
Chapter �

Complexity of Encoders

��� Complexity criteria

There are various criteria that are used to measure the performance and complexity of
encoders� and their corresponding decoders� We list here the predominant factors that are
usually taken into account while designing rate p � q �nite�state encoders�

The values of p and q� Typically� the rate p�q is chosen to be as close to cap�S� as pos�
sible� subject to having p and q small enough� The reason for the latter requirement
is minimizing the number of outgoing edges� �p� from each state in the encoder and
keeping to a minimum the number of input�output connections of the encoder�

Number of states in an encoder� In both hardware and software implementation of en�
coders E � we will need dlog jVE je bits in order to represent the current state of E � This
motivates an encoder design with a relatively small number of states 	Koh
�� Ch� �
�

Gate complexity� In addition to representing the state of a �nite�state encoder� we need�
in hardware implementation� to realize the next�state function and the output function
as a gate circuit� Hardware complexity is usually measured in terms of the number of
required gates �e�g�� NAND gates�� and this number also includes the implementation
of the memory bit cells that represent the encoder state �each memory bit cell can be
realized by a �xed number of gates��

The number of states in hardware implementation becomes more signi�cant in applica�
tions where we run several encoders in parallel with a common circuit for the next�state
and output functions� but with duplicated hardware for representing the state of each
encoder�

Time and space complexity of a RAM program� When the �nite�state encoder is to
be implemented as a computer program on a random�access machine �RAM� 	AHU
��

���
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Ch� �
� the complexity is usually measured by the space requirements and the running
time of the program�

Encoder anticipation� One way to implement a decoder for an encoder E with �nite
anticipation A�E� is by accumulating the past A�E� symbols �in ��Sq�� that were
generated by E � these symbols� with the current symbol� allow the decoder to simulate
the state transitions of E and� hence� to reconstruct the sequence of input tags �see
Section ����� The size of the required bu�er thus depends on A�E��

Window length of sliding�block decodable encoders� A typical decoder of an �m� a��
sliding�block decodable encoder consists of a bu�er that accumulates the past m�a
symbols �in ��Sq�� that were generated by the encoder� A decoding function D �
���Sq���m�a��� � f�� �� � � � � �p��g is then applied to the current symbol and to the
contents of the bu�er to reconstruct an input tag in f�� �gp �see Section ����� From
a complexity point�of�view� the window length� m�a��� determines the size of the
required bu�er�

In order to establish a general framework for comparing the complexity of encoders gen�
erated by di�erent methods of encoder synthesis� we need to set some canonical presentation
of the constrained system S� in terms of which the complexity will be measured� We adopt
the Shannon cover of S as such a distinguished presentation�

��� Number of states in the encoder

In this section we present upper and lower bounds on the smallest number of states in any
�S� n��encoder for a given constrained system S and integer n�

Let G be a deterministic presentation of S� As was described in Chapter �� the state�
splitting algorithm 	ACH��
 starts with an �AG� n��approximate eigenvector x � �xv�v�VG �
which guides the splitting of the states in G until we obtain an �S� n��encoder with at mostP

v�VG xv � kxk� states� Hence� we have the following�

Theorem ��� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� there exists an �S� n��encoder
E such that

jVE j � min
x�X �AG�n�

kxk� �

On the other hand� the following lower bound on the number of states of any �S� n��
encoder was obtained in 	MR��
�
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Theorem ��� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� for any �S� n��encoder E�

jVE j � min
x�X �AG�n�

kxk� �

Proof� Let E be an �S� n��encoder and let � � ��S�� The following construction e�ectively
provides an �AG� n��approximate eigenvector x which satis�es the inequality jVE j � kxk��

�a� Construct a deterministic graph H � H�E� which presents S � � S�E��

This can be done using the determinizing graph of Section ������

�b� For an irreducible sink H � of H� de�ne a vector � �� � such that AH�� � n��

Let H � be an irreducible sink of H� Recall that each state Z � VH�

�
� VH

�
is a subset

TE�w� v� of states of E that can be reached in E from a given state v � VE by paths that
generate a given word w� Let �Z � jZj denote the number of states of E in Z and let � be
the positive integer vector de�ned by � � ��Z�Z�V

H�
� We now claim that

AH�� � n� �

Consider a state Z � VH� � Since E has out�degree n� the number of edges in E outgoing from
the set of states Z � VE is njZj� Now� let Ea denote the set of edges in E labeled a that start
at the states of E in Z and let Za denote the set of terminal states� in E � of these edges� Note
that the sets Ea� for a � �� induce a partition on the edges of E outgoing from Z� Clearly�
if Za �� �� there is an edge Z

a
� Za in H and� since H � is an irreducible sink� this edge is

also contained in H �� We now claim that any state u � Za is accessible in E by exactly one
edge labeled a whose initial state is in Z� otherwise� if Z � TE�w� v�� the word wa could be
generated in E by two distinct paths which start at v and terminate in u� contradicting the
losslessness of E � Hence� jEaj � jZaj and� so� the entry of AH�� corresponding to the state Z
in H � satis�es

�AH���Z �
X

Y �V
H�

�AH��Z�Y �Y �
X

Y �V
H�

�AH��Z�Y jY j

�
X
a��

jZaj �
X
a��

jEaj � njZj � n�Z �

as desired�

�c� Construct an �AG� n��approximate eigenvector x � x�E� from ��

As G and H � comply with the conditions of Lemma ����� each follower set of a state in
H � is contained in a follower set of some state in G� Let x � �xu�u�VG be the nonnegative
integer vector de�ned by

xu � max f �Z � Z � VH� and FH��Z� � FG�u� g � u � VG �
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and denote by Z�u� some particular state Z in H � for which the maximum is attained� In
case there is no state Z � VH� such that FH��Z� � FG�u�� de�ne xu � � and Z�u� � ��
We claim that x is an �AG� n��approximate eigenvector� First� since VH� is nonempty� we
have x �� �� Now� let u be a state in G� if xu � � then� trivially� �AGx�u � nxu and� so�
we can assume that xu �� �� Let Za�u� be the terminal state in H � for an edge labeled a

outgoing from Z�u�� Since FH�

�
Z�u�

�
� FG�u�� there exists an edge labeled a in G from

u which terminates in some state ua in G� and� since G and H � are both deterministic� we
have FH�

�
Za�u�

�
� FG�ua�� Furthermore� by the way x was de�ned� we have xua � �Za�u�

and� so� letting �Z�u� denote the set of labels of edges in H � outgoing from Z�u�� we have

�AGx�u �
X

a��Z�u�

xua �
X

a��Z�u�

�Za�u� � �AH���Z�u� � n�Z�u� � nxu �

where we have used the equality AH�� � n�� Hence� AGx � nx�

The theorem now follows from the fact that each entry in x is a size of a subset of states
of VE �

The bound of Theorem 
�� can be e�ectively computed by the Franaszek algorithm which
was described in Section ������ The upper bound of Theorem 
�� is at most jVGj times the
lower bound of Theorem 
��� which amounts to an additive term of log jVGj in the number
of bits required to represent the current state of the encoder�

There are examples of sequences of labeled graphs G for which the lower bound of The�
orem 
�� is exponential in the number of states of G 	Ash��
� 	MR��
� We give here such an
example� which appears in 	AMR��
 and 	MR��
�

Example ��� Let r be a positive integer and let � denote the alphabet of size r��r��
given by fag � fbig

r��r��
i�� � fcg� Consider the constrained systems Sk that are presented by

the graphs Gk of Figure 
�� �from each state u � k there are r��r�� parallel outgoing edges
labeled by the bi�s to state k�u�� It is easy to verify that ��AGk� � � � r�� and that every
�AGk � ���approximate eigenvector is a multiple of �� �� � � � �k � � � � � �k����� Hence� by
Theorem 
��� every �Sk� r����encoder must have at least �r���

k � expfO�jVGkj�g states�

On the other hand� note that the vector x � �xu�u� whose nonzero components are xk � r
and x�k � �� is an �AGk � r��approximate eigenvector� Hence� if we can compromise on the
rate and construct �Sk� r��encoders instead� then the state�splitting algorithm provides such
encoders with at most r�� states�

The bound of Theorem 
�� is based on the existence of an approximate eigenvector
x � x�E�� where each of the entries in x is a size of a subset of VE � The improvements on
this bound� given in 	MR��
� are obtained by observing that some of these subsets might be
disjoint� One such improvement �with proof left to the reader� is as follows�
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Figure 
��� Labeled graph Gk for Example 
���

Theorem ��� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� for any �S� n��encoder E�

jVE j � min
x�X �AG�n�

max
U

X
u�U

xu�

where the maximum is taken over all subsets U � VG such that FG�u�
FG�u
�� � � for every

distinct states u and u� in U �

In fact� the preceding result can be generalized further to obtain the best general lower bound
known on the number of states in any �S� n��encoder� as it is stated in 	MR��
� In order to
state this result� we need the following de�nitions�

Let S be a constrained system presented by a deterministic graph G� For a state u � VG
and a word w � FG�u�� let �G�w� u� be the terminal state of the path in G that starts at u
and generates w� �Using the notations of Section ������ we thus have TG�w� u� � f�G�w� u�g��
For a word w �� FG�u�� de�ne �G�w� u� � ��

Let n be a positive integer and x � �xu�u�VG be an �AG� n��approximate eigenvector� For
a word w and a subset U � VG� let IG�x�w� U� denote a state u � U such that x�G�w�u� is
maximal �for the case where �G�w� u� � �� we de�ne x� � ���

Let U be a subset of VG� A list C of words is U�complete inG� if every word in
S
u�U FG�u�

either has a pre�x in C or is a pre�x of a word in C� Let CG�U� denote the set of all �nite
U �complete lists in G� For example� the list Fm

G �U� of all words of length m that can be
generated in G from states of U � belongs to CG�U��

Finally� given an integer n� an �AG� n��approximate eigenvector x� a subset U of VG� and
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a list C of words� we de�ne �G�x� n� U� C� by

�G�x� n� U� C� �
X
u�U

xu �
X
w�C

n���w�
X

u�U�fIG�x�w�U�g

x�G�w�u�

�recall that ��w� is the length of the word w��

Theorem ��� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� for any �S� n��encoder E�

jVE j � min
y�X �AG�n�

max
U�VG

sup
C�CG�U�

�G�y� n� U� C� �

In particular� for all U � VG and m�

jVE j � min
y�X �AG�n�

�G�y� n� U�F
m
G �U�� �

Example ��� Figure ��� depicts a rate � � � four�state encoder for the ��� 
��RLL con�
strained system� The example therein is due to Weathers and Wolf 	WW��
� whereas the
example of an encoder used in practice is due to Adler� Hassner� and Moussouris 	AHM��

and has �ve states �see also 	How��
�� Using Theorem 
��� a lower bound of � on the number
of states of any such encoder is presented in 	MR��
� Thus� the Weathers�Wolf encoder has
the smallest possible number of encoder states�

Example ��� Figure ��� depicts a rate � � � six�state encoder for the ��� 
��RLL con�
strained system� This encoder is used in practice and is due to Franaszek 	Fra
�
 �see
also 	EH
�
� 	How��
�� On the other hand� the encoder shown in Figure ���� which is due
to Howell 	How��
� has only �ve states� Using Theorem 
��� it can be shown that � is a
lower bound on the number of encoder states for this system� thus� the Howell encoder has
the smallest possible number of encoder states �note� however� that the anticipation of the
Howell encoder is larger than Franaszek�s��

��� Values of p and q

When cap�S� is a rational number p�q� we can attain the bound of Theorem ��� by a rate
p � q �nite�state encoder for S� Taking a deterministic presentation G of S� we have in this
case an �Aq

G� �
p��approximate eigenvector which yields� by the state�splitting algorithm� an

�Sq� �p��encoder�

On the other hand� when cap�S� is not a rational number� we cannot attain the bound
of Theorem ��� by a rate p � q �nite�state encoder for S� Still� we can approach the bound
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cap�S� from below by a sequence of rate pm � qm �nite�state encoders Em� In fact� as stated
in Theorem ���� we can approach capacity from below even by block encoders� It can be
shown that in this way we obtain a sequence of rate pm � qm block encoders Em for S such
that ����� pmqm � cap�S�

����� � �

qm

for some constant � � ��G�� However� the constant � might be very large �e�g�� exponential�
in terms of the number of states of G� This means that qm might need to be extremely large
in order to have rates pm�qm close to capacity�

Obviously� for every sequence of rate pm � qm �nite�state encoders Em for S� the number
of edges in Em is increasing exponentially with pm� The question is whether convergence of
pm�qm to cap�S� that is faster than O���qm� might force the number of states in Em to blow
up as well� The answer is given in the following result� which is proved in 	MR��
 using
Theorem 
���

Theorem ��	 Let S be a constrained system with cap�S� � log��

�a� If � � ks�t for some positive integers k� s� and t� then there exists an integer N
such that for any two positive integers p� q� where p�q � log� and t divides q� there is an
�Sq� �p��encoder with at most N states�

�b� If � is not a rational power of an integer and� in addition�

lim
m��

�
pm
qm

� log�

�
	 qm � � �

then for any sequence of �Sqm� �pm��encoders Em�

lim
m��

jVEm j �� �

Sketch of proof� Case �a�� Let G be a deterministic presentation of S� Since � � ks�t�
the matrix �AG�

t has an integer largest eigenvalue and an associated integer nonnegative right
eigenvector x� An �Stm� ksm��encoder Em can therefore be obtained by the state�splitting
algorithm for every m� with number of states which is at most N � kxk�� Write q � tm� we
have �p � ksm and� so� an �Sq� �p��encoder can be obtained by deleting excess edges from
Em�

Case �b�� It can be shown that if the values pm�qm approach log� faster than O���qm��
then the respective ��AG�

qm� �pm��approximate eigenvectors x �when scaled to have a �xed
norm� approach a right eigenvector which must contain an irrational entry� Therefore� the
largest components in such approximate eigenvectors tend to in�nity� The result then follows
from Theorem 
���
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If we choose pm and qm to be the continued fraction approximants of log�� we get����� pmqm � log�

����� 	 �

q�m

for some constant �� So� in case �b�� the fastest approach to capacity necessarily forces the
number of states to grow without bound�

��� Encoder anticipation

����� Deciding upon existence of encoders with a given anticipa�

tion

We start with the following theorem� taken from 	AMR��
� which shows that checking
whether there is an �S� n��encoder with anticipation t is a decidable problem� A special
case of this theorem� for t � �� was alluded to in Section ���� Recall that F t

G�u� stands for
the set of words of length t that can be generated from a state u in a labeled graph G�

Theorem ��
 Let S be an irreducible constrained system with a Shannon cover G� let n
and t be positive integers� and� for every state u in G� let N�u� t� � jF t

G�u�j� If there exists
an �S� n��encoder with anticipation t� then there exists an �S� n� encoder with anticipation
� t and at most

P
u�VG��

N�u�t� � �� states�

By Lemma ���� we may assume that there is an irreducible �S� n��encoder E with antici�
pation at most t� The proof of Theorem 
�� is carried out by e�ectively constructing from E
an �S� n��encoder E � with anticipation � t and with a number of states which is at most the
bound stated in the theorem� We describe the construction of E � below� and the theorem
will follow from the next two lemmas�

For a state u � VG and a nonempty subset F of F t
G�u�� let ��u�F� denote the set of all

states v in E for which FE�v� � FG�u� and F t
E�v� � F � Whenever ��u�F� is nonempty we

designate a speci�c such state v � ��u�F� and call it v�u�F�� By Lemma ����� at least one
��u�F� is nonempty�

We now de�ne the labeled graph E � as follows� The states of E � are the pairs �u�F� such
that ��u�F� is nonempty� We draw an edge �u�F�

a
� �bu� bF� in E � if and only if there is an

edge u
a
� bu in G and an edge v�u�F�

a
� bv in E for some bv � ��bu� bF��

Lemma ��� For every � � t���

F �
E �

�
�u�F�

�
� F �

E

�
v�u�F�

�
�
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Proof� We prove that F �
E �

�
�u�F�

�
� F �

E

�
v�u�F�

�
by induction on �� We leave the

reverse inclusion �which is not used here� to the reader�

The result is immediate for � � �� Assume now that the result is true for some �xed
� � t� Let w�w� � � � w� � F ���

E �

�
�u�F�

�
� which implies that there is in E � a path of the

form �u�F�
w�� �u��F��

w�� �u��F�� � � � � � �u��F��
w�� �u����F����� By the inductive

hypothesis� there is a path v�u��F��
w�� v�

w�� v� � � � � � v�
w�� v��� in E � Therefore� the

word w � w�w� � � � w� belongs to FE
�
v�u��F��

�
and� since � � t� we can extend w to form a

word ww� of length t that belongs to F�� Now� by de�nition of the edges in E �� there is an
edge v�u�F�

w�� bv in E for some bv � ��u��F��� Since ww� � F�� there is a path labeled w
outgoing from bv in E and� so� there is a path labeled w�w� � � � w� outgoing from v�u�F� in E �

Hence� F ���
E �

�
�u�F�

�
� F ���

E

�
v�u�F�

�
� as desired�

The next lemma shows that E � is an �S� n��encoder with anticipation � t�

Lemma ��� The following three conditions hold�

�a� The out�degree of each state in E � is n�

�b� S�E �� � S� and �

�c� E � has anticipation � t�

Proof� Part �a�� It su�ces to show that there is a one�to�one correspondence between
the outgoing edges of �u�F� in E � and those of v�u�F� in E � Consider the mapping � from
outgoing edges of �u�F� to outgoing edges of v�u�F� de�ned by

�
�
�u�F�

a
� �bu� bF�� � �

v�u�F�
a
� bv�

where bv � ��bu� bF�� To see that � is well�de�ned� observe that since E has anticipation at
most t� there cannot be two distinct edges v�u�F�

a
� bv and v�u�F�

a
� bv� with bv and bv�

both belonging to the same ��bu� bF�� To see that � is onto� �rst consider an outgoing edge
v�u�F�

a
� bv from v�u�F�� and note that since F � FG�u�� there is in G an outgoing edge

u
a
� bu for some bu� Let bF � F t

E�bv�� We claim that bv � ��bu� bF�� Of course F t
E�bv� � bF � and

since FE�v�u�F�� � FG�u� and G is deterministic� FE�bv� � FG�bu�� Thus� by de�nition of E �

there is an edge �u�F�
a
� �bu� bF�� We thus conclude that � is onto� Since u and a determinebu and since bv determines bF � it follows that � is ���� This completes the proof of �a��

Part �b�� By de�nition of E �� we see that whenever there is a path �u��F�
w�� �u��F�

w��

�u��F�� � � �� �u����F�
w���
� �u��F� in E �� there is also a path u�

w�� u�
w�� � � �� u���

w���
�

u� in G� Thus S�E �� � S�G� � S� as desired�

Part �c�� We must show that the initial edge of any path 
 of length t�� in E � is
determined by its label w�w� � � � wt and its initial state �u�F�� Write the initial edge of 
 as�



CHAPTER �� COMPLEXITY OF ENCODERS ���

�u�F�
w�� �bu� bF�� By Lemma 
�
� there is a path in E with label w�w� � � � wt that begins at

state v�u�F�� Since E has anticipation at most t� the label sequence w�w� � � � wt and v�u�F�
determine the initial edge v�u�F�

w�� bv of this path� So� it su�ces to show that u� w�� and bv
determine bu and bF � for then �u�F� and w�w� � � � wt will determine the initial edge of 
�

Indeed� by de�nition of E �� there must be an edge u
w�� bu in G such that bv � ��bu� bF��

Since G is deterministic� u and w� determine bu� Furthermore� for any �xed bu� the sets ��bu�G�
are disjoint for distinct G� and� so� bv determines bF � It follows that u� w�� and bv determinebu and bF � as desired� thus proving �c��

Now� for every state u � VG� the number of distinct nonempty subsets ��u�F� is bounded
from above by �N�u�t���� This yields the desired upper bound of Theorem 
�� on the number
of states of E ��

It follows by Theorem 
�� that in order to verify whether there exists an �S� n��encoder
with anticipation t� we can exhaustively check all irreducible graphs E with labeling over
��S�� with out�degree n� and with number of states jVE j which is at most the bound of
Theorem 
��� Checking that such a labeled graph E is an �S� n��encoder can be done by the
following �nite procedure� Construct the determinizing graph H of E as in Section ������
Since E is irreducible� the states of any irreducible sink H � of H� as subsets of VE � must
contain all the states of E � Hence� we must have S�E� � S�H ��� Then� we verify that
S�G �H �� � S�H ��� to this end� it su�ces� by Lemma ���� to check that S�H �� is presented
by an irreducible �deterministic� component G� of G �H �� The equality S�H �� � S�G��� in
turn� can be checked by Theorem ����� using the Moore algorithm of Section ������

Finally� testing whether E has anticipation � t can be done by the e�cient algorithm
described in Section ��
���

By the Moore co�form construction of Section ����
� the existence of such an encoder
implies the existence of an �S� n��encoder with anticipation exactly t�

����� Upper bounds on the anticipation

Continuing the discussion of Section 
����� we now obtain more tractable upper and lower
bounds on the smallest attainable anticipation of �S� n��encoders in terms of n and a deter�
ministic presentation of the constrained system S�

LetG be a deterministic presentation of S� The anticipation of an encoder obtained by the
state�splitting algorithm 	ACH��
 is bounded from above by the number of splitting rounds�
This� in turn� yields the following result� which is� so far� the best general upper bound
known for the anticipation obtained by direct application of the state�splitting algorithm�

Theorem ��� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� there exists an �S� n��encoder
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E� obtained by the state�splitting algorithm� such that�

A�E� � min
x�X �AG�n�

n
kxk� � w�x�

o
�

where w�x� is the number of nonzero components in x� Furthermore� if G has �nite memory�
then E is �M�G��A�E���de�nite�

This bound is quite poor� since it may be exponential in jVGj� as is� indeed� the case for
the constrained systems of Example 
��� On the other hand� if G has �nite memory� then
the encoder E obtained by the state�splitting algorithm is guaranteed to be de�nite�

Now� suppose that Gt can be split fully in one round� that is� the splitting yields a labeled
graph E� with out�degree � nt at each state� By deleting excess edges� E� can be made an
�St� nt��encoder E� with anticipation � over ��St�� Let E� be the Moore co�form of E� as
in Section ����
� Then E� is an �St� nt��encoder with anticipation �� If we replace the nt

outgoing edges from each state in E� by an n�ary tree of depth t� we obtain an �S� n��encoder
E	 with anticipation � �t��� Therefore� we have the following�

Theorem ���� Let S be a constrained system presented by a deterministic graph G and
let n and t be positive integers� Suppose that Gt can be split in one round� yielding a labeled
graph with minimum out�degree at least nt� Then� there is an �S� n��encoder with anticipation
� �t���

In 	Ash�
b
 and 	Ash��
� Ashley shows that for t � O�jVGj�� G
t can be split in one round�

yielding a labeled graph with minimum out�degree at least nt� moreover� the splitting can
be chosen to be x�consistent with respect to any �AG� n��approximate eigenvector x� This
provides encoders with anticipation which is at most linear in jVGj� The following theorem
is a statement of Ashley�s result�

Theorem ���� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� there exists an �S� n��encoder
E such that�

�a� when n � ��AG��

A�E� � �jVGj� �dlogn jVGje � � �

�b� when n 	 ��AG��

A�E� � ��jVGj� �dlogn jVGje � � �
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Note� however� that the encoders obtained by splitting the tth power of G are typically
not sliding�block decodable when t � �� even when G has �nite memory�

A further improvement on the upper bound of the smallest attainable anticipation is
presented in 	AMR��
� using the stethering method which� in turn� is based on an earlier
result by Adler� Goodwyn� and Weiss 	AGW


 �see Chapter ��� The following result applies
to the case where n � ��AG�� ��

Theorem ���� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer � ��AG�� �� Then� there is an �S� n��encoder E � obtained by the
�punctured� stethering method� such that

A�E� � � � min
x�X �AG�n���

n
dlogn�� kxk�e

o
�

Furthermore� if G has �nite memory� then E is �M�G��A�E���de�nite� and hence any tagged
�S� n��encoder based on E is �M�G��A�E���sliding�block decodable�

In particular� when n � ��AG�� �� there always exists an �AG� n����approximate eigen�
vector x such that kxk� � �n����jVGj 	Ash�
a
� 	Ash��
� Hence� we have the following�

Corollary ���� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer � ��AG�� �� Then� there is an �S� n��encoder E � obtained by the
�punctured� stethering method� such that

A�E� � �jVGj� � �

Furthermore� if G has �nite memory� then E is �M�G�� �jVGj����de�nite� and hence any
tagged �S� n��encoder based on E is �M�G�� �jVGj����sliding block decodable�

In terms of rate p � q �nite�state encoders� the requirement n � ��AG�� � is implied by

p

q
� cap�S��

�

�pq loge �
�

namely� we need a margin between the rate and capacity which decreases exponentially with
p�

Applying the stethering method on a power of G� the following result is obtained
in 	AMR��
�

Theorem ���� Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer smaller than ��AG�� Then� there is an �S� n��encoder E such that

A�E� � ��jVGj � � �

Theorem 
��� improves on Theorem 
���� but it does not cover the case n � ��AG��
Also� the encoders guaranteed by Theorem 
��� are typically not sliding�block decodable�
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����� Lower bounds on the anticipation

The next theorem� taken from 	MR��
� provides a lower bound on the anticipation of any
�S� n��encoder� A special case of this bound appears in 	Fra��
�

Theorem ���	 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer� Assume that cap�S� � logn� Then� for any �S� n��encoder E�

A�E� � min
x�X �AG�n�

n
logn kxk�

o
�

Proof� The theorem trivially holds if A�E� ��� so we assume that E has �nite antici�
pation A� Let x � x�E� � �xu�u�VG be as in the proof of Theorem 
��� We recall that by the
way x was constructed� each nonzero component of x is a size of some subset Z � TE�w� v�
of states in E which are accessible from v � VE by paths labeled w�

Let TE�w� v� be such a subset whose size equals the largest component of x and let
� � ��w� �i�e�� the length of w�� Since the out�degree of E is n� we have n� paths of length �
starting at v in E and� so�

n� � jTE�w� v�j � max
u�VG

xu �

implying
� � min

�yu�u�X �AG�n�

n
logn �maxu�VG yu�

o
�

Therefore� when A � �� we are done�

Assume now that � � A� Since E has �nite anticipation A� the �rst ��A edges of any
path in E labeledw are uniquely determined� once we know the initial state v� It thus follows
that the paths from v to TE�w� v� labeled w may di�er only in their last A edges� Hence�
we can have at most nA such paths� Recalling that the number of such paths is jTE�w� v�j�
we have

nA � jTE�w� v�j � max
u�VG

xu � min
�yu�u�X �AG�n�

max
u�VG

yu �

as claimed�

There is some resemblance between the lower bound of Theorem 
��� and the upper
bound of Theorem 
���� And� indeed� there are many cases where the di�erence between
these bounds is at most �� Note� however� that for the constrained systems Sk � S�Gk� of
Example 
��� we obtain� by Theorem 
���� an upper bound of � � �

�
jVGk j on the smallest

anticipation of any �Sk� r��encoder� where the lower bound of Theorem 
��� equals �� In
fact� this lower bound is tight 	AMR��
�

The following bound� proved in 	AMR��
 is� in a way� a converse of Theorem 
����
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Theorem ���
 Let S be an irreducible constrained system presented by an irreducible
deterministic graph G and let n and t be positive integers� If there is an �S� n��encoder with
anticipation t� then Gt can be split in one round� yielding a graph with minimum out�degree
at least nt�

Proof� Let E be an �S� n��encoder with anticipation t� let � � ��S�� and let H be the
determinizing graph constructed from E as in Section ������ Recall that each state Z � VH is
a subset TE�w� v� of states of E that can be reached in E from a given state v � VE by paths
that generate a given word w� Let H � be an irreducible sink of H and let x � �xu�u�VG be
the nonnegative integer vector de�ned in the proof of Theorem 
���

xu � max f jZj � Z � VH� and FH��Z� � FG�u� g � u � VG �

in case there is no state Z � VH� such that FH��Z� � FG�u�� de�ne xu � �� Then� as in the
proof of Theorem 
��� x is an �AG� n��approximate eigenvector�

Let Z � TE�w� v� be a state in H � and suppose that Z contains two distinct states� z
and z�� of E � First� we claim that there is no word w� of length t that can be generated in E
from both z and z�� Otherwise� we would have in E two paths of length ��w� � t� starting
at the same state v� with the same labeling ww�� that do not agree in at least one of their
�rst ��w� edges� This� however� contradicts the fact that E has anticipation t�

For w� � F t
H��Z�� denote by Zw� the terminal state in H � of a path labeled w� starting

at Z� As we have just shown� a word w� � F t
H��Z� can be generated in E from exactly one

state z � Z� Therefore� the sets F t
E�z�� z � Z� form a partition of F t

H��Z�� Furthermore� by
the losslessness of E � the number of paths in E that start at z � Z and generate w� � F t

E�u�
equals jTE�w

�� z�j � jZw�j� Since E is an �S� n��encoder� we conclude�X
w��Ft

E
�z�

jZw�j � nt for every z � Z � �
���

For each state u � VG such that xu �� �� select some Z � Z�u� � VH� such that jZj � xu
and FH��Z� � FG�u�� Now� the partition fF t

E�z� � z � Zg of F t
H��Z� may be regarded as a

partition of F t
G�u� by appending the complement F t

G�u�nF
t
H��Z� to one of the atoms F t

E�z��
z � Z� Since Gt is deterministic� this de�nes a partition PGt�u� � fEGt�u� z�gz�Z�u� of the
outgoing edges from u in Gt into jZ�u�j � xu atoms� For w� � FE�z�� let u� denote the
terminal state of the edge in Gt that begins at u and is labeled w�� Now� if w�� � FH��Zw���
then w�w�� � FH��Z� � FG�u�� Since G is deterministic� this implies that w�� � FG�u

���
Thus FH��Zw�� � FG�u

�� and� so� jZw�j � xu� � This� together with Equation �
���� shows
that the splitting of Gt de�ned by the partition PGt�u� satis�es the following inequality�X

e�E
Gt
�u�z�

x��e� � nt for every u � VG and z � Z�u� �

Hence� the split graph has minimum out�degree at least nt�
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Theorem 
��� may be regarded as a lower bound on the anticipation of an encoder� This
result� together with Theorem 
���� shows that by one round of splitting of some power of G�
one can obtain an encoder whose anticipation is within a constant factor from the smallest
anticipation possible�

There are examples which show that neither of the lower bounds in Theorems 
���� 
���
implies the other� On the other hand� when cap�S� � log n� we claim that for irreducible
constrained systems the lower bound of Theorem 
��� implies that of Theorem 
���� Indeed�
let t denote the bound of Theorem 
���� Then for each state u � VG there is a partition
fEGt�u� i�g

xu
i�� of the outgoing edges from u in Gt such that the vector x � �xu�u is a positive

�AG� n��approximate eigenvector andX
e�E

Gt
�u�i�

xt�e� � nt for each �u� i� � �
���

We now claim that �
��� holds in our case with equality for every �u� i�� Otherwise� the
corresponding splitting would yield an irreducible� lossless presentation of St with minimum
out�degree at least nt and at least one state with out�degree greater than nt�contradicting
the equality cap�S� � log n�

Let umax be a state in G for which xumax � kxk�� Also� let v be a state with an outgoing
edge� in Gt� to umax� Then any edge e from v to umax in Gt belongs to some EGt�v� i� and so
the equality

P
e�E

Gt
�v�i� xt�e� � nt implies

xumax � nt

�i�e�� t � logn kxk� � miny�X �AG�n�
n
logn kyk�

o
�

We end this section by mentioning without proof the improvements on Theorems 
���
and 
��� that have been obtained in 	Ru��
 and 	RuR��
�

Recall that Theorem ���� in Section ����� provides a necessary and su�cient condition for
having �S� n��encoders with anticipation t Such a characterization also implies a lower bound
on the anticipation of �S� n��encoders� given S and n� the anticipation any �S� n��encoder is
at least the smallest nonnegative integer t for which there exists a presentation G of S and
an �AG� n��approximate eigenvector x that satisfy conditions �a���e� of Theorem �����

The following is another result obtained in 	Ru��
 and 	RuR��
�

Theorem ���� Let S be an irreducible constraint� let n be a positive integer where
cap�S� � logn� and let G be any irreducible deterministic presentation of S� Suppose there
exists some irreducible �S� n��encoder with anticipation t 	�� Then there exists an �AG� n��
approximate eigenvector x such that the following holds�

�a� kxk� � nt�
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�b� For every k � �� �� � � � � t� the states of Gk can be split in one round consistently with
the �Ak

G� n
k��approximate eigenvector x� such that the induced approximate eigenvector x�

satis�es kx�k� � nt�k� and each of the states in Gk is split into no more than nk states�

While Theorem ���� gives a necessary and su�cient condition on the existence of �S� n��
encoders with a given anticipation t� Theorem 
��
 gives only a necessary condition on the
existence of such encoders� On the other hand� Theorem 
��
 allows to obtain a lower
bound on the anticipation using any irreducible deterministic presentation of S�in partic�
ular the Shannon cover of S� Therefore� it will typically be easier to compute bounds using
Theorem 
��
�

Note that Theorem 
��� is equivalent to Theorem 
��
�a�� while Theorem 
��� is equiv�
alent to Theorem 
��
�b� for the special case k � t� Examples in 	RuR��
 show that Theo�
rem 
��
 �and hence Theorem ����� yields stronger bounds than these two former results�

The results in 	RuR��
 also imply tight lower bounds in certain practical cases� For
example� it is shown therein that any rate � � � �nite�state encoder for the ��� 
��RLL
constraint must have anticipation at least �� and the Weathers�Wolf encoder in ��� does
attain this bound �and so does the encoder of Adler Coppersmith� and Hassner in 	ACH��
��
Similarly� any rate � � � encoder for the ��� 
��RLL constraint must have anticipation at least
�� and this bound is attained by the Franaszek encoder in Figure ���� A lower bound of �
applies also to the anticipation of any rate � � � encoder for the ��� ��� ���RLL constraint
�see Figure ������ this bound is tight due to the constructions by Weigandt 	Weig��
 and
Hollmann 	Holl��
�

��� Sliding�block decodability

The following is the analog of Theorem 
�� for sliding�block decodable encoders� The special
case of block decodable encoders was treated in Section ����

Theorem ���� Let S be an irreducible constrained system with a Shannon cover G� and
let n be a positive integer and m and a be nonnegative integers� For every state u in G� let
N�u� a� � jFa

G�u�j and let P �u�m� be the number of words of length m that can be generated
in G by paths that terminate in state u� If there exists an �m� a��sliding�block decodable
�S� n��encoder� then there exists such an encoder with at most

P
u�VG P �u�m���

N�u�a� � ��
states�

Proof� The proof is similar to that of Theorem 
��� In fact� that proof applies almost
verbatim to the case of ��� a��sliding�block decodable encoders� so we assume here that m is
strictly positive� Let E be an irreducible �m� a��sliding�block decodable �S� n��encoder� Also�
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let H � be an irreducible sink of the determinizing graph of E obtained by the construction
of Section ������ By construction of H �� for every path from state v to state bv in E that
generates a word w� there is a path in H � that generates w� starting at a state Z and
terminating in a state bZ� such that v � Z and bv � bZ� Hence� by Lemma ����� there also
exists a path in G that generates w� starting at a state u and terminating in a state bu� such
that FE�v� � FG�u� and FE�bv� � FG�bu�� It thus follows that for every state bv in E and a
word w that can be generated in E by a path terminating in bv� there is a path in G that
generates w whose terminal state� bu� satis�es FE�bv� � FG�bu��

For a state u � VG� a wordw of lengthm that can be generated inG by a path terminating
in u� and a nonempty subset F � Fa

G�u�� we de�ne ��u�w�F� to be the set of all states v
in E which are terminal states of paths in E that generate w and such that FE�v� � FG�u�
and Fa

E�v� � F � Note that each state of E is contained in some set ��u�w�F� and� so� at
least one such set is nonempty�

A tagged �S� n��encoder E � is now de�ned as follows� In each nonempty set ��u�w�F��
we designate a state of E and call it v�u�w�F�� The states of E � are triples �u�w�F� for
which ��u�w�F� is nonempty�

Let u and bu be states in G and let w � w�w� � � � wm and bw � bw� bw� � � � bwm be two words
that can be generated by paths in G that terminate in u and bu� respectively� If ��u�w�F�
and ��bu� bw� bF� are nonempty� then we draw a tagged edge �u�w�F�

s�b
� �bu� bw� bF� in E � if and

only if the following four conditions hold�

�a� bwj � wj�� for j � �� �� � � � �m���

�b� b � bwm�
�c� there is a tagged edge v�u�w�F�

s�b
� bv in E for some bv � ��bu� bw� bF��

�d� there is an edge u
b
� bu in G�

By the proof of Theorem 
��� it follows that E � is� indeed� an �S� n��encoder and that

Fa��
E �

�
�u�w�F�

�
� Fa��

E

�
v�u�w�F�

�
� Furthermore� it can be shown by induction that� for

every � � m� the paths of length � in E � that terminate in �u� w�w� � � � wm�F�� all have the
same labeling wm����wm���� � � � wm� Since the �outgoing picture��including tagging�from
state �u�w�F� in E � is the same as that from state v�u�w�F� in E � it follows that E � is
�m� a��sliding�block decodable�

The upper bound on jVE �j is now obtained by counting the number of distinct states
�u�w�F��

The upper bound on the number of states in Theorem 
��� is doubly�exponential in the
decoding look�ahead a� In 	AM��
� a stronger result is obtained where the upper bound on
the number of states is singly�exponential� It is still open whether such an improvement is
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possible also for the doubly�exponential bound of Theorem 
���

The following bound is easily veri�ed�

Proposition ���� Let E be an irreducible �m� a��sliding�block decodable encoder� Then�
a � A�E��

Hence� we can apply the lower bounds on the anticipation which were presented in Sec�
tion 
����� to obtain lower bounds on the attainable look�ahead of sliding�block decodable
encoders �but these do not give lower bounds on the decoding window length� m � a � ��
since m may be negative�� On the other hand� Theorems 
�� and 
��� and Corollary 
���
provide upper bounds on the look�ahead of encoders obtained by constructions that yield
sliding�block decodable encoders for �nite�type constrained systems�

We remark that Theorem 
��� implies upper bounds on the the size of encoders which
are sliding�block decodable also when m is negative� simply apply the theorem with m � ��

And �nally we note that� at least for �nite�type constrained systems� Hollmann 	Holl��

has given a procedure for deciding if there exists a sliding block decodable �S� n��encoder
with a given window length� here� the window length L � m � a � �� rather than m and a�
is speci�ed� Even for L � �� this is a non�trivial problem� because one must consider the
possibility that a � �m may be arbitrarily large�

��� Gate complexity and time	space complexity

In this section� we discuss the gate complexity and time�space complexity of some of the
encoding schemes that were mentioned in the previous sections� We start with the time�
space complexity criterion� assuming that the encoders are to be implemented as a program
on a random�access machine �RAM� 	AHU
�� Ch� �
� The results on gate complexity will
then follow by known results in complexity theory�

We de�ne an encoding scheme as a function �G� q� n� 
� E�G� q� n�� that maps a determin�
istic graph G and integers q and n into an �S�Gq�� n��encoder E�G� q� n�� The state�splitting
algorithm of 	ACH��
� the method described by Ashley in 	Ash��
� and the stethering method
of 	AMR��
 are examples of encoding schemes�

For a given encoding scheme �G� q� n� 
� E�G� q� n�� we can formalize the encoding problem
as follows� We are to write an encoding program P on a RAM� an input instance to P consists
of the following entries�

� a deterministic graph G over an alphabet ��

� an integer q�
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� an integer n � ��Aq
G��

� a state u of E�G� q� n��

� an input tag s � f�� �� � � � � n��g�

For any input instance� the program P computes an output q�block over � and the next
state of the tagged �S�Gq�� n��encoder E�G� q� n�� given we are at state u in E�G� q� n� and
the current input tag is s� Note that in order to perform its function� the program P does
not necessarily have to generate the whole graph presentation of E�G� q� n��

We denote by Poly�	� a �xed arbitrary multinomial� whose coe�cients are absolute con�
stants� independent of its arguments�

The following was proved in 	AMR��
 for the stethering coding scheme and for a variation
of Ashley�s construction 	Ash��
�

Theorem ���� There exists an encoding scheme �G� q� n� 
� E�G� q� n� �such as the one
presented in 	Ash

� or 	AMR�
��� for which there is an encoding program P on a RAM that

solves the encoding problem in time complexity which is at most Poly
�
jVGj� q� log j�j

�
�

In particular� if we now �x G� q� and n� we obtain an encoding program that simulates
E�G� q� n� with a polynomial time and space complexity�

Theorem 
��� applies to the constructions covered in Theorems 
���� 
���� and 
���� In
contrast� it is not known yet whether a polynomial encoder can be obtained by a direct
application of the state�splitting algorithm�

For a positive integer �� denote by I� the set of all possible inputs to P of size �� according
to some standard representation of the input� Now� if the time complexity of P on each
element of I� is polynomial in �� then for any input size �� there exists a circuit C� with
Poly��� � Poly

�
jVGj� q� log j�j

�
gates that implements P for inputs in I�� Furthermore� such

circuits C� are �uniform� in the sense that there is a program on a RAM that generates the
layouts of C� in time complexity which is Poly���� This is a consequence of a known result
on the equivalence between polynomial circuit complexity and polynomial RAM complexity
of decision problems 	ST��� Theorem ���
�

By Theorem 
���� it thus follows that we can have such a polynomial circuit at hand
for both Ashley�s construction and the stethering construction� We summarize this in the
following theorem�

Theorem ���� For every constrained system S over an alphabet �� presented by a de�
terministic graph G� and for any positive integers q and n � ��Aq

G�� there exists an �Sq� n��

encoder that can be implemented by a circuit consisting of Poly
�
jVGj� q� log j�j

�
gates and
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O�jVGj logn� memory bit�cells� Furthermore� there exists a program on a RAM that generates
the layout of such an implementation in polynomial�time�

Theorems 
��� and 
��� apply also to the decoding complexity of the corresponding
encoders�

Problems

Problem ��� Prove Theorem ��� by modifying the end of the proof of Theorem ����

Problem ��� Verify the assertion of Example ����

Problem ��� Verify the assertion of Example ����

Problem ��� Let S be the constrained system presented by the graph G in Figure ����� Is there

a positive integer � for which there exists a deterministic �S��� ����encoder� If yes	 construct such

an encoder
 otherwise	 explain�

Problem ��� Let S be the constrained system presented by the graph G in Figure ����
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Figure 
��� Graph G for Problem 
���

�� Compute the capacity of S�

�� Compute an �AG� ���approximate eigenvector in which the largest entry is the smallest pos�

sible�

�� For every positive integer �	 determine the smallest anticipation of any �S�� ����encoder�



CHAPTER �� COMPLEXITY OF ENCODERS ���

Problem ��� Let S be the constrained system presented by the graph G in Figure �����

�� Find the smallest anticipation possible of any �S� ���encoder�

�� Find the smallest number of states of any �S�� ���encoder�


