
Chapter �

Error Correction and Concatenation

The preceding chapters have addressed properties of constrained systems and construction
of encoders which encode user data sequences into constrained sequences� In practice� these
constrained codes� as applied in data recording systems� may be viewed as part of the
modulation�demodulation process of input�output signals of the system� Most systems
require the use of some form of error�correction coding �ECC� in addition to constrained
coding of the input signal or symbol sequence� It is therefore natural to investigate the
interplay between these two forms of coding and the possibilities for e�ciently combining
their functions into a single coding operation� in analogy to the coded�modulation techniques
now in wide use in data transmission�

In this chapter� we give� in the �rst four sections� a very brief introduction to error�
correcting linear block codes �the rough idea of error�correction coding was discussed brie�y
in Section 	�
�� This includes description of the basic properties of linear block codes� �nite
�elds� and culminates with a discussion of the celebrated Reed�Solomon codes�

In Section ���� we consider three schemes for concatenating ECC codes and constrained
codes� The third scheme involves a data compression idea� This idea is formalized in
Section ��
� and the performance in this context of some speci�c compression codes is given
in Section ���� Then� in Section ���� we show how a dual version of state�splitting ideas from
Chapter � can be used to give a general construction of compression codes that are useful in
this context�

In Chapter �� we will consider codes which have combined error�correction and con�
strained coding properties�in particular codes that are designed to handle error mechanisms
that arise in magnetic recording�

���

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

��� Error�Correction Coding

An �n�M� �block� code over a �nite alphabet F is a nonempty subset C of size M of F n�
The elements of the alphabet are referred to as symbols� The parameter n is called the code
length and M is the code size� The dimension �or information length� of C is de�ned by
k � logjF jM � and the rate of C is R � k�n� The elements of a code are called codewords�

In addition to the parameters� code length and code size� there is a third parameter�
called the minimum distance� which gives a rough sense of the robustness of the code to
channel noise� For this we need to de�ne the following notion of distance�

The Hamming distance between two words x�y � F n is the number of coordinates in
which x and y di�er� We denote the Hamming distance by ��x�y��

It is easy to verify that Hamming distance satis�es the following properties of a metric
for every three words x�y� z � F n�

� ��x�y� � �� with equality if and only if x � y�

� Symmetry� ��x�y� � ��y�x��

� The triangle inequality� ��x�y� � ��x� z� � ��z�y��

Let C be an �n�M� code over F withM � 	� The minimum distance of C is the minimum
Hamming distance between any two distinct codewords of C� That is� the minimum distance
d is given by

d � min
c��c��C � c� ��c�

��c�� c�� �

An �n�M� code with minimum distance d is called an �n�M� d� code�

Example ��� The binary �
� ��
� repetition code is the code f���� 			g over F � f�� 	g�
The dimension of the code is log� � � 	 and its rate is 	�
�

Example ��� The binary �
� �� �� parity code is the code f���� �		� 	�	� 		�g over F �
f�� 	g� The dimension is log� � � � and the code rate is ��
�

Given an �n�M� d� code C over F � let c � C be a codeword transmitted over a noisy
channel� and let y � F n be the received word� By an error we mean the event of changing
an entry in the codeword c� The number of errors equals ��y� c�� and the error locations are
the indices of the entries in which c and y di�er� The task of error correction is to recover
the error locations and the error values�

The following result shows that for any code with minimum distance d� there is a proce�
dure that can correct up to b�d�	���c many errors�

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

Proposition ��� Let C be a block code over F with code length n and minimum distance
d� For a received word y� let D�y� denote the codeword in C that is closest �with respect to
Hamming distance� to y� If codeword c is transmitted� y is received� and ��y� c� � �d�	���
then D�y� � c�

Proof� Suppose to the contrary that c� � D�y� �� c� By de�nition�

��y� c�� � ��y� c� � �d�	��� �

So� by the triangle inequality�

d � ��c� c�� � ��y� c� � ��y� c�� � d�	 �

which is a contradiction�

��� Linear Codes

Most of the theory of ECC has focused on linear codes� Such a code is de�ned as a �nite�
dimensional vector space over a �nite �eld� We assume that the reader is familiar� from a
course in elementary linear algebra� with the notion of a vector space or linear space� But
since such a course does not necessarily treat �nite �elds� we give a brief introduction to
�nite �elds in Section ��
� in particular� we give in Section ��
 a construction of the �nite
�eld GF�q�� For a more thorough introduction to ECC� we refer the reader to any of the
excellent textbooks on the subject� such as �LinCo�
�� �Mcl��� or �Wic����

����� De�nition

An �n�M� d� code C over a �nite �eld F � GF�q� is called linear if C is a linear sub�space of
F n over F � namely� for every c�� c� � C and a�� a� � F we have a�c� � a�c� � C�

The dimension of a linear �n�M� d� code C over F is the dimension of C as a linear sub�
space of F n over F � If k is the dimension of C� then we say that C is a linear �n� k� d� code
over F � The di�erence n� k is called the redundancy of C�

Every basis of a linear �n� k� d� code C over F � GF�q� contains k codewords� the linear
combinations of which are distinct and generate the whole set C� Therefore� jCj � M � qk

and the code rate is R � �logqM��n � k�n�

Words y � y�y� � � � yn over a �eld F�in particular� codewords of a linear �n� k� d� code
over F�will sometimes be denoted by �y� y� � � � yn�� to emphasize that they are elements
of a vector space F n�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

Example ��� The �
� �� �� parity code over GF��� is a linear �
� �� �� code since it is
spanned by �	 � 	� and �� 	 	��

The Hamming weight of e � F n is the number of nonzero entries in e� We denote the
Hamming weight by w�e�� Note that for every two words x�y � F n�

��x�y� � w�y � x� � ��y � x� ���

where � denotes the �all��zero codeword� which is an element of any linear code �since a
linear space always contains the zero vector�� The following result characterizes the minimum
distance of a linear code in terms of its minimum Hamming weight�

Proposition ��� Let C be a linear �n� k� d� code over F � Then

d � min
c�Cnf�g

w�c� �

Proof� Since C is linear�

c�� c� � C �� c� � c� � C �

Now� ��c�� c�� � w�c� � c�� and� so�

d � min
c��c��C � c� ��c�

��c�� c�� � min
c��c��C � c� ��c�

w�c� � c�� � min
c�Cnf�g

w�c� �

����� Generator Matrix

A generator matrix of a linear �n� k� d� code over F is a k� n matrix whose rows form a basis
of the code�

Example ��� The matrix

G �

�
	 � 	
� 	 	

�

is a generator matrix of the �
� �� �� parity code over GF���� and so is the matrix

�G �

�
� 	 	
	 	 �

�
�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �		

In general� the �n� n�	� �� parity code over a �eld F is de�ned as the code with a generator
matrix

G �

�
BBBB� I

�	
�	
���

�	

�
CCCCA �

where I is the �n�	�� �n�	� identity matrix�

Example ��� The �
� ��
� repetition code over GF��� is a linear �
� 	�
� code generated
by

G � � 	 	 	 � �

In general� the �n� 	� n� repetition code over a �eld F is de�ned as the code with a generator
matrix

G � � 	 	 � � � 	 � �

Let C be a linear �n� k� d� code over F and G be a generator matrix of C� We can encode
information words into codewords of C by regarding the former as vectors u � F k and using
a mapping F k � C de�ned by

u 	� uG �

Since rank�G� � k� we can apply elementary operations to the rows of G to obtain a k � k

identity matrix as a sub�matrix of G�

A k� n generator matrix is called systematic if it has the form�
I A

�
�

where I is a k� k identity matrix and A is a k� �n�k� matrix�

Not always does a code C have a systematic generator matrix� However� we can always
permute the code coordinates to obtain an equivalent �although di�erent� code �C for which
the �rst k columns of any generator matrix are linearly independent� in which case the
code has a systematic generator matrix� The code �C has the same length� dimension� and
minimum distance as the original code C�

When using a systematic generator matrix G � � I jA � for encoding� the mapping u 	�
uG takes the form u 	� �u juA �� that is� the information vector is part of the encoded
codeword�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

����� Parity�check matrix

Let C be a linear �n� k� d� code over F � A parity�check matrix of C is an r� n matrix H over
F such that for every c � F n�

c � C
� Hc� � � �

In other words� the code C is the �right� kernel� ker�H�� of H in F n� We thus have

rank�H� � n� dimker�H� � n� k �

So� in �the most common� case where the rows of H are linearly independent we have
r � n� k�

Let G be a k� n generator matrix of C� The rows of G span ker�H� and� in particular�

HG� � � �� GH� � � �

Also�
dimker�G� � n� rank�G� � n� k �

Hence� the rows ofH span ker�G�� So� a parity�check matrix of a linear code can be computed
by �nding a basis of the kernel of a generator matrix of the code�

In the special case where G is a systematic matrix � I jA �� we can take the �n�k� � n

matrix H � ��A� j I � as a parity�check matrix�

Example ��� The matrix
� 	 	 � � � 	 �

is a parity�check matrix of the �n� n�	� �� parity code over a �eld F � and

�
BBBB� I

�	
�	
���
�	

�
CCCCA

is a parity�check matrix of the �n� 	� n� repetition code over F �

Example ��	 The linear ��� ��
� Hamming code over GF��� is de�ned by the parity�
check matrix

H �

�
B�
� � � 	 	 	 	
� 	 	 � � 	 	
	 � 	 � 	 � 	

�
CA �

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	

A corresponding generator matrix is given by

G �

�
BBB�
	 	 	 	 	 	 	
� � � 	 	 	 	
� 	 	 � � 	 	
	 � 	 � 	 � 	

�
CCCA �

One can check exhaustively that the minimum distance of this code is indeed
�

The following theorem provides a characterization of the minimum distance of a linear
code through any parity�check matrix of the code�

Theorem ��� Let H be a parity�check matrix of a linear code C �� f�g� The minimum
distance of C is the largest integer d such that every set of d�	 columns in H is linearly
independent�

Proof� Write H � �h� h� � � � hn � and let c � �c� c� � � � cn� be a codeword in C with
Hamming weight t � �� Let J � f	� �� � � � � ng be the set of jJ j � t indexes of the nonzero
entries in c� By Hc� � � we have X

j�J

cjhj � � �

namely� the t columns of H that are indexed by J are linearly dependent�

Conversely� every set of t linearly dependent columns in H corresponds to at least one
nonzero codeword c � C with w�c� � t�

Given d as de�ned in the theorem� it follows that no nonzero codeword in C has Hamming
weight less than d� but there is at least one codeword in C whose Hamming weight is d�

Example ��� For an integer m � 	� the ��m�	� �m�	�m�
� Hamming code over F �
GF��� is de�ned by an m � ��m�	� parity�check matrix H whose columns range over all
the nonzero elements of Fm� Every two columns in H are linearly independent and� so� the
minimum distance of the code is at least
� In fact� the minimum distance is exactly
� since
there are three dependent columns� e�g�� �� � � � � � 	��� �� � � � � 	 ���� and �� � � � � 	 	���

��� Introduction to Finite Fields

Roughly speaking� a �nite �eld is a �nite set of elements in which notions of addition and
multiplication are de�ned subject to the following conditions�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

� The usual rules �associative� distributive and commutative� of arithmetic hold�

� Each element has an additive inverse �i�e�� a �negative� of itself� and a multiplicative
inverse �i�e�� a �reciprocal��� in other words� you can subtract and divide elements of
the �eld and still remain in the �eld�

The simplest non�trivial �eld is GF ���� which consists of just two elements� f�� 	g with
modulo�� arithmetic� i�e��

� � � � 	 � 	 � �
� � 	 � 	 � � � 	
� � � � �
	 � 	 � 	
� � 	 � 	 � � � �

More generally� for a prime number p� the prime �eld GF�p� consists of the elements
f�� 	� � � � � p�	g� with arithmetic modulo p� It can be shown that GF�p� contains a primitive
element� de�ned as an element � such that the powers of � exhaust all nonzero elements of
the �eld�

Example ��
 In GF��� we have

� � � �
 � � �
 �
 � 	 � 	 � 	 �

The elements
 and � are primitive elements�

� � 	 � ��

� �
 � ��

� � � � ��

� �
 � ��

� � � � ��

� � � � ��

and in fact they are the only primitive elements�

It turns out that the size of any �nite �eld is a power of a prime number q � ph� Such a
�eld is denoted GF�q� and is de�ned as the set of all polynomials of degree less than h in an
indeterminate x with coe�cients in GF�p�� Addition is then de�ned as the usual polynomial
addition �using arithmetic modulo p��

In order to de�ne multiplication� we make use of an irreducible polynomial� P �x� of degree
exactly h� with coe�cients in GF�p�� i�e�� a polynomial that cannot be factored nontrivially
over GF�p�� It can be shown that such a polynomial exists for each prime p and integer h�

Example ���� The following are all the irreducible polynomials over GF��� with degree
at most ��

degree 	� x� x � 	

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

degree �� x� � x� 	

degree
� x� � x� 	� x� � x� � 	

degree �� x� � x� 	� x� � x� � 	� x� � x� � x� � x� 	

We then de�ne multiplication in GF�q� by multiplication of polynomials followed by
reduction by P �x�� precisely� to �nd the product of a�x� and b�x�� �rst form the ordinary
product s�x� � a�x�b�x� and then compute the remainder of s�x� when divided by P �x��
Irreducbility of P �x� is required in order to guarantee that each nonzero element of GF�q�
has a multiplicative inverse�

Example ���� Let F � GF��� and P �x� � x��x�	� We construct the �eld GF���� as
the set of polynomials over F of degree less than
� resulting in Table ��	� where the elements
of the �eld are written as polynomials in the indeterminate x� The third column in the table

��� � �
��	 	 	
�	� x x
�		 x� 	 x�

	�� x� x�

	�	 x� � 	 x�

		� x� � x x�

			 x� � x � 	 x�

Table ��	� The �eld GF����

expresses each nonzero element in the �eld as a power of the monomial x � � �	�	 �x�� �x��
Indeed�

x�
 x � 	 �mod P �x�� �

x�
 x � x�
 x�x � 	�
 x� � x �mod P �x�� �

x�
 x � x�
 x�x� � x�
 x� � x�
 x� � x� 	 �mod P �x�� �

x�
 x � x�
 x�x� � x� 	�
 x� � x� � x
 x� � 	 �mod P �x�� �

and

x	
 x � x�
 x�x� � 	�
 x� � x
 	 �mod P �x�� �

Just as for prime �elds� any �nite �eld GF�q� contains a primitive element� In the
preceding example� the monomial x is primitive� In general the monomial x may not be

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	

a primitive element of the �eld� However� it turns out that there is always a choice of
the irreducible polynomial P �x� such that the monomial x is a primitive element� Such a
polynomial is called a primitive polynomial�

Finally� we mention that elements of GF�q� can be viewed as h�dimensional vectors over
the �eld GF�p� and this way de�ne a vector space of dimension h over GF�p�� In this way�
we may regard the symbols of a code over GF��
� as bytes�

��� The Singleton bound and Reed�Solomon codes

Theorem ��� �The Singleton bound� For any �n�M� d� code over an alphabet of size q�

d � n� dlogqMe � 	 �

Proof� Let � � dlogqMe � 	� Since q� � M � there must be at least two codewords that
agree in their �rst � coordinates� Hence� d � n� ��

For a linear �n� k� d� code over GF�q� the Singleton bound becomes

d � n� k� 	 �

This can also be seen from a parity�check matrix of the code� since the rank of a parity�check
matrix is n�k� every set �so at least one set� of n�k�	 columns in that matrix is linearly
dependent�

For linear codes� the Singleton bound can also be obtained by considering a systematic
generator matrix of the code� the Hamming weight of each row is at most n�k�	�

A code is called maximum distance separable �MDS� if it attains the Singleton bound
with equality� Note that a linear MDS code can correct a certain number� e� of symbols
in error within each codeword if its redundancy� n�k� satis�es n�k � �e� in other words�
for a linear MDS code� two bytes of redundancy are su�cient �and in fact necessary by the
Singleton bound� to correct each error� So� a code with two bytes of redundancy can correct
one error in each codeword� and a code with four bytes of redundancy can correct two errors
in each codeword� and so on�

The following are simple examples of linear MDS codes over F � GF�q��

� The whole space F n� which is a linear �n� n� 	� code over F �

� The �n� n�	� �� parity code over F �

� The �n� 	� n� repetition code over F �

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

The following family of MDS codes is among the most widely used error�correction codes
today�

Let ��� ��� � � � � �n be distinct elements of F � GF�q�� A Reed�Solomon code over F is a
linear �n� k� d� code with the parity�check matrix

H �

�
BBBBBBB�

	 	 � � � 	
�� �� � � � �n
��
� ��

� � � � ��
n

���
���

���
���

�n�k��� �n�k��� � � � �n�k��
n

�
CCCCCCCA

�

This construction requires n � q�

Proposition ��� Every Reed�Solomon code is MDS�

Proof� Every �n�k�� �n�k� sub�matrix of H has a Vandermonde form

B �

�
BBBBBBB�

	 	 � � � 	
�� �� � � � �n�k
��� ��� � � � ��

n�k
���

���
���

���
�n�k��� �n�k��� � � � �n�k��

n�k

�
CCCCCCCA

�

where ��� ��� � � � � �n�k are distinct elements of the �eld� Now� the determinant of B is given
by

det�B� �
Y
j�i

��j � �i�

and� therefore� det�B� �� � and B is nonsingular� It follows that every set of n�k columns
in H is linearly independent and� so� d � n� k � 	�

Finally� we mention that it is possible to extend Reed�Solomon codes to length q�	� such
a code is called an extended Reed�Solomon code� and these codes are MDS as well �MacS���
Chapter 	���

��� Concatenation of ECC and constrained codes

As mentioned in Section 	�
� an ECC encoder and a constrained encoder are usually con�
catenated as follows� messages are �rst passed through an error�correction encoder and then
a constrained encoder before being transmitted across the channel� At the receiver� data is

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

decoded via the constrained decoder and then the error�correction decoder� This scheme�
illustrated in Figure ��	�a�� is called standard concatenation�

Typically� the ECC code is a Reed�Solomon code� owing to their excellent error�correction
properties and excellent decoding properties� In addition� in order to provide for protection
against bursty errors� the ECC scheme involves m�way�interleaving of codewords� which we
explain as follows� Suppose that the ECC encoder generates m consecutive codewords�

c� � x��x
�
� � � � x

�
n

� � � � � � �
cm � xm� x

m
� � � � xm

n

�

Instead of recording these codewords one after another� we �rst transmit the �rst symbol of
each codeword�

x��x
�
� � � � x

m
�

and then the second symbol of each codeword

x��x
�
� � � � x

m
� �

etc� In this way� the errors in a contiguous burst are spread among several codewords�
thereby reducing the likelihood of overwhelming the error correcting capability of the code�

It is natural for the constrained encoder to be nearer the channel since its purpose is
to produce sequences that are designed to pass through the channel with little likelihood
of corruption� On the other hand� standard concatenation requires that the constrained
decoder severely limit error propagation� and this precludes the possibility of constrained
encoders based on long block lengths�

In modi�ed concatenation �sometimes called reversed concatenation� the order of con�
catenation is reversed as shown in Figure ��	�b�� This idea is due to Bliss �Bli�	� and
Mansuripur �Man�	� and more recently to Immink �Imm��� and Fan and Calderbank �FC����
the latter demonstrated some advantages of modi�ed concatenation even with constrained
encoders based on relatively short block lengths� A user data sequence u is �rst encoded
via a high rate encoder E	 into a constrained sequence w� In order to achieve the high rate
�very close to capacity�� long block lengths must be used� If w is then transmitted across
a noisy �binary� channel� a small burst error or even a single isolated error in the received
sequence �w could a�ect much or possibly all of the decoded sequence �u� yielding enormous
error propagation� To avoid this� error correction is incorporated and used to correct all
errors before decoding �w� This is done by computing a sequence r of parity symbols on
w� and then encoding r into a constrained sequence y via a second constrained encoder E�
which is less e�cient �namely� has a lower rate� than the �rst encoder� yet it operates on
shorter blocks� Both constrained sequences w and y are then transmitted across the noisy
channel� The sequence of parity symbols should be chosen to allow correction of a prescribed
typical channel error event in w� such as bursts of errors up to a certain length� The decoder

CHAPTER �� ERROR CORRECTION AND CONCATENATION �	�

attempts to recover u from the possibly corrupted versions �w of w and �y of y� Since the
constrained encoder E� uses short block lengths� it is presumably subject to very little error
propagation� Then the decoded version� �r� of �y can be used to correct �w� without fear of
error propagation �i�e�� the error events in �w�r look roughly like the raw channel error events
in �w�y�� In this way� w is recovered error�free� decoding w via the �rst constrained decoder
recovers u error�free�

One of Immink�s key contributions in �Imm��� was the realization that w� being an
encoded version of u� is longer than u� so that it may be necessary to increase the number of
parity symbols r for the error�correcting code to achieve the same performance� In addition�
for long bursts� the e�ect of a burst of channel errors is magni�ed relative to the standard
concatenation scheme� since the bursts are not �rst decoded by the constrained decoder�
Immink�s solution� shown in Figure ��	�c�� to this problem was to compress the sequence w
in a lossless �one�to�one� manner into a sequence s� and then compute the sequence of parity
symbols r based on s� for instance� s �respectively� r� could be the information �respectively�
parity� portions of a Reed�Solomon code� So the parity sequence r� and therefore also the
E��encoded sequence y� can be made shorter� thereby lowering the overhead of the error�
correction scheme� At the channel output� the received sequence �w is compressed to a
sequence �s� and the ECC decoder recovers s from �r and �s� Then the decompressor recovers
w� and the constrained decoder D	 recovers u�

At one extreme� one could compress w back to u �in which case s would be the same
as u�� But then a small channel error in �w could corrupt all of �s before error correction�
Instead� the compression scheme will guarantee that such a channel error can corrupt only
a limited number of bytes in �s�

In constrained coding� as we have presented it in this text� unconstrained user sequences
are encoded� in a lossless manner� into a constrained sequences� after being passed through
a channel the constrained sequences are decoded to unconstrained user sequences�

In lossless data compression� the roles of encoder and decoder are reversed� constrained
sequences from a source are encoded into unconstrained sequences where no distortion is
permitted upon decompression� This duality between constrained coding and lossless data
compression has been noted by several authors �see for example �Ari���� �Ker�	�� �MLT�
��
�TLM����� In these works� data compression techniques such as arithmetic coding have
been applied to constrained coding� In the remainder of this chapter� we apply constrained
coding to lossless data compression� to obtain compressors that can be used in the scheme
of Figure ��	�c��

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

��� Block and sliding�block compressible codes

A rate p � q block�compressor for a constrained system S is simply a one�to�one mapping from
the set Sq� of words in length q in S� into the set of unconstrained binary words of length p
�the reader should not confuse Sq with the q�th power system� Sq�� Clearly� a necessary and
su�cient condition for the existence of a rate p � q block compressor for S is�

jSqj � �p � ���	�

Immink gives in �Imm��� two simple examples� a rate � � 		 block compressor for the
�	� 	���RLL constraint and a rate � � 	
 block compressor for the ��� 	���RLL constraint�
For p � �� these values of q are optimal� a simple computation reveals that condition ���	�
would be violated for any rate � � 	� block compressor for the �	� 	���RLL constraint and
any rate � � 	� block compressor for the ��� 	���RLL constraint�

Clearly� p � � is a good choice owing to the availability of high performance� high
e�ciency� o��the�shelf Reed�Solomon codes� But allowing other values of p can give added
�exibility in the choice of compression schemes �provided that p and the symbol alphabet of
the ECC are somewhat compatible�� Clearly� it is desirable to have a small compression rate
p�q� and smaller compression rates can be achieved by larger block lengths p and q� But the
capacity of the constraint imposes a lower bound on the compression rates� as we show next�

Since jSqmj � jSqj
m for any choice of positive integers q and m� it follows that

cap�S� � lim
m��

�	��qm�� � log jSqmj � �	�q� � log jSqj �

that is� the limit in the de�nition of capacity is taken over elements each of which is an upper
bound on cap�S�� Combining this with ���	� yields

cap�S� � �	�q� � log jSqj � p�q � �����

Thus� to obtain compression rates p�q close to capacity� we need to take q �and hence p�
su�ciently large so that �	�q� � log jSqj is close enough to capacity� This approach has several
drawbacks� First� such schemes can be rather complex� Secondly� if the typical burst error
length is short relative to q� then the compression code may actually expand the burst�
Third� even if the typical burst error is of length comparable to q� it may be aligned so
as to a�ect two or more consecutive q�codewords� and therefore two or more consecutive
unconstrained p�blocks� this �edge�e�ect� can counteract the bene�ts of using compression
codes�

The foregoing discussion leads us to consider a more general class of compression codes�
in particular lossless sliding�block compression codes� Such a code consists of a compressor
and an expanding coder �in short� excoder�� which acts as a �decompressor�� The compressor
is a sliding�block code from sequences of q�codewords of S to unconstrained sequences of p�
blocks over f�� 	g� that is� a q�codeword w is compressed into a p�block s as a time�invariant

CHAPTER �� ERROR CORRECTION AND CONCATENATION ��	

function of w and perhaps some m preceding and a upcoming q�codewords� The excoder�
on the other hand� will have the form of a �nite�state machine� Just as in conventional
constrained coding� the sliding�block window length is de�ned as the sum m� a� 	�

We next present a precise de�nition of the model of compressors and excoders considered
in this chapter� For the sake of convenience� we start with excoders and then base the
de�nition of compressors on that of the matching excoders� Let S be a constraint over
an alphabet � let ! be a set of size n� and let m and a be nonnegative integers� An
�m� a��sliding�block compressible �S� n��excoder is a graph E in which the edges are labeled
by elements of and� in addition� each edge is endowed by a tag from ! so that the following
holds�

�X�� the outgoing edges from each state are assigned distinct tags from !� in particular�
each state will have at most n outgoing edges�

�X�� S is contained in the constraint �over � that is presented by E � and�

�X�� if w is a word in Sm�a��� and e�me�m�� � � � e� � � � ea and e��me
�
�m�� � � � e

�
� � � � e

�
a
are se�

quences of edges that form two paths in E both labeled by w� then the tags of e� and
e�� agree�

Often we will apply this de�nition to a constrained system S whose alphabet consists of
q�codewords in another constraint S �� in which case Sm�a�� will consist of words of length
�m� a� 	�q in S � �see the de�nition below of a rate p � q excoder��

The de�nition of an �m� a��sliding�block compressible �S� n��excoder E bears similarity
to that of a tagged �m� a��sliding�block decodable �S� n��encoder� the main di�erence is in
the containment relationship between S and the constraint presented by E � Here� E must
generate every word in S and� in addition� it may generate words that are not in S� note�
however� that condition �X
� applies only to those paths in E that generate words in S�

One could replace condition �X
� by a weaker condition that would correspond to the
lossless condition for encoders given in Section ��	� But this may not be adequate for the
compression desired in the scheme of Figure ��	�c��

Condition �X
� induces a mapping C � Sm�a�� � !� which� in turn� de�nes the sliding�
block compressor of E as follows� For any positive integer �� the compressor maps every
word

w � w�mw�m�� � � � w�w� � � � w���w� � � � w��a��

in Sm�a�� into a pair �v� s�� where v is an initial state in E � which can be the initial state of
any path in E labeled by w�w� � � � w��a��� and

s � s�s� � � � s���

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

is a tag sequence in !� de�ned by

si � C�wi�mwi�m�� � � � wi � � � wi�a� � � � i � � �

Observe that the excoder can recover the sub�word w�w� � � � w��� of w by reading the labels
along the �unique� path of length � in E that starts at v and is tagged by s�

In the examples� given later in this chapter� E will be �m� a��de�nite on S� if w is a
word in Sm�a��� and e�me�m�� � � � e� � � � ea and e

�
�me

�
�m�� � � � e

�
� � � � e

�
a
are two paths in E both

generatingw� then e� � e��� note that �m� a��de�niteness on S is stronger than condition �X
��

Next� we show how rate p � q compression codes can be described through �S� n��excoders
and compressors� Let S be a constrained system that is presented by a labeled graph G� We
now de�ne an �m� a��sliding�block compressible excoder for S at rate p � q to be an �m� a��
sliding�block compressible �Sq� �p��excoder� The tag set ! is taken as f�� 	gp� namely� the
set of all possible values of any p�block� So� a rate p � q excoder for S maps p�blocks into q�
codewords in a state�dependent manner� the respective compressor� in turn� maps a sequence
of q�codewords into a sequence of p�blocks� where the i�th q�codeword is compressed into
a p�block through a mapping applied to the i�th q�codeword� as well as m preceding and
a upcoming q�codewords� A block excoder for S at rate p � q is a rate p � q excoder for
S with one state� Note that the corresponding sliding�block compressor is simply a block
compressor� as de�ned at the beginning of this section�

We next establish a necessary condition for the existence of �S� n��excoders�

Proposition ��� Let S be a constraint� There is an �m� a��sliding�block compressible
�S� n��excoder only if cap�S� � logn�

Proof� Let E be an �m� a��sliding�block compressible �S� n��excoder and let V and ! be
the set of states and the set of tags of E � respectively� Suppose that S � is an irreducible
constraint contained in S such that cap�S �� � cap�S��

Let w be a word in S �� �and hence in S��� Since S
� is irreducible� the word w can be

extended to a word w�ww�� � S �
m�a��� The compressor of E maps the word w�ww�� into a

pair �v� s�� where v � V and s � !�� and the �unique� path in E that starts at v and is tagged
by s generates the word w� We have thus obtained through the compressor a one�to�one
mapping from S �� into V � !�� so�

jS ��j � jV j � n� �

The result follows by taking the limit as ��� and using the de�nition of capacity�

Proposition ��
 implies that there is a sliding�block compressible excoder for S at rate
p � q only if cap�Sq� � p or� equivalently� cap�S� � p�q� The latter inequality is exactly
the reverse of Shannon�s bound on the rate of �conventional� constrained encoders� The
bound ����� amounts to the special case of Proposition ��
 for block excoders�

CHAPTER �� ERROR CORRECTION AND CONCATENATION ��

The next result� which we establish in Section ���� states that for �nite�type constraints
the condition in Proposition ��
 is not only necessary� but also su�cient for the existence of
sliding�block compressible excoders�

Proposition ��	 Let S be a �nite�type constrained system with memory m� and let n be
a positive integer such that cap�S� � logn� Then there is an �m� a��sliding�block compressible
�S� n��excoder� in fact� this excoder is �m� a��de�nite on S�

Finally� we make some remarks regarding the inclusion of the initial state in the informa�
tion conveyed from the compressor to the excoder� The cost of transmitting this initial state
is quite minimal� Typically� there will be a small number of states and the number of bits
required to represent a state is only the logarithm of that number� Also� in the scheme of Fig�
ure ��	�c�� one does not really need to expand the entire tag sequence after error correction�
since channel decoding takes place after error correction and since the channel decoder has
full knowledge of the received �uncompressed� constrained sequence� it need only re�expand
the corrected p�blocks in the compressed tag sequence� since a previously corrected portion of
the received sequence is very likely to contain state information �for example if the excoder E
is �m� a��de�nite on S�� no extra state information may be needed at all� Another alternative
is to simply compress only those constrained sequences that can be generated from one �xed
state of the excoder� When incorporated into Immink�s scheme this would entail a loss in
capacity� but the loss is very small since the block lengths are so long� A third solution�
which is applicable to �m� a��de�nite excoders� is to include the �rst m�a�	 q�codewords
of the �non�compressed� constrained sequence in the bit stream that is protected by the
ECC� Thus� the ECC decoder of the receiving end will reconstruct the correct pre�x of the
constrained sequence� thereby allowing us to recover the state information�

��	 Application to burst correction

When used in conjunction with the scheme in Figure ��	�c�� there are a number of factors
that may a�ect the choice of a compressor�excoder pair such as the complexity of the com�
pression and decompression and the error�propagation associated with the application of the
compression on the receiving end� In particular� we are concerned with how compressors
handle raw channel bursts� and their suitability for use with a symbol�based ECC�

The compressor is applied to the channel bit sequence immediately after the channel�
so that a bene�t of using a low�rate excoder is that the length of a raw channel burst will
be roughly decreased by the compression factor p�q� when the length of the burst is long
�relative to q�� On the other hand� edge e�ects in the use of a compressor can expand the
error length� and this error propagation may dominate for short bursts� In addition� for
sliding�block compressible excoders� the sliding�block window length will also extend the

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

burst� Ultimately� the choice of a compressor�excoder pair involves a balance of these four
factors�

	� compression rate p � q�

�� edge e�ects �how many extra p�blocks are a�ected by the phasing of a burst��

� e�ect of the sliding�block window length m� a�	 �i�e�� how many extra p�blocks may
be a�ected by each error�� and �

�� compatibility between the block length p and the symbol alphabet of the ECC�

We consider here the e�ect of a channel burst of length L bits on the maximum number of
a�ected p�blocks� Hereafter� by a length of a burst in a sequence over a given symbol alphabet
we mean the number of symbols between �and including� the �rst and last erroneous symbols�
Our computation will mainly concentrate on the simpli�ed model where any error in the q�
codeword will result in an entirely erroneous p�block upon compression� although in practice
it might be possible to mitigate this e�ect by a proper tag assignment to the excoder �see
Section ����
��

The maximum number of q�codewords �including the edge e�ect� that can be a�ected
by a channel burst of length L bits is either b�L� 	��qc� 	 or d�L� 	��qe� 	� depending
on the phasing within a q�codeword where the channel burst starts� For �m� a��sliding�block
compressible excoders� the e�ect of the memory and anticipation is to expand the number
of a�ected p�blocks by m�a� so that we get a maximum of

N � N�L� � d�L� 	��qe�m�a�	 ���
�

a�ected p�blocks�

Next� we need to translate from a number of erroneous p�blocks to a corresponding
number of symbol errors for the ECC� Let the symbol alphabet of the ECC in Figure ��	�c�
be the �nite �eld GF��B�� namely� the sequence of p�blocks is regarded as a long bit�stream
and sub�divided into non�overlapping blocks of length B bits� each such block being a symbol
of the ECC and regarded as a �B�bit byte�� We make the assumption that the boundaries
between p�blocks align with the boundaries between ECC symbols as often as possible� in
particular� every �pB�� gcd�p� B� bits� We can then calculate the maximum number of ECC
symbols that are in error due to a channel burst of length L bits�

Consider our basic unit to be of size gcd�p� B� bits� so that we are starting with a burst
of length �Np�� gcd�p� B�� and looking for the maximum number of a�ected blocks of length
B� gcd�p� B�� This is analogous to �nding the maximum number of q�codewords a�ected
by a burst of channel bits� and we obtain the following expression for the number of ECC
symbols in error as a function of L and B�

D�L�B� �

�
�Np�� gcd�p� B�� 	

B� gcd�p� B�

�
� 	 �

�
Np� gcd�p� B�

B

�
� 	 �

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

Putting this together with ���
� yields

D�L�B� �

�
�d�L� 	��qe�m�a�	�p� gcd�p� B�

B

�
� 	 �

Example ���� Consider a ��� 	��sliding�block compressible excoder for the ������RLL
constraint at rate � � � �such as the excoder that we will present in Example ��	
 in
Section ������� Table ��� contains the respective values of D�L�B� for L � �� and
B � �� ��
� �� ��

B D���� B� � 	

� � ���
� ���
� � 	�
�� ���� �� 	��

 ��
�� ��
� �
�
�
 �� �	� ���� ��

�
� � 	�� ��� �� 	�� ���

Table ���� Parameters of an ECC used for burst lengths of up to �� bits in conjunction with
a ��� 	��sliding�block compressible excoder for the ������RLL constraint at rate � � ��

The last three columns in Table ��� show the parameters of an ECC that consists of
D�L�B��way interleaving of an extended Reed�Solomon code of length �B � 	 over GF��B��
The overall block length �in bits� of this ECC scheme equals � � ��L�B� � ��B � 	� � B �
D�L�B�� the values of � are listed in the third column of the table� Since Reed�Solomon
codes are maximum distance separable� each symbol error of GF��B� can be corrected using
two redundancy symbols� Therefore� the total number of redundant symbols is �D�L�B��
The redundancy �in bits� of the coding scheme thus equals 	 � 	�L�B� � � �B �D�L�B�� this
is the length of �Parity� in Figure ��	�c�� The values of 	 are listed in the fourth column of
the table� where numbers in parentheses indicate that smaller redundancy values �and larger
ECC block lengths� can be obtained by using a larger value of B�

A block of � bits at the output of the ECC encoder in Figure ��	�c� corresponds to
� � 	 bits at the input of that encoder� those bits� in turn� correspond to
 �
�L�B� �
b��� 	� � q�pc channel bits at the input of the lossless compressor� The values of
 are listed
in the �fth column of Table ���� Clearly� a smaller value of the ratio 	�
 means a smaller
overhead introduced by the ECC �when combined with the compression��

Using the ECC scheme and the notations of Example ��	�� we can �x a number�
�� of
channel bits and compute for each �maximal� burst length L the respective redundancy 	
obtained by optimizing over all values of B for which
�L�B� �
�� As an example� consider
a message of �	� user bytes ��� ��
 bits� in Figure ��	�c�� Selecting the rate ��
 � �

 code

CHAPTER �� ERROR CORRECTION AND CONCATENATION ��

of �Imm��� as the constrained encoder D	� the message is mapped into �� ��
 channel bits�
Figure ��� shows the best redundancy values attained for
� � �� ��
 and L �
�� using
a ��� 	��sliding�block compressible excoder at rate � � � for the ������RLL constraint� The
�gure shows the redundancy values also for two other block excoders for this constraint at
rates � � 	
 and � �
� note that � � 	
 is the rate of the excoder presented in �Imm����
Thus we see that for longer bursts� the sliding�block excoder requires less redundancy due
to a better compression of the burst length� in spite of the longer sliding�block window� �We
point out that Figure ��� is the same also for
� � �� ���� which is the number we get when
we divide �� ��
 by the capacity �� ���	�� of the ������RLL constraint��

��� Constructing sliding�block compressible excoders

Our construction of excoders �and respective compressors� follows the lines of the state�
splitting algorithm in Figure ��� for constructing �nite�state encoders�

Recall that in the conventional state�splitting algorithm� we begin with a graph presen�
tation G of the given constraint S� Typically� we assume that G is deterministic� such as
the graph G��� in Figure ��
 which presents the ������RLL constraint� The state�splitting
algorithm generates an encoder for S through a sequence of state splittings� which are guided
by approximate eigenvectors�

The algorithm we present here is very similar� the main di�erence is that instead of
approximate eigenvectors� we will use what we call super�vectors� Such a vector will lead
us through a sequence of state�splitting operations beginning with the graph G and ending
with a graph H with out�degree at most n �i�e�� each state has at most n outgoing edges��
Then one assigns to the edges of H tags taken from the tag alphabet ! �of size n� such that
at each state all outgoing edges have distinct tags� typically� n � �p and ! � f�� 	gp� The
tagged version of H will be the �S� n��excoder E �

In order to guarantee the sliding�block compressibility of E � we will assume that S has
�nite memory m� in which case we take G as a �necessarily deterministic� graph presentation
of S that has memory m� When state splitting is applied to this graph� we are guaranteed
to end up with an excoder E which is �m� a��de�nite on S� where a is the number of rounds
of out�splittings� in particular� E will be �m� a��sliding�block compressible�

����� Super�vectors

As is the case with approximate eigenvectors� super�vectors will be computed using the
adjacency matrix AG of the graph presentation G of S� Recall that for a deterministic
presentation� the adjacency matrix can be used to compute the capacity of S� namely
cap�S� � log��AG�� where ��AG� is the largest �absolute value of any� eigenvalue of AG�

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

Recall also that �AG�
q � AGq and� so� ���AG��

q � ��AGq��

Example ���� The adjacency matrix of the graph G��� in Figure ��
 is

AG��� �

�
B�
� 	 �
� � 	
	 � 	

�
CA �

and the capacity of the ������RLL constraint is given by log��AG���� � log 	��
�
 � ���	��
By Proposition ��
� we will be able to construct a sliding�block compressible excoder for the
������RLL constraint only if its rate p � q satis�es ���AG�����

q � �p� In the running example
of this section� we will choose p � � and q � �� in which case ���AG��

q � 	������ � 	
 � �p�

Let A be a nonnegative integer square matrix and let n be a positive integer� e�g�� A � Aq
G

and n � �p� An �A� n��super�vector is a nonnegative integer vector x� not identically zero�
such that

Ax � nx �

Note that approximate eigenvectors �from Section ����	� are de�ned the same way except
that the inequality is reversed �with the bene�t of hindsight� approximate eigenvectors should
probably have been called �sub�vectors���

By a straightforward modi�cation of the corresponding proof for approximate eigenvec�
tors �Theorem ����� it follows that for any nonnegative integer square matrix A� there exists
an �A� n��super�vector if and only if ��A� � n� The proof suggests ways of �nding such a
vector� but a simpler algorithm is presented in Figure ���� this algorithm is the analogue of
the Franaszek Algorithm for �nding approximate eigenvectors�

Next� we summarize the properties of this algorithm�in particular� the uniqueness of a
minimum �A� n��super�vector x� and the fact that the algorithm always converges to x�� For
convenience we assume that A is irreducible�

Proposition ��� Let A be an irreducible integer matrix and let n be a positive integer
with ��A� � n� Then the following holds�

�a� Any �A� n��super�vector is strictly positive�

�b� If x and x� are �A� n��super�vectors� then the vector de�ned by z � minfx�x�g is also
an �A� n��super�vector �here� minf�� �g is applied componentwise��

�c� There is a unique minimum �A� n��super�vector� i�e�� a unique �A� n��super�vector x�

such that for any �A� n��super�vector x we have x� � x�

�d� The algorithm in Figure ��	 eventually halts and returns the vector x��

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

Parts �b� and �d� of the preceding result are analogous to to the corresponding results
for approximate eigenvectors �given in Proposition ����� On the other hand� for approximate
eigenvectors� there is no analogous uniqueness result and there is no clear choice of initial
vector for the algorithm�

Proof of Proposition ���� �a� Let x � �xu�u be an �A� n��super�vector� If some entry
xu is � then� according to the inequality Ax � nx� we have xv � � for all v such that Au�v �� ��
By irreducibility of A� this implies that x is identically zero� contrary to the de�nition of an
�A� n��super�vector�

�b� Since A is nonnegative� Az � Ax � nx and Az � Ax� � nx�� so� Az � nz� Clearly z
has only integer entries� By �a�� x and x� are strictly positive� and thus so is z� in particular�
it is not identically zero�

�c� Let x� be obtained by taking the componentwise minimum of all �A� n��super�vectors�
By �b�� x� is an �A� n��super�vector� and it is clearly the unique minimum such vector�

�d� Denote by xi the value of x after the i�th iteration of the while loop in Figure ����
with x� � �	 	 � � � 	��� We show by induction on i that xi � x�� The induction base i � �
follows from �a�� Now� suppose that xi � x� for some i� Since A is nonnegative� we have

	

n
Axi �

	

n
Ax� � x� �

Therefore� xi�� � max
nl

�
n
Axi

m
�xi
o
� x�� thereby establishing the induction step�

Next we verify that the algorithm halts� Observe that x� � x� � x� � � � � � x� and that
xi are integer vectors� Now� if the algorithm did not halt� there had to be an index i for
which xi�� � xi� However� that would imply

l
�
n
Axi

m
� xi �in which case xi would in fact

be a super�vector�� so the algorithm had to halt in the i�th iteration�

We therefore conclude that the algorithm halts and returns an �A� n��super�vector x � x��
in fact� we must have x � x�� since x� is the unique minimum �A� n��super�vector�

Example ���� The adjacency matrix of the graph G � G	
��� is given by

AG � A	
G���

�

�
B�
 � �
�

 � �

�
CA �

Now�

x� � �	 	 	�� �

x� � max
nl

�
��
AG�	 	 	�

�
m
� �	 	 	��

o
� max

n
�	 	 ���� �	 	 	��

o
� �	 	 ��� �

x� � max
nl

�
��
AG�	 	 ��

�
m
� �	 	 ���

o
� max

n
�	 � ���� �	 	 ���

o
� �	 � ��� �

CHAPTER �� ERROR CORRECTION AND CONCATENATION ���

and AGx
� � 	
x�� Hence� by Proposition ����d�� the vector �	 � ��� is the unique minimum

�AG� n��super�vector x
��

����� Consistent splittings

As mentioned before� the state�splitting construction of a sliding�block compressible �S� n��
excoder E starts with a deterministic presentation G of S� Typically� S will be a q�th power
of a given constraint S � and G will be the q�th power of a graph presentation of S �� the
integer n will be �p and E will thus be a sliding�block compressible excoder for S � at rate
p � q�

Given S� G� and n� we compute an �AG� n��super�vector x using the algorithm in Fig�
ure ���� Just as in Section ����	� the entry xu in x will be referred to as the weight of state
u� Using the vector x� we will transform the graph G through out�splitting operations into a
graph H such that �	 	 � � � 	�� is an �AH � n��super�vector �i�e�� the weights are all reduced
to 	�� It is easy to see that this is equivalent to saying that H has out�degree at most n� An
�S� n��excoder E will then be obtained by assigning tags to the edges of H�

Next we discuss the role of the �AG� n��super�vector in more detail� For an edge e in a
graph� recall that �G�e� � ��e� denotes the terminal state of e�

Given a graph G� a positive integer n� and an �AG� n��super�vector x � �xu�u� an x�
consistent partition of G is de�ned by partitioning the set� Eu� of outgoing edges from each
state u in G such that

X
e�E

�r�
u

x��e
 � nx�r
u for r � 	� �� � � � � N � N�u� � �����

where x�r
u are nonnegative integers and

N�u
X
r��

x�r
u � xu � �����

The out�splitting based upon such a partition is called an x�consistent splitting� The splitting
is called non�trivial if at least one state u has at least two descendants u�r
� u�t
 such that
both x�r
u and x�t
u are strictly positive� Note that here we have used the same terminology
as in Section ����
� but the reader should understand that throughout the remainder of this
chapter� the notions of x�consistent partition and x�consistent splitting are as de�ned in this
paragraph�

Let G� denote the graph after splitting� It is easy to see that the �AG� n��super�vector
x gives rise to an induced �AG�� n��super�vector x

� � �x�u�u� namely� set x
�
u�r�

� x�r
u � Note
that ����� asserts that the weights of the descendants of a state u sum to the weight of u�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

Example ���� Let S be presented by the graph G � G	
���� For each state u � f�� 	� �g

in G� denote by Lu the set of labels of the outgoing edges from state u in G� Note that
the graph G has memory 	� since the label of an edge determines the terminal state of that
edge� edges whose labels end with "	� terminate in state �� edges whose labels end with
"	�� terminate in state 	� and the remaining edges terminate in state �� Hence� each set Lu

completely describes the set� Eu� of outgoing edges from state u� We have

L� � f�������� �������� �������� �������� �������� �������� �������� �������� �������g �
L� � f�������� �������� �������� �������� �������� �������� �������� �������� �������

�������� �������� �������� �������g �
L� � f�������� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� �������� �������� �������g �

We have shown in Example ��	� that x � �	 � ��� is an �AG� 	
��super�vector� We next
perform an x�consistent splitting on G which will result in a graph H in which each state
has weight 	� That is� up to tagging� the graph H will be an �S� 	
��excoder� namely� a rate
� � � excoder for the ������RLL constraint�

Since state � has weight 	� it will not be split �or more precisely� we split it trivially into
one state� namely itself�� Since each of the states 	 and � has weight �� we would like to
split each into two states of weight 	� De�ne the weight of an edge to be the weight of its
terminal state� Now� AG�	 � ��

� � �	� ��
���� indicating that the total weights of outgoing
edges from states �� 	� and � are 	�� ��� and
�� respectively� If we can partition the sets
of outgoing edges from state 	 and state �� each into two subsets of edges of total weight at
most 	
� then it follows that the weights in the graph H obtained from the corresponding
out�splitting will all be 	� as desired� This indeed can be done as follows� where each partition
element E�r

u is represented by the respective label set L�r

u �labels that correspond to edges

with weight � are underlined��

L� � f�������� �������� �������� �������� �������� �������� �������� �������� �������g �

L
��

� � f�������� �������� �������� �������� �������� �������� �������� �������� �������g �

L��

� � f�������� �������� �������� �������g �

L��

� � f�������� �������� �������� �������� �������� �������� �������� �������� �������� �������g �

L��

� � f�������� �������� �������� �������� �������� �������� �������� �������� �������g �

The reader can verify that the sets E�� E
��

� � E

��

� � E

��

� � and E

��

� have total weights 	�� 	��

�� 	
� and 	
� respectively� as desired �in fact� the weights of E��

� and E��

� are forced to be
	
��

The resulting split graph H will have �ve states� �� 	��
� 	��
� ���
� and ���
� and the
induced �AH � n��super�vector is x

� � �	 	 	 	 	��� implying that the row sums of the

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
	

adjacency matrix

AH �

�
BBBBBB�

 � � � �

 � � � �
	 	 	 � �
� � � � �
� � � � �

�
CCCCCCA

are all at most 	
�

The following modi�cation of of the corresponding result �Proposition ���� for conven�
tional state splitting shows that in general there always is an x�consistent splitting whenever
we need one�

Proposition ��
 Let G be an irreducible graph which does not have out�degree at most
n and let x be an �AG� n��super�vector� Then there is a non�trivial x�consistent splitting of
G�

Proof� By the assumption� some state u in G has out�degree greater than n� By the
pigeon�hole principle� there is a subset E of Eu with at most n edges such that n dividesP

e�E x��e
� Partition Eu into two sets E
��

u � E��

u where

E��

u � E and E��

u � Eu n E �

and set
x��
u � �	�n�

�X
e�E

x��e

�

and x��
u � xu � x��
u �

It can be readily veri�ed that the partitionE��

u �E��

u indeed implies a non�trivial x�consistent
splitting of state u�

Passage from the �AG� n��super�vector x to the induced �AG� � n��super�vector x
� always

preserves the super�vector sum and increases the number of states� Since a super�vector
is always a positive integer vector� it follows that repeated applications of Proposition ���
beginning with G eventually yield a graph H with an �AH � n��super�vector �	 	 � � � 	�� and
therefore with out�degree at most n� As mentioned earlier� if the original presentation G has
�nite memory m� then H will be �m� a��de�nite on S� Finally� we assign tags to the edges of
H� thereby obtaining an �m� a��sliding�block compressible �S� n��excoder E � This establishes
Proposition ����

It may well be possible to merge states in H� resulting in a simpler excoder� Suppose
that u and v are states in H such that every word that can be generated in H by paths
starting at u can also be generated by paths starting at v� We can merge state u into state v
by redirecting all incoming edges to u into v and then deleting state u with all its outgoing
edges� This is the direct analogy of merging in Section ����	�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

Merging can add new words to those that are generated by H �and E�� and it may also
give rise to new paths that present words of S� In particular� it may destroy de�niteness
on S� However� suppose that there are integers m� � m and a� � a such that the following
holds� for every word w � Sm� that can be generated by a path in H that terminates in
u and for every word w� � Sa��� that can be generated in H from v but not from u� we
have ww� �� Sm��a���� Under this condition� the merged graph is �m

�� a���de�nite on S� since
de�niteness on S involves only words in S� which may be a proper subset of the constraint
presented by the merged graph�

Example ���� Continuing the discussion in Example ��	�� we observe that L��

� � L��

� �

furthermore� since G has memory 	� edges with the same label in E��

� and E��

� terminate
in the same state of G� It follows that every word that can be generated in H from 	��
 can
also be generated from ���
�

Let w be a word that is generated by a path in H that terminates in state 	��
� This
word is also generated in G by a path that terminates in state 	 and� so� w ends with "	���
Let w� be a word that can be generated in H from ���
 but not from 	��
� The word w�

necessarily starts with "	� since

L��

� n L��

� � f	������� 	�����	� 	����	�� 	���	��� 	��	���g �

It follows that ww� contains the sub�word "	�	�� as such� it violates the ������RLL
constraint and� therefore� it does not belong to S� We conclude that the de�niteness on S
will be preserved upon merging state 	��
 into state ���
� Similarly� since L� � L��

� � L��

�

and L��

� n L� � f	��	��	g� we see that states � and 	��
 can be merged into state ���
 while

preserving de�niteness on S� Thus� the resulting merged graph� H �� has only two states�
a
 ���
 and b
 ���
� and it is �	� 	��de�nite on S� In fact� H � is ��� 	��de�nite on S� since

L��

� � L��

� � �� the initial state of the edge that generates the current codeword is uniquely
determined by that codeword�

Finally� we assign tags from f�� 	g� to the edges of H � to obtain the ��� 	��sliding�block
compressible excoder E��� whose transition table is shown in Table ��
� In that table� the
rows are indexed by the tags ���blocks� and the columns by the states of E���� Entry �s� u�
in the table contains the label and terminal state of the outgoing edge from state u that is
tagged by s� Observe that the tags have been assigned to the edges of E��� so that tags
of edges that have the same label �and initial state� will di�er in only the last bit� Thus�
whenever the compression of the current ��block depends on the upcoming ��codeword� such
dependency is limited only to determining the last bit of the ��block�

In Table ���� we list for each p � 	
 the largest value of q which allows a block excoder
at rate p � q as well as the largest value of q which allows a ��� 	��sliding�block compressible
excoder at rate p � q for the ������RLL constraint� The values of q for the block excoder

CHAPTER �� ERROR CORRECTION AND CONCATENATION �

a b

���� �������� a �������� a

���� �������� b �������� b

���� �������� a �������� a

���� �������� b �������� b

���� �������� a �������� a

���� �������� b �������� b

���� �������� a �������� a

���� �������� b �������� b

���� �������� a �������� a

���� �������� b �������� b

���� �������� a �������� a

���� �������� b �������� a

���� �������� a �������� a

���� �������� a �������� b

���� �������� a �������� a

���� �������� a �������� b

Table ��
� Excoder E����

p 	 �
 � �
 � � � 	� 		 	� 	
 	� 	� 	

q �block� 	
 �
 � 	� 		 	
 	� 	� 	� �	 �� �� �
 ��
q ���� 	��sliding block� 	
 � 	
 	� �� �� �� �� 	� �	 �� �� �	 �

Table ���� Maximal values of q for existence of block excoders and ��� 	��sliding�block com�
pressible excoders for the ������RLL constraint�

case can be obtained by ���	�� where the values of jSqj can be computed using the formulas
in �Imm�	� Section ���� �it can be veri�ed that the same values of q apply also to ��� ���sliding�
block compressible excoders�� The values of q for the ��� 	��sliding�block compressible case
were obtained by actually computing �Aq

G���
� �p��super�vectors and verifying that excoders

can be obtained by one round of out�splitting� In particular� the rate � � � is attained by the
excoder E��� in Example ��	
� It is worthwhile pointing out that a rate � � � � ����� � � � is
attainable by a ��� 	��sliding�block compressible excoder with ten states� This rate is above
the capacity �� ���	�� by less than 	#� The boldface numbers in Table ��� indicate values
of q which are larger �by 	� than those attainable by block codes� The results in Table ���
remain una�ected if one were to replace the ������RLL constraint with the ��� 	���RLL
constraint�

We also mention here the existence of the following two ��� 	��sliding�block compressible
excoders that might be of practical interest� a rate � � � excoder for the ��� ���RLL constraint�
and a rate � � � excoder for the �	� ���RLL constraint� there are no block excoders at such
rates for those constraints�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

����� Reduction of edge e�ect in error propagation

Recall that in the analysis of Section ���� we made the conservative assumption that a p�
block is wholly corrupted even if only one bit in that p�block is in error� Yet� as we know for
block codes� and as we have demonstrated in Example ��	
 for sliding�block compressible
excoders� special care in the assignment of tags can reduce the dependency of certain bits
in p�blocks on certain channel bits� thereby reducing the e�ect of error� Speci�cally� when
using the excoder E��� of Example ��	
� a burst of L � �� channel bits� while a�ecting up to
eight ��blocks� can corrupt only up to �� bits �and not
� bits� in those blocks� This� in turn�
allows us to modify Table ��� to produce Table ��� �the modi�ed entries are indicated by
boldface numbers�� It follows from Table ��� that for the range ��	 �
 � �� ���� the actual

B D���� B� � 	

� � ���
� ���
� 	 �� ��� 	� �� �
�

 ��
�� ����
� �
�
� � �� ��� 	� 	� 		�
� � 	�� ��� �� 	�� ���

Table ���� Modi�ed Table ����

redundancy that will be required is strictly less than dictated by Table ���� In particular�
for
� ��� �
 � �� ���� the savings amount to reducing the redundancy from �� to �� bits�

Additional savings can be obtained by using an excoder with more states� as we demon�
strate in the next example�

Example ���	 Looking closely at Table ��
� one can see that the compression of the
last bit of the current ��block depends on the �rst� second� fourth� and seventh bits of the
upcoming ��codeword� The dependency on the seventh bit has a slight disadvantage in case of
short bursts�in particular isolated bit�shift errors� where an occurrence of "	� in a constrained
sequence is shifted by one position� thereby resulting in two adjacent erroneous bits in the
constrained sequence� If those two bits cross the boundary of adjacent ��codewords� the
error may propagate through the compression to up to � bits in three ��blocks�

By allowing more states� we are able to present another rate � � � excoder for the ������
RLL constraint� E ����� where the compression of the last bit of the current ��block depends
on the �rst� second� fourth� and �fth bits of the upcoming ��codeword �whereas the other
bits of the ��block depend only on the current ��codeword�� Here� one bit�shift error in the
constrained sequence may a�ect only two ��blocks� The excoder E ���� is obtained through

a di�erent out�splitting of state � in G �into states ���
�
 and ���

�
�� resulting in four states�
�
 � � 	��
� �
 	��
�

 ���

�
� and �
 ���
�
� with a transition table as shown in

Table ��
� The excoder E ���� is �	� 	��de�nite �but not ��� 	��de�nite� on the constraint� still�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

� � � �

���� �������� � �������� � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� �������� � �������� � �������� � �������� �

���� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

���� �������� � � �������� � �������� �

Table ��
� Excoder E �����

the particular tagging of the edges makes it ��� 	��sliding�block compressible� Note that
states � and � have less than 	
 outgoing edges and� so� certain elements of f�� 	g� do not
tag those edges�

Problems

To be �lled in�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �

Message
� � Constrained

Encoder
�Channel Constrained

Decoder
� ECC

Decoder
�ECC Encoder

�a�

Message
�

u

Constrained
Encoder E�

�
w

Channel

�w

ECC
Decoder

�
w

Constrained
Decoder D�

�
u

�

w

Systematic
ECC Encoder

�

Parity

r

Constrained
Encoder E�

�
y

Channel

�y

Constrained
Decoder D� �r

�

�b�

Message
�

u

Constrained
Encoder E�

�
w

Channel

�w

Lossless
Compressor

�
�s

ECC
Decoder

�
s

Decompressor
�Excoder

�
w

Constrained
Decoder D�

�
u

�w
Lossless

Compressor

�s
Systematic

ECC Encoder
�

Parity

r

Constrained
Encoder E�

�
y

Channel

�y

Constrained
Decoder D� �r

�

�c�

Figure ��	� �a� Standard concatenation� �b� Modi�ed concatenation� �c� Modi�ed concate�
nation with lossless compression�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

�
� �� ��� ��� ��� ��� ��� L �bits�

�

��

���

���

���

���

���

���

���

���

	 �bits�

Rate � � � excoder
Rate � � 	
 excoder
Rate � �
 excoder

Figure ���� Redundancy for �� ��
 user bits and various burst lengths using three di�erent
excoders for the ������RLL constraint�

��
��
� ��

��
	 ��

��
��� � ��� �

�� �	

Figure ��
� Graph presentation G��� of the ������RLL constraint�

CHAPTER �� ERROR CORRECTION AND CONCATENATION �
�

x� �	 	 � � � 	���
while �Ax �� nx�

x� max
nl

�
n
Ax
m
�x
o
� �� apply d�e and maxf�� �g componentwise ��

return x�

Figure ���� Reversed Franaszek algorithm for computing �A� n��super�vectors�

