S� n��encoders�

A generalized tagged �S� n��encoder E � �V�E� LI�LO� is a �nite directed graph �V�E�
endowed with two labelings�input labeling �tagging� LI and output labeling LO�yielding
two labeled graphs GI � �V�E� LI� and GO � �V�E� LO� such that

�� GI presents the unconstrained system of all n�ary sequences�
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� GI has �nite anticipation�

�� S�GO� � S�

�� GO is lossless�

As with ordinary tagged encoders� we will use the notation u
s�b
� v for an edge from state u

to state v in E with LI �labeling �tagging� s and LO�labeling b�

The main di�erence between a generalized tagged encoder and an ordinary tagged en�
coder is that the input tagging is merely required to have �nite anticipation� rather than to
be deterministic� However� since GI presents all n�ary sequences� it can be shown directly
that �V�E� LI�LO� can encode unconstrained data into S at the cost of �nite delay� Alter�
natively� we can transform any generalized tagged �S� n��encoder into an �ordinary� tagged
�S� n��encoder� This fact is implicit in many papers �e�g�� �AFKM�
�� �Heeg��� p� ����� and
has recently been made more explicit by Hollmann �Holl���� However� it is also a simple con�
sequence of an old symbolic dynamics result� The transformation is outlined in Section 
���

��� Encoders through variable�length graphs

����� Variable�length graphs and n�codability

In the following� we show how a certain kind of labeled variable�length graph yields a gen�
eralized tagged �S� n��encoder �and therefore an ordinary tagged �S� n��encoder��

A �labeled� variable�length graph �in short� VLG� is a labeled �nite directed graph G �
�V�E� L� in which each edge e has a length ��e�� assumed to be a positive integer� and is
labeled by a word L�e� �in some alphabet� of length ��e�� An ordinary labeled �nite directed
graph is a VLG where each edge has length ��

Any VLG� G� may be viewed as an ordinary labeled graph by inserting dummy states�
In this way� a VLG presents a constrained system� So� the notation S�G� makes sense for a
VLG� and we can apply the various notions of determinism� losslessness� de�niteness� �nite
memory� �nite anticipation� etc�� to VLG�s� An advantage of VLG�s is that they tend to
be more compact representations of constraints� For instance� any �d� k��RLL constraint
naturally has an ordinary presentation with k�� states and a VLG presentation with only
one state� as shown in Figure 
�
�

A VLG G is n�codable if at each state u � VG� the length distribution of the set Eu of
outgoing edges satis�es the Kraft inequality with equality� namely� we have

X
e�Eu

n���e� � � �
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wi � �� � � � �� �z �
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�
	�
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Figure 
�
	 VLG presentation of �d� k��RLL constrained system�

Now� suppose that G is an n�codable lossless VLG presentation of a subset of a con�
strained system S� Then� we can select� for each state u � VG� a pre�x�free list Xu of n�ary
words whose length distribution matches that of Eu� Using any length�preserving correspon�
dence between Xu and Eu� we endow G with an input tagging LI � It can be shown that
�V�E� LI�L�� viewed as an ordinary graph with two labelings�input tagging LI and output
labeling L�is a generalized tagged �S� n��encoder �Problem 
�
��

����� Variable�length state splitting

Variable�length state splitting is a code construction technique� due to Adler� Friedman�
Kitchens� and Marcus �AFKM�
� �see also Heegard� Marcus� and Siegel �Heeg����� which
adapts the state�splitting algorithm to variable�length graphs� In this method� we begin
with an ordinary lossless presentation G � �V�E� L� of a constrained system S� and we
select a subset V � � V of states such that every su�ciently long path in G meets some state
of V �� We then convert G into a VLG G� � �V �� E �� L��� where E � is the set of paths in
G which start and terminate in V �� but do not contain any states of V � in their interior�
with the naturally inherited labeling �the length of an edge in G� is� of course� the length of
the path in G that it represents�� The assumption on V � guarantees that every bi�in�nite
path in G can be parsed into edges of G�� and so we do not really lose anything in passing
from G to G�� We remark that if we view G� as an ordinary labeled graph �by inserting
dummy states�� then� while G� may not exactly reproduce G� it is a lossless labeled graph
with S�G�� � S�G��

One can develop notions of state splitting� approximate eigenvectors� etc� for VLG�s� and
see that state splitting preserves �nite anticipation and de�niteness as in Proposition ����
Then we apply a variable�length version of the state�splitting algorithm to iteratively trans�
form G� into a new VLG which is n�codable� thereby yielding a generalized tagged �S� n��
encoder� If the original presentation G has �nite anticipation �resp�� has �nite memory��
then the encoder will have �nite anticipation �resp�� be sliding�block decodable��

The variable�length state�splitting procedure o�ers the advantage of a simpler construc�
tion method because there are fewer states to split� In some cases� it also suggests ways to
�nd codes with reduced complexity �see �AFKM�
�� �Heeg��� for examples��
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����� Method of poles

Our next alternative method is the method of poles� due to B eal �B eal��a�� �B eal��a��
�B eal��b�� This method is a modi�cation of the method of principal states� developed by
Franaszek �Fra
��� A related method was used in �HorM�
� to obtain the �rst practical rate

 	 � �nite�state encoder for the ��� ���RLL constraint�

In this method� we assume that cap�S� � logn� although it does work sometimes even
when cap�S� � logn �see �AB����� Again� we begin with an ordinary lossless presentation G
of S� Given a positive integer M � we �nd a subset P of V � called principal states� and� for
each u � P � a collection ��u� of paths in G satisfying the following four conditions	

�PS��� each path in ��u� starts at u�

�PS��� each path terminates in some element of P �

�PS��� each path has length at most M �

�PS��� the reverse Kraft inequality holds at every state u � P � namely�

X
����u�

n����� � � �

Note that� in contrast to variable�length state splitting� paths in ��u� are allowed to
visit states of P in their interior �i�e�� not just at the beginning or end�� In Section ���
we presented a special case of this de�nition� where each ��u� consisted of paths of length
exactly q � M �

Assuming cap�S� � logn� for su�ciently large M � such a set of principal states always
exists �B eal��a�� There are algorithms which give short�cuts to an exhaustive search for sets
of principal states �Fra
��� �B eal��a��

A generalized tagged �S� n��encoder with sliding�block decoder can be found using the
lists ��u� as follows� We �rst extract a subset ���u� � ��u� such that the following condition
holds	

�PS����
P

�����u� n
����� � ��

This can always be done �B eal��a�� We now de�ne a VLG presentation G � �V �E� L� of
a subset of S � S�G� as follows� For each principal state u � P � we endow G with a state
u� called a pole state� and for each path � � ���u� in G terminating in a state v � P � we
endow G with an edge � � u� v of length ����� The edge � in G is labeled with the word
generated by the corresponding path � in G�
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Clearly� S�G� � S�G� � S� and it is not hard to see that since G is lossless� so is G�
Moreover� the VLG G is n�codable� So� as described in Section 
����� we can endow G with
an input tagging to obtain a generalized tagged �S� n��encoder�

Now� the presentation G need not be de�nite even if G has �nite memory� However�
B eal �B eal��a� showed that if G does have �nite memory and the lists ���u� satisfy an
optimization condition �condition �PS��� below�� then G will be de�nite� Namely� she showed
that if G has �nite memory and P � VG is a set of states such that for each u � P � the
list ���u� satis�es conditions �PS���!�PS���� �PS����� and �PS���� then G is de�nite� and so
any tagging of the resulting �S� n��encoder will be sliding�block decodable� The additional
condition �PS��� is as follows	

�PS�	� for each state u � P � the list ���u� minimizes the sum
P

�����u� ����� among all
possible lists satisfying conditions �PS���!�PS��� and �PS�����

We note that B eal �B eal��b� has found other optimality conditions that can replace
condition �PS��� for guaranteeing sliding�block decodability�

��� Look�ahead encoders

Next� we discuss some methods� due to Franaszek �Fra���� �Fra�
�� �Fra���� which predate
the state�splitting approach� but involve some very closely related ideas� In our description�
we adopt the viewpoint of Hollmann �Holl���� whose terminology is somewhat di�erent from
that of Franaszek�

We begin with look�ahead encoding� a variation of ordinary �nite�state coding� At each
state u of the encoder� the allowable input tag sequences are not arbitrary� namely� there
is a list of n�ary words W �u�� all of the same length K� such that an input tag sequence
labeling a path from u is allowable if and only if its K�pre�x belongs to W �u�� So� when we
encode an input tag �an input symbol�� we do so with the commitment to encode thereafter
only a certain speci�ed collection of input tag sequences� The encoded input tag and the
next encoder state are dictated by the upcoming sequence of input tags� subject to the
requirement that each edge in the encoder graph is associated with exactly one input tag�

In order to describe look�ahead encoding precisely� we will make use of the following
notation	 for sets U and V of ��nite� words� we denote by UV the set of all concatenations
uv such that u � U and v � V � We will use the notation Bn for the n�ary set f�� �� � � � � n��g�

A look�ahead encoder �or more precisely� a K�tag look�ahead encoder with input alphabet
Bn� for a lossless graph G � �V�E� L� is de�ned by an input tagging LI 	 E � Bn of the
edges of G and subsets W �u� of �Bn�

K for each state u � V such that the following two
conditions hold	
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�LA��� for at least one state u � V we have W �u� 	� 
�

�LA��� for each u � V we have

W �u�Bn � �e�Eu
LI�e�W ��G�e�� �

Now� we can transform a look�ahead encoder into a generalized tagged �S�G�� n��encoder
�and therefore an ordinary tagged �S�G�� n��encoder� as follows� For each state u � V �
s � W �u�� and b � Bn� use condition �LA�
� above to choose a particular outgoing edge
e � e�u� sb� from u in G such that sb � as�� a � LI�e�� and s

� � W ��G�e��� Now� construct
a new graph E � �V �� E �� L�

I�L
�
O� with two labelings�input labeling L�

I and output labeling
L�
O�as follows� The states of E are all pairs �u� s�� where u � V and s � W �u�� We draw an

edge �u� s�
a�c
� �u�� s�� �with L�

I �labeling a and L�
O�labeling c� if and only if the following three

conditions hold	

�a� sb � as�� where a is the �rst Bn�symbol in s and b is the last Bn�symbol in s��

�b� u� � �G�e�u� sb���

�c� c � L�e�u� sb���

It can be shown that E is a generalized tagged �S� n��encoder �Problem 
���� Moreover�
if G has �nite anticipation �resp�� has �nite memory�� then E has �nite anticipation �resp��
is sliding�block decodable�� In particular� if G has �nite memory M� then E is sliding�block
decodable with decoding window length �M��	 any word of lengthM�� in S�G� uniquely
determines an edge e of G and the decoded input tag in E is then L�

I�e�� So� if G has memory
zero� then the decoding window length is � �note that this does not mean that the encoder
is block decodable� i�e�� ��� ���sliding�block decodable��

A very special case of the main result in �AM��� is that for any K�tag look�ahead encoder
for a labeled graph G� there is an equivalent encoder �in the sense that the encoding function
is the same modulo a shift� obtained from G by at most K rounds of out�splitting� Now� if
G has memory M� then the upper bound in Section ����
 given for the smallest decoding
window length of a sliding�block decoder isM�K��� However� as mentioned above� such an
encoder is sliding�block decodable with window length at mostM��� So� here is an instance
where the bound on the decoding window length given by the state�splitting algorithm is
much larger than the actual decoding window length�

Lempel and Cohn �LemCo�
� proposed a generalization of the look�ahead encoding
method� Their method di�ers from look�ahead encoding in several respects� First� at each
state� the set of input words is allowed to have variable lengths �this is not really an essential
di�erence� and this possibility was already considered by Franaszek �Fra��a��� Second� the
outgoing edge dictated by an input tag is allowed to depend on the sequence of previous
input tags �as well as following input tags�� Third� an edge in the encoder graph may be
associated with more than one input tag� While this still gives a well�de�ned encoder� it
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may not have �nite anticipation� and so decoding can be problematic� Nevertheless� by a
series of examples� Lempel and Cohn showed that this method works very well in many
circumstances�

��� Bounded�delay encoders

The bounded�delay method is a generalization of look�ahead encoding� Let G � �V�E� L�
be a labeled graph� The T th order Moore form of G� denoted GfTg� is the labeled graph
de�ned as follows� The states of GfTg are the paths of length T�� in G� and for each path
e�e� � � � eT of length T in G� there is an edge e�e� � � � eT�� � e�e	 � � � eT in GfTg labeled L�eT ��
The labeled graph Gf�g is the ordinary Moore form of G� as was de�ned in Section 
�
���

Let G � �V�E� L� be a lossless presentation of a constrained system S� and let K and T
be positive integers� A bounded�delay encoder �or more precisely� a K�tag� delay�T bounded�
delay encoder with input alphabet Bn� for a lossless graph G is a K�tag look�ahead encoder
with input alphabet Bn for the T th order Moore form GfTg of G� Observe that if G has �nite
memory M� then such an encoder is sliding�block decodable with decoding window length
M�T��� We remark that Franaszek �Fra�
� originally framed his IP approach �discussed
in Section 
��� in terms of bounded�delay encoding�

Hollmann �Holl��� has recently developed an approach which combines features of the
bounded�delay method and the state�splitting method� The idea is to �rst split states su��
ciently until one obtains a graph which is amenable to a certain variation of the bounded�
delay method� In many cases� the result of this procedure is a sliding�block decodable encoder
whose decoder has smaller window length than would be expected� Several very nice codes
for speci�c constraints of practical importance were constructed in �Holl����

Hollmann�s approach was in"uenced by earlier work of Immink �Imm�
�� as well as by
Franaszek�s bounded�delay encoding method� Immink showed that in many situations� while
there may be no block decodable tagged �S� n��encoder� it may still be possible to construct
a tagged �S� n��encoder which is ���� ���sliding�block decodable� The decoder produces a
decoded input tag at time i� by examining only the output symbol at time i��� in other
words� it decodes by looking into the future and ignoring the present� What does this
mean in terms of the input tagging of an �S� n��encoder E� Well� suppose� for simplicity�
that E has memory � and at each state� the input tags on the incoming edges are all
the same� Then� any output symbol uniquely determines a state v in E and is decoded
to the input tag which is written on the incoming edges to v� Of course� it is not at all
obvious how to construct such encoders� However� useful heuristics� illustrated by several
examples� were given in �Imm�
�� as well as in subsequent papers by Immink �Imm��a� and
Hollmann �Holl���� In �Holl���� �Holl�
�� Hollmann develops codes that look �further� into
the future	 in his construction� he aims for ��m� a��sliding�block decodable encoders� where
� � m � a� that is� the decoder produces a decoded input tag at time i by examining only
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the output symbols wi�mwi�m�� � � � wi�a�

��� Transforming a generalized encoder to an ordinary

encoder

Here� we outline how to transform a generalized tagged �S� n��encoder to an ordinary tagged
�S� n��encoder�

Let G be a labeled graph with �nite anticipation A� We de�ne the induced labeled graph
G� � �V �� E �� L�� of G in the following manner� The states of G� are all pairs �u� s�� where
u � VG and s is a word of length A that can be generated from u in G� We draw an edge

�u� s�
b
� �u�� s�� if and only if the following two conditions hold	

�a� sb � as�� where a is the �rst symbol in s�

�b� u� is the terminal state of the �rst �unique� edge u
a
� u�� denoted e�u� sb�� in any

path of length A�� that is labeled by the word sb � as� in G starting at state u�

Kitchens �Kit��� �see also �BKM���� showed that whenever G � �V�E� L� is a labeled
graph with �nite anticipation� then the corresponding induced labeled graph G� is determin�
istic and S�G� � S�G�� �Problem 
�
��

Now� given a generalized tagged �S� n��encoder E � �V�E� LI�LO�� we apply the preced�
ing result to EI � �V�E� LI�� yielding a deterministic induced tagged graph E �I � �V �� E �� L�

I�
�i�e�� the labels given by L�

I are regarded as #input tags$�� We form a generalized tagged
�S� n��encoder E � � �V �� E �� L�

I�L
�
O� by endowing E �I with an output labeling L�

O to re�

"ect the labeling LO	 namely� the L�
O�label� c� of the edge �u� s�

b�c
�� �u�� s�� in E � is set

to c � LO�e�u� sb���

Clearly� both EI and E
�
I present the set of all n�ary words through their labelings LI and

L�
I � Hence� since E

�
I is deterministic� there is an �input��labeled subgraph E ��I � �V ��� E ��� L�

I� of
E �I with constant out�degree n which still presents the unconstrained system of n�ary words�
Now� by the losslessness of EO � �V�E� LO� we have that the labeled graph E �O � �V �� E �� L�

O�
and� therefore� also E ��O � �V ��� E ��� L�

O�� is an �S� n��encoder� The tagging L�
I then converts

it into an �ordinary� tagged �S� n��encoder E �� � �V ��� E ��� L�
I�L

�
O�� In this way� we have

transformed the generalized tagged �S� n��encoder E � �V�E� LI�LO� to the ordinary tagged
�S� n��encoder E �� �although the encoding mapping is shifted in the process�� Moreover� if
EO has �nite anticipation� then the resulting �S� n��encoder E ��O will have �nite anticipation�
and if EO has �nite memory� then the resulting tagged �S� n��encoder E �� will be sliding�block
decodable� Therefore� the notions of �nite anticipation and sliding�block decodability can
be applied to generalized encoders�

The induced labeled graph described above resembles that produced by the determinizing
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construction of Section 
�
��� However� it is di�erent	 the determinizing construction yields
a labeled graph which is �too small� to allow the de�nition of a well�de�ned labeling L�

O that
re"ects the labeling LO�

Problems

Problem ��� Show that the graph G�� constructed in Section ���� is lossless�

Problem ��� Show that �V�E�LI�L�� as described at the end of Section ������ is a generalized

tagged �S� n��encoder �when viewed as an ordinary graph with two labelings�input tagging LI and

output labeling L��

Problem ��� Let G 	 �V�E�L� be a variable�length graph �VLG�� Denote by QG�z� the jV j� jV j
matrix in the indeterminate z� with entries given by

�QG�z��u�v 	
X
e

z���e� �

where u� v � V and the summation is taken over all edges e in G that originate in u and terminate

in v�

De
ne the ordinary form of G as the ordinary graph H obtained from G by replacing each edge

e� of length ��e�� with a chain of ��e� edges connected through ��e��� new states�

�� Show that if G is an ordinary graph �i�e�� ��e� 	 � for every e � E�� then

QG�z� 	 z��AG �

where AG is the adjacency matrix of G�

�� Show that if H is the ordinary form of a VLG G� then � is a nonzero eigenvalue of AH if and

only if

det�QG���� I� 	 � �

In particular� the largest real solution of det�QG�z�� I� 	 � is z 	 ��AH��

Problem ��� A 
nite set 
 of words over an alphabet � is called exhaustive if every word w over
� is either a pre
x of a word in 
 or there is a word in 
 that is a pre
x of w� Denote by ��w� the

length of the word w�

�� Let 
 be an exhaustive set of words over an alphabet of size n� Show thatX
w��

n���w� � � �

Hint� Let �max be the largest length of any word in 
� show thatX
w��

n�max���w� � n�max �
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�� Let m��m�� � � � �mt be nonnegative integers that satisfy

tX
i
�

n�mi � � �

Show that there exist integers ��� ��� � � � � �t such that �i � mi and

tX
i
�

n��i 	 � �

�� A 
nite set 
 of words over am alphabet � is called pre�x�free is no word in 
 is a pre
x of

any other word in 
� Show that if 
 is pre
x�free� then

X
w��

n���w� � � �

�� Let ��� ��� � � � � �t be nonnegative integers that satisfy the equality

tX
i
�

n��i 	 � �

Suggest an e�cient algorithm for constructing a set 
 of t words over an alphabet of size n
such that the following three conditions hold�

�a� 
 is exhaustive�

�b� 
 is pre
x�free� and �

�c� the ith word in 
 has length �i�

Problem ��� Let E be the encoder� based on a lossless graph G� described in Section ����

�� Show that E is a generalized tagged �S� n��encoder�

�� Show that if G has 
nite anticipation �resp�� has 
nite memory�� then E has 
nite anticipation

�resp�� is sliding�block decodable��

Problem ��� Let G be a labeled graph with 
nite anticipation� and let G� be the induced labeled

graph described in Section ����

�� Show that G� is deterministic�

�� Show that S�G� 	 S�G���


