
Chapter �

Error�Correcting Constrained Coding

In this chapter� we consider codes that have combined error�correction and constrained
properties� We begin with a discussion of error mechanisms in recording systems and the
corresponding error types observed� We then discuss associated metrics imposed on con�
strained systems�primarily the Hamming� Lee� and Euclidean metrics�and we survey the
literature on bounds and code constructions� In addition� we consider two important classes
of combined error�correction�constrained codes� spectral null codes and forbidden list codes�

��� Error�mechanisms in recording channels

Magnetic recording systems using peak detection� as described in Chapter � of this chapter�
are subject to three predominant types of errors at the peak detector output� The most
frequently observed error is referred to as a bitshift error� where a pair of recorded symbols
�� is detected as �� �a left bitshift	� or the pair �� is detected as �� �a right bitshift	� Another
commonly occurring error type is called a drop�out error or� sometimes� a missing�bit error�
where a recorded symbol � is detected as a �� Less frequently� a drop�in error or extra�bit
error results in the detection of a recorded � as a �� It is convenient to refer to the drop�in
and drop�out errors as substitution errors�

Hamming�metric constrained codes are most pertinent in recording channels that behave
like a binary symmetric channel� in which drop�in and drop�out errors occur with equal
probability� However� there are alternative models of interest that suggest the use of codes
designed with other criteria in mind beyond optimization of minimum Hamming distance�
Among these models� the two that have received the most attention are� the asymmetric
channel�where only drop�in errors or drop�out errors� but not both� are encountered
 and
the bitshift channel�where a symbol � is allowed to shift position by up to a prespeci�ed
number of positions�

�
�
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Another error type we will consider is a synchronization error� resulting in an insertion
or deletion of a symbol � in the detected symbol sequence� In practical digital recording
systems on disks and tape� this type of error can have catastrophic consequences with re�
gard to recovery of information that follows the synchronization loss� As a result� recording
devices use synchronization and clock generation techniques in conjunction with code con�
straints� such as the k constraint in RLL codes for peak detection and the G constraint in
PRML ���G�I	 codes� to e�ectively preclude such errors� Nevertheless� RLL�constrained
synchronization�error�correcting codes have some intrinsic coding�theoretic interest� and we
will discuss them below� Codes capable of correcting more than one insertion and deletion
error may also be used to protect against bitshift errors� which result from the insertion and
deletion of ��s on either side of a �� The edit distance� or Levenshtein metric� and the Lee
metric arise naturally in the context of synchronization errors�

In recording systems using partial�response with some form of sequence detection� ex�
empli�ed by the PRML system described in Chapter �� the maximum�likelihood detector
tends to generate burst errors whose speci�c characteristics can be determined from the error
events associated with the underlying trellis structure� We will brie�y survey various trellis�
coded modulation approaches for PRML that yield codes which combine ���G�I	 constraints
with enhanced minimum Euclidean distance�

In practice� constrained codes must limit error propagation� Sliding�block decoders of the
most frequently used �d� k	�RLL codes and PRML ���G�I	 codes typically will propagate
a single detector error into a burst of length no more than eight bits� For example� the
maximum error propagation of the industry standard ��� �	�RLL and ��� �	�RLL codes are
four bits and �ve bits� respectively� and the PRML ��� ���	 code limits errors to a single byte�
The conventional practice in digital recording devices is to detect and correct such errors by
use of an outer error�correcting code� such as a Fire code� interleaved Reed�Solomon code�
or a modi�cation of such a code�

��� Gilbert�Varshamov�type lower bounds

����� Classical bound for the Hamming metric

There are several error metrics that arise in the context of digital recording using constrained
sequences� For substitution�type errors and bitshift errors� possibly propagated into burst
errors by the modulation decoder� it is natural to consider error�correcting codes based upon
the Hamming metric� It is therefore of interest to investigate Hamming distance properties
of constrained sequences�

The Gilbert�Varshamov bound provides for unconstrained sequences over a �nite alphabet
� a lower bound on the size of codes with prespeci�ed minimum Hamming distance� In this
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section we present bounds of the Gilbert�Varshamov type and apply them to the class of
runlength�limited binary sequences�

Let � denote a �nite alphabet of size j�j and denote the Hamming distance between two
words w�w� � �q by �Hamming�w�w

�	� For a word w � �q� let B�q�w
 r	 be the Hamming
sphere of radius r in �q centered at w� that is�

B�q�w
 r	 � fw� � �Hamming�w�w
�	 � rg �

Let V�q�w
 r	 be the cardinality or volume of the sphere B�q�w
 r	� This quantity isPr
i��

�
q

i

�
�j�j��	i� independent of the center word w� so we will use the shorthand nota�

tion V�q�r	�
The Gilbert�Varshamov bound provides a lower bound on the achievable cardinality M

of a subset of �q with minimum Hamming distance at least d� We will refer to such a subset
as a ��q�M� d	�code�

Theorem ��� There exists a ��q�M� d	�code with

M � j�jq
V�q�d��	 �

For future reference� we recall that the proof of this bound is obtained by iteratively
selecting the lth codeword wl in the code from the complement of the union of Hamming
spheres of radius q�� centered at the previously selected codewords� �q��l��i��B�q�wi
 d��	�
Continuing this procedure until the union of spheres exhausts �q� an ��q�M� d	�code is
obtained whose size M satis�es the claimed inequality�

Let � � d�q denote the relative minimum distance and let H��
 z	 � �� � log � � �� �
�	 � log����	 � � � log�z��	� for � � � � �� ���z	� be a z�ary generalization of the entropy
function� The Gilbert�Varshamov bound in terms of the rate R of the resulting code can be
expressed as

R �
logM

q
� log j�j � logV�q�d� �	

q
� log j�j �H��
 j�j	

�for the last inequality� we refer the reader to �Berl��� pp� 
���
����

����� Hamming�metric bound for constrained systems

Any generalization of the Gilbert�Varshamov bound to a constrained system S must take
into account that the volumes of Hamming spheres in S��q are not necessarily independent
of the speci�ed centers� Before deriving such bounds� we require a few more de�nitions� Let
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X denote an arbitrary subset of �q� For a word w � X� we de�ne the Hamming sphere of
radius r in X by

BX�w
 r	 � B�q�w
 r	 � X �

The maximum volume of the spheres of radius r in X is

VX�max�r	 � max
w�X

jBX�w
 r	j �

and the average volume of spheres of radius r in X is given by

VX�r	 � �

jXj
X
w�X

jBX�w
 r	j �

We also de�ne the set BX�r	 of pairs �w�w�	 of words in X at distance no greater than r�

BX�r	 � f�w�w�	 � �Hamming�w�w
�	 � rg �

Note that jBX�r	j � VX�r	 � jXj� Finally� we de�ne an �X�M� d	�code to be a ��q�M� d	�code
that is a subset of X�

A straightforward application of the Gilbert�Varshamov construction yields the following
result�

Lemma ��� Let X be a subset of �q and d be a positive integer� Then� there exists an
�X�M� d	�code with

M � jXj
VX�max�d��	 �

The following generalization of the Gilbert�Varshamov bound� �rst proved by Kolesnik
and Krachkovsky �KolK���� is the basis for the more re�ned bounds derived later in the
section� It provides a bound based upon the average volume of spheres� rather than the
maximum volume� as was used in Lemma ����

Lemma ��� Let X be a subset of �q and d be a positive integer� Then� there exists an
�X�M� d	�code with

M � jXj
�VX�d��	 �

jXj�
�jBX�d��	j �

Proof� Consider the subset X � of words w � X whose Hamming spheres of radius d��
satisfy jBX�w
 d��	j � �VX�d��	� The subset X � must then satisfy jX �j � jXj��� If we
iteratively select codewords from X �� following the procedure used in the derivation of the
Gilbert�Varshamov bound� we obtain an �X�M� d	�code� where

M � jX �j
�VX�d��	 �

�
�
jXj

�VX�d��	 �
jXj�

�jBX�d��	j �
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as desired�

In general� neither of the bounds in the preceding two lemmas is strictly superior to the
other� as observed by Gu and Fuja �GuF�
�� However� using an analysis of a new code search
algorithm�dubbed the �altruistic algorithm� to distinguish it from the �greedy algorithm�
that lies at the heart of the standard Gilbert�Varshamov form of bound�they eliminated
the factor of � in the denominator of the bound in Lemma ��
� This improved lower bound�
stated below as Lemma ���� is always at least as good as the bound in Lemma ���� and a
strict improvement over Lemma ��
�

The key element of the improved code search algorithm is that� at each codeword selection
step� the remaining potential codeword with the largest number of remaining neighbors at
distance d�� or less takes itself out of consideration� As noted in �GuF�
�� a similar approach
was developed independently by Ytrehus �Yt��a�� who applied it to compute bounds for
runlength�limited codes with various error detection and correction capabilities �Yt��b��

Lemma ��� Let X be a subset of �q and d be a positive integer� Then� there exists an
�X�M� d	�code with

M � jXj
VX�d��	 �

jXj�
jBX�d��	j �

Kolesnik and Krachkovsky �KolK��� applied Lemma ��
 to sets X consisting of words
of length q in runlength�limited and charge constrained systems� Their asymptotic lower
bound was based upon an estimate of the average volume of constrained Hamming spheres�
whose centers ranged over all of S � �q� Their estimate made use of a generating function
for pairwise q�block distances in these families of constrained systems�

����� Improved Hamming�metric bounds

Marcus and Roth �MR��� found improved bounds by considering subsets X of S ��q where
additional constraints� depending upon the designed relative minimum distance �� are im�
posed upon the frequency of occurrence of code symbols w � �� We now discuss the
derivation of these bounds�

Let S be a constrained system over � presented by an irreducible deterministic graph
G � �V�E� L	� Denote by ��G	 the set of all stationary Markov chains onG �see Section 
��	�
The entropy of P � ��G	 is denoted by H�P	�
Given a stationary Markov chain P � ��G	� along with a vector of real�valued functions

f � �f� f� � � � ft	 � EG � IRt� we denote by EP�f	 the expected value of f with respect to P�

EP�f	 �
X
e�EG

P�e	f�e	 �
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For a subset W � fw�� w�� � � � � wtg of �� we de�ne the vector indicator function IW �
EG � IRt by IW � �Iw�� Iw� � � � � � Iwt	� where Iw � EG � IR is the indicator function for a
symbol w � ��

Iw�e	 �
�
� if LG�e	 � w
� otherwise

�

Let G � G denote the labeled product graph de�ned by VG�G � VG � VG � f�u� u�	 �
u� u� � VGg and EG�G � EG � EG� There is an edge �e� e

�	 in G � G from state �u� u�	 to
state �v� v�	 whenever e is an edge in G from state u to state u� and e� is an edge in G from
state v to v�� The labeling on G�G is de�ned by LG�G�e� e

�	 � �LG�e	� LG�e
�		� We de�ne

on EG�G the coordinate indicator functions I���W and I���W � given by I���W ��e� e
�		 � IW �e	 and

I���W ��e� e
�		 � IW �e�	� Finally� we de�ne the coordinate distance function D � EG�G � IR by

D��e� e�		 �
�
� if LG�e	 	� LG�e

�	
� otherwise

�

For a given symbol subset W of size t and a vector p � ��� ��t� we now de�ne the quantities
SW �p	 � sup

P � ��G	
EP �IW 	 � p

H�P	

and
TW �p� �	 � sup

P � � ��G�G	

EP ��I�i�W 	 � p � i � �� �
EP ��D	 � ��� ��

H�P �	 �

Finally� to concisely state the bounds� we introduce the following function of the relative
designed distance ��

RW ��	 � sup
p������t

f �SW �p	� TW �p� �	 g �

The following theorem is proved in �MR���� It is obtained by application of Lemma ��

to the words in S � �q generated by cycles in G starting and ending at a speci�ed state
u � G� with frequency of occurrence of the symbols wi � W given approximately by pi� for
i � �� �� � � � � t�

Theorem ��� Let S be a constrained system over � presented by a primitive determinis�
tic graph� let � � �� and letW be a subset of � of size t� Then there exist �S��q�M� �q	�codes
satisfying

logM

q
� RW ��	� o��	 �

where o��	 stands for a term that goes to zero as q tends to in�nity�
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Computation of the quantities SW �p	 and TW �p� �	 requires the solution of a constrained
optimization problem in which the objective function P � H�P	 is concave� and the con�
straints are linear� The theory of convex duality based upon Lagrange multipliers provides a
method to translate the problem into an unconstrained optimization with a convex objective
function �MR����

In order to reformulate the problem� we need to introduce a vector�valued matrix function
that generalizes the adjacency matrix AG� For a function f � EG � IRt and x � IRt� let
AG	f �x	 be the matrix de�ned by�

AG	f �x	
�
u�v
�

X
e 
��e��u� ��e��v

��x�f�e�

We remark that for any function f � the matrix AG	f ��	 is precisely the adjacency matrix of
G�

The following lemma is the main tool in translating the constrained optimization problem
to a more tractable form� It is a consequence of standard results in the theory of convex
duality�

Lemma ��� Let G and f be as above� Let g � EG � IRl� and de�ne � � �f � g� � EG �
IRt�l� Then� for any r � IRt and s � IRl�

sup
P � ��G	
EP�f	 � r

EP�g	 � s

H�P	 � inf
x � IRt

z � �IR�	l

n
x � r� z � s � log��A

G	��x� z		
o
�

Applying Lemma ��� to Theorem ���� we can derive dual formulas for the lower bounds
RW ��	� for a speci�ed symbol set W and relative minimum distance �� For the case where
W consists of a single symbol w � �� the resulting formula is particularly tractable� To
express it succinctly� we de�ne

Jw �
h
I���fwg � I���fwg�D

i
� EG�G � IR�

and� to simplify notation� Sw�p	 � Sfwg
�
�p	
�
� Tw�p� �	 � Tfwg

�
�p	� �

�
� and Rw��	 � Rfwg��	�

The lower bound on attainable rates follows from the following theorem�

Theorem ��	 Let S be a constrained system over � presented by a primitive graph G�
let � � �� and let w � �� Then

a�
Sw�p	 � inf

x�IR
fpx � log��AG	Iw�x		g 
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b�
Tw�p� �	 � inf

x�IR�z�IR�
f�px � �z � log��AG�G	Jw�x� z		g 


c�

Rw��	 � sup
p������

�
� inf
x�IR

n
px � log��AG	Jw�x		

o

� inf
x�IR� z�IR�

n
�px� �z � log��AG�G	Jw�x� z		

o�
�

In particular� if P � ��G	 has maximal entropy rate
H�P	 � sup

P ����G�
H�P �	 �

and the symbol probability p equals EP�Iw	� then
Sw�p	 � log��AG	

and� setting x � � in part b	 of Theorem ����

Tw�p� �	 � inf
z�IR�

f�z � log��AG�G	Jw��� z		g �

From Theorem ��� and part c	 of Theorem ���� we recover the lower bound of Kolesnik
and Krachkovsky�

Corollary ��

logM

q
� RKK��	� o��	 �

where
RKK��	 � � log��AG	� inf

z�IR�
f�z � log��AG�G	Jw��� z		g �

Better lower bounds can be obtained by prescribing the frequency of occurrence of words
w of arbitrary length� rather than only symbols� See �MR��� for more details�

Example ��� For the ��� �	�RLL constrained system� consider the cases where W �
f��g and W � f���g� with corresponding lower bounds R�� and R���� It is not di cult to
see that R����	 must equal R���	� Table ��� from �MR��� gives the values of RKK��	� R���	�
and R�����	 for selected values of ��

We remark that� in some circumstances� one might assign to each edge e � EG a cost
associated to its use in a path generating a sequence in S� Lower bounds on the rate of
codes into S with speci�ed relative minimum distance � and average cost constraint have
been derived by Winick and Yang �WY�
� and Khayrallah and Neuho� �KN����
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� RKK��� R���� R������

���� ������ ������ ������

���� ������ ������ �����	

��
� ������ ������ ���
��

��
� ����
� ������ ���

�

���� ��
��
 ��
��
 ��
���
���� ����	� �����
 ����		

���� ������ �����
 ������

���� ����	� ����
� ������

���� � ����		 �����	

���� � ����
� ����
�

���� � � �

Table ���� Attainable rates for ��� �	�RLL constrained system�

��� Towards sphere�packing upper bounds

In comparison to lower bounds� much less is known about upper bounds on the size of
block codes for constrained systems� We describe here a general technique introduced by
Abdel�Gha�ar and Weber in �AW���� Let S be a constrained system over � and let X be
a nonempty subset of �q� For a word w � �q� denote by BX�w
 t	 the set of words w� � X
which are at distance t or less from w according to some distance measure ��w�w�	� If C is
an �S � �q�M� d � �t��	 code� then� by the sphere�packing bound� we must haveX

w�C

jBX�w
 t	j � jXj ����	

for any nonempty subset X 
 �q� In the conventional sphere�packing bound� the subset X
is taken to be the whole set �q� Improved bounds may be obtained by taking X to be a
proper subset of �q� Speci�cally� de�ne

N�S�X
 i	 � jfw � S � �q � jBX�w
 t	j � igj �
Now� if X is contained in

S
w�S��q B�q�w
 t	� then

jXjX
i��

iN�S�X
 i	 � jXj �

so there exists an integer j� � � j � jXj� such that
j��X
i��

iN�S�X
 i	 � jXj �

and
jX

i��

iN�S�X
 i	 � jXj �
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Abdel�Gha�ar and Weber �AW��� used these inequalities to establish the following upper
bound on the code cardinality�

Theorem ��� Let C be an �S � �q�M� d � �t��	 code and let X be a nonempty subset
of
S
w�S��q B�q�w
 t	� Then

jCj �
j��X
i��

N�S�X
 i	 �

� jXj �Pj��
i�� iN�S�X
 i	

j

�
�

Proof� If jCj � Pj��
i�� N�S�X
 i	� then we are done already� So� we may assume that jCj �Pj��

i�� N�S�X
 i	� Divide C into two subsets C�� C� where C� consists of the
Pj��

i�� N�S�X
 i	
elements w of C with the smallest jBX�w
 t	j� Then

j��X
i��

iN�S�X
 i	 � X
w�C�

jBX�w
 t	j�

and

j�jCj �
j��X
i��

N�S�X
 i		 � X
w�C�

jBX�w
 t	j�

Now� use the preceding two inequalities to lower bound the left�hand side of inequality ����	�

j��X
i��

iN�S�X
 i	 � j�jCj �
j��X
i��

N�S�X
 i		 � X
w�C

jBX�w
 t	j � jXj�

The theorem follows from this�

For the special case of bitshift errors� Abdel�Gha�ar and Weber obtain in �AW��� upper
bounds on single�bitshift correcting codes C for �d� k	�RLL constrained systems S as follows�
First� partition every code C 
 S � �q into constant�weight subsets C � �wCw� such that
each element of Cw has Hamming weight w
 then apply Theorem ��� to the subsets Cw� for
suitably chosen sets X� Table ��� shows results for selected RLL constraints and codeword
lengths�

Constructions of codes for channels with substitution� asymmetric� and bitshift errors� as
well as bounds on themaximum cardinality of such codes of �xed length� have been addressed
by numerous other authors� for example Blaum �Blaum���
 Ferreira and Lin �FL���
 Fredrick�
son and Wolf �FW���
 Immink �Imm���
 Kolesnik and Krachkovsky �KolK���
 Kuznetsov and
Vinck �KuV�
a�� �KuV�
b�
 Lee and Wolf �Lee���� �LW���� �LW���
 Patapoutian and Ku�
mar �PK���
 Shamai and Zehavi �SZ���
 and Ytrehus �Yt��a�� �Yt��b��
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q �d� k� 
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Table ���� Upper bounds on sizes of �d� k	�RLL constrained single shift�error correcting codes
of length 
 � q � 
��
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��� Distance properties of spectral�null codes

Finally� we mention that spectral�null constrained codes�in particular� dc�free codes�with
Hamming error�correction capability have received considerable attention� See� for example�
Barg and Litsyn �BL���
 Blaum and van Tilborg �TiBl���
 Blaum� Litsyn� Buskens� and
van Tilborg �BLBT�
�
 Calderbank� Herro� and Telang �CHT���
 Cohen and Litsyn �CL���

Etzion �Etz���
 Ferreira �Fe���
 Roth �Roth�
�
 Roth� Siegel� and Vardy �RSV���
 Waldman
and Nisenbaum �WN���� Spectral�null codes also have inherent Hamming�distance proper�
ties� as shown by Immink and Beenker �ImmB���� They considered codes over the alphabet
f�����g in which the order�m moment of every codeword x � �x� x� � � � xn	 vanishes for
m � �� �� � � � � K��� i�e��

nX
i��

imxi � �� m � �� �� � � � � K�� �

They referred to a code with this property as a code with order��K��	 zero�disparity� For
each codeword x� the discrete Fourier transform� given by !x�f	 �

P
n

��� x�e
����f�� where

� �
p��� satis�es

dm!x�f	

dfm

�����
f��

� � for m � �� �� � � � � K�� �

This implies by part � of Problem 
�
� that the power spectral density of the ensemble of
sequences generated by randomly concatenating codewords vanishes at f � �� along with its
order�� derivatives for � � �� �� � � � � �K��� A code� or more generally a constraint� with this
property is said to have an order�K spectral�null at f � ��

The following theorem� from �ImmB���� provides a lower bound on the minimum Ham�
ming distance of a code with spectral null at f � ��

Theorem ���� Let C be a code with order�K spectral null at f � �� Let x�y be distinct
codewords in C� Then� their Hamming distance satis�es

�Hamming�x�y	 � �K �

This result will play a role in the subsequent discussion of codes for the Lee and Euclidean
metrics�

��� Synchronization�bitshift error correction

Synchronization errors� resulting from the insertion or deletion of symbols� and coding meth�
ods for protection against such errors have been the subject of numerous investigations� The
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edit distance� introduced by Levenshtein and often referred to as the Levenshtein metric� is
particularly appropriate in this setting� as it measures the minimum number of symbol in�
sertions and deletions required to derive one �nite�length sequence from another� The reader
interested in codes based upon the Levenshtein metric is referred to Bours �Bours���
 Iizuka�
Hasahara� and Namahawa �IKN���
 Kruskal �Krusk�
�
 Levenshtein �Lev���� �Lev���� �Lev����
�Lev���
 Levenshtein and Vinck �LV�
�
 Tanaka and Kasai �TK���
 Tenengolts �Ten����
�Ten���
 and Ullman �U���� �U����

When dealing with synchronization errors �insertions and deletions of ��s	 in �d� k	�RLL
constrained systems� it is convenient to represent a constrained sequence as a sequence of
�runs�� where a run corresponds to a symbol � along with the subsequent string of con�
tiguous symbols � preceding the next consecutive symbol �� We associate to each run a
positive integer called the �runlength� representing the number of symbols in the run� As an
example� the ��� �	�RLL sequence ����������������� corresponds to the sequence of runs
with runlengths �� �� �� 
�

Let w be a �d� k	�constrained sequence with n runs and corresponding runlength sequence
s � s�� s�� � � � � sn� Insertion of e symbols � in the jth run of w generates the sequence with
runlengths s� � s�� � � � � sj�e� sj��� � � � � sn� while deletion of e symbols � from run j generates
the sequence of runlengths s� � s�� � � � � sj � e� sj��� � � � � sn� �In the latter� e cannot exceed
sj�	 An e�synchronization error denotes such a pattern of e insertions or deletions occurring
within a single run� Note� also� that a bitshift error� or more generally� an e�bitshift error
consisting of e left�bitshift errors or e right�bitshift errors occurring at the boundary between
two adjacent runs� may be viewed as a pair of e�synchronization errors in consecutive runs�
one being an insertion error� the other a deletion error�

This �runlength��oriented viewpoint has been used in the design of RLL codes capable
of detecting and correcting bitshift and synchronization errors� Hilden� Howe� and Wel�
don �Hild��� constructed a class of variable length codes� named Shift�Error�Correcting
Modulation �SECM	 codes� capable of correcting up to some prespeci�ed number of ran�
dom e�bitshift errors� for a preselected shift�error size e� The runlengths are regarded as
elements of a �nite alphabet F whose size� usually taken to be an odd prime integer� satis�
�es k � d � � � jF j � �e � �� The binary information string is viewed as a sequence of k
runs r � r�� r�� � � � � rk� satisfying �d� k	 constraints� with runlengths s � s�� s�� � � � � sk� The
sequence of transition positions t � t�� t�� � � � � tk is then de�ned by�

tj �
jX

i��

si �mod jF j	 � for j � �� �� � � � � k �

These values are then applied to a systematic encoder for an �n� k� d� BCH code over a �nite
�eld F of prime size� yielding parity symbols tk��� tk��� � � � � tn� A �d� k	�constrained binary
codeword is then generated by appending to the original information runs the sequence of
parity runs rk��� rk��� � � � � rn whose runlengths sk��� sk��� � � � � sn satisfy

d� � � sj � d� � � jF j � for j � k��� k��� � � � � n
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and

tj �
jX
i��

si �mod jF j	 � for j � k��� k��� � � � � n �

In particular� for jF j � �t��� the resulting code may be used to correct up to t random
��bitshift errors� where t is the designed error�correcting capability of the BCH code� Note
that a similar construction provides for correction of random e�synchronization errors by
encoding the runlengths themselves� rather than the transition positions� The interpretation
of bitshift and� more generally� synchronization errors in terms of their e�ect on runlengths
leads naturally to the consideration of another metric� the Lee metric�

The Lee distance �Lee�x� y	 of two symbols x� y in a �nite �eld F of prime size is
the smallest absolute value of any integer congruent to the di�erence x � y modulo jF j�
For vectors x� y in F n� the Lee distance �Lee�x�y	 is the sum of the component�wise Lee
distances� The Lee weight wLee�x	 of a vector x is simply �Lee�x� �	� where � denotes the
all�zero vector of length n�

Among the families of codes for the Lee�metric are the well�known negacyclic codes
introduced by Berlekamp �Berl��� Ch� ��� the family of cyclic codes devised by Chiang and
Wolf �CW���� and the Lee�metric BCH codes investigated by Roth and Siegel �RS���� �RS����

All of these Lee�metric code constructions have the property that the redundancy required
for correction of a Lee�metric error vector of weight t is approximately t symbols� In contrast�
codes designed for the Hamming metric require approximately �t check symbols to correct
t random Hamming errors� In a recording channel subject to e�synchronization errors and
e�bitshift errors� where the predominant errors correspond to small values of e� one might
anticipate reduced overhead using a Lee�metric coding solution� This observation was made
independently by Roth and Siegel �RS���� Saitoh �Sai�
a�� �Sai�
b�� and Bours �Bours��� �see
also Davydov �Dav�
� and Kabatiansky� Davydov� and Vinck �KDV���	� who have proposed
a variety of constrained code constructions based on the Lee�metric� and have derived bounds
on the e ciency of these constructions� as we now describe�

For bitshift�error correction� Saitoh proposed a construction yielding codes with �xed
binary symbol length� He showed that the construction is asymptotically optimal with
respect to a Hamming bound on the redundancy for single�bitshift error�correcting �d� k	�
RLL codes�

The construction of Saitoh requires that the codewords begin with a symbol � and end
with at least d symbols �� The codewords will have a �xed number of runs and� consequently�
a variable length in terms of binary symbols� The codewords are de�ned as follows� If the
runlengths are denoted si� i � �� �� � � � � n� the sequence of runlengths si� for even values of i�
comprise a codeword in a single�error correcting code over the Lee metric� The sequence of
runlengths si� for i � 
 �mod �	� comprise a codeword in a single error�detecting code for the
Lee metric� It is evident that� in the presence of a single bitshift error� the Lee�metric single
error�correcting code will ensure correct determination of the runlengths si for even values of
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i� indicating if the erroneous runlength� say s�j� su�ered an insertion or deletion of a symbol
�� The Lee�metric error�detecting code will then complete the decoding by determining if
the corresponding deletion or insertion applies to runlength s�j�� or s�j���

In the broader context of synchronization errors� Roth and Siegel described and analyzed
a construction of �d� k	�RLL codes for detection and correction of such errors as an application
of a class of Lee�metric BCH codes �RS���� The shortened BCH code of length n over a �nite
prime �eld F � denoted C�n� r
F 	� is characterized by the parity�check matrix

H�n� r
F 	 �

�
BBBBBBB	

� � � � � �
	� 	� � � � 	n
	�
� 	�

� � � � 	�
n

���
��� � � �

���
	r��� 	r��� � � � 	r��

n



CCCCCCCA

�

where �	� 	� � � � 	n	 is the locator vector� consisting of distinct nonzero elements of the
smallest h�dimensional extension �eld Fh of F of size greater than n�

Hence� a word x � �x� x� � � � xn	 � F n is in C�n� r
F 	 if and only if it satis�es the
following r parity�check equations over Fh�

nX
i��

xi	
m
i � � � for m � �� �� � � � � r�� �

The following theorem provides a lower bound on the minimum Lee distance of C�n� r
F 	�
denoted dLee�n� r
F 	�

Theorem ����

dLee�n� r
F 	 �
�
�r for r � �jF j � �	��
jF j for �jF j� �	�� � r � jF j �

This bound follows from Newton�s identities �ImmB�����KS��a� and can be regarded� in
a way� as the analogue of the BCH lower bound r�� on the minimum Hamming distance
of C�n� r
F 	� although the proof of the �r lower bound is slightly more complicated� For
r � jF j we can bound dLee�n� r
F 	 from below by the minimum Hamming distance r���
The �r lower bound does not hold in general for all values of r
 however� it does hold for

all r in the base��eld case n � jF j��� The �r lower bound for the base��eld case takes the
following form�

Theorem ���� For r � n � jF j���
dLee�n� r
F 	 � �r �
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The primitive case corresponds to codes C�n� r
F 	 for which n � jF jh��� The redundancy
of such codes is known to be bounded from above by � � �r��	h� This bound� along with
the following lower bound derived by a sphere�packing argument� combine to show that the
primitive codes are near�optimal for su ciently small values of r�

Lemma ���� �Sphere�packing bound� Golomb and Welch �GoW���� �GoW���	 A code
over a �nite prime �eld F of length n� size M � and minimum Lee distance � �r�� for some
r � �jF j� �	�� must satisfy the inequality

M �
r��X
i��

�i
�
n

i

��
r��
i

�
� jF jn �

Theorem ���� A code over a �nite prime �eld F of length n� size M � and minimum
Lee distance � �r�� for some r � �jF j� �	�� must satisfy the inequality

�r��	
�
logjF j�n�r��	� logjF j�r��	

�
� n � logjF jM �

Proof� By Lemma ���
 we have

�n�r��	r��
�r��	r�� � �r�� � jF jn�M �

The theorem now follows by taking the logarithm to base jF j of both sides of this inequality�
The construction of synchronization�error correcting codes based upon the Lee�metric

BCH codes is as follows� Given constraints �d� k	� we choose jF j � k�d��� We re�
gard every run of length s in the �d� k	�constrained information sequence as an element
�s�d��	 �mod jF j	 of F � and use a systematic encoder for C�n� r
F 	 to compute the cor�
responding check symbols in F � Each check symbol a� in turn� is associated with a run of
length a � d � �� where a is the smallest nonnegative integer such that a � a � �� where
� stands for the multiplicative unity in F � The code C�n� r
F 	� with r � �jF j � �	�� and
n � jF jh � � can simultaneously correct b bitshift errors and s non�bitshift synchronization
errors whenever �b � s � r� �Observe that� when counting errors� an e�bitshift error is
counted as e bitshift errors
 this applies respectively also to synchronization errors� Also�
bitshift or synchronization errors may create runlengths that violate the �d� k	�constraint�
In such a case we can mark the illegal runlength as an erasure rather than an error�	 The
redundancy required will be no more than � � �r��	h symbols from the alphabet F � and
we recall that Theorem ���� indicates the near�optimality of the Lee�metric primitive BCH
codes C�jF jh � �� r
F 	� for values r� jF jh � ��

Example ��� Two typical choices for parameters �d� k	 are ��� �	 and ��� �	� both sat�
isfying k � d � � � �� Setting jF j � � and r � 
� we obtain a family of codes for these
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constraints� based upon C�n� 

 �	� that can correct any error pattern of Lee weight � �and
detect error patterns of Lee weight 
	� In particular� the codes will correct one single�bitshift
���bitshift	 error or any other combination of two insertions�deletions of symbols �� For
n � jF jh � �� the required redundancy is no more than � � �h symbols�

As mentioned above� the class of Hamming�metric SECM codes are directed primarily
toward the situation when only bitshift�type errors occur� The constructions based upon Lee�
metric codes can be modi�ed to improve their e ciency in this type of error environment by
recording� instead of the nominal codeword x � �x� x� � � � xn	� the di�erentially precoded
word y � �y� y� � � � yn	 de�ned by y� � x� and yi � xi � xi�� for � � i � n� where all
operations are taken modulo jF j� If y is recorded� and no bitshift errors occur� the original
word x is reconstructed by an �integration� operation�

xi �
iX

j��

yj �

If� however� an e�bitshift error occurs at the boundary between runs j and j�� of y� the
integration operation converts the error into an e�synchronization error in run j of x� In other
words� the original bitshift error pattern of Lee weight �e is converted into a synchronization
error pattern of Lee weight e� In order to ensure the correctness of the �rst run y�� it su ces
to require that the code contain the all�one word �� � � � � �	 and all of its multiples�

For the Lee�metric BCH codes� this construction provides the capability to correct up
to r�� bitshift errors and detect up to r bitshift errors� when �r � jF j � k�d��� The
construction can be extended to the base��eld case as well�

Example ��� Let jF j � � and r � 
 as in the previous example� The construction above
will generate codes with length n a multiple of �� For n � �� the redundancy is ���r��	 � 

runs
 for n � ��� ��� � � � � �� the redundancy is ����r��	 � � runs
 for n � ��� �
� � � � � 
�
 the
redundancy is � � 
�r��	 � � runs� All of these codes will correct up to two single�bitshift
errors or one double�bitshift ���bitshift	 error� By way of comparison� in �Hild��� Hilden et
al� describe SECM codes of lengths ��� ��� and ��� for correcting two single�bitshift errors�
requiring redundancy of �� �� and �� runs� respectively� These SECM codes do not handle
double�bitshift errors�

Example ��� As jF j increases� so does the discrepancy in the number of check symbols
�runs	 compared to the SECM codes in �Hild���� For jF j � ��� suitable for representing
�d� k	 � ��� ��	 for example� and r � �� the Lee�metric BCH code with n � �� requires � check
symbols
 for n � ��� 

� � � � � ���� the redundancy is � symbols
 for n � �
�� ��
� � � � � �

� the
redundancy will be �
 symbols� These codes will correct up to four single�bitshift errors

two single�bitshift and one double�bitshift errors
 or two double�bitshift errors� The codes
presented in �Hild��� for correcting up to four single�bitshift errors have lengths ��� ��� and
��� and require redundancy of ��� ��� and ��� respectively�
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Bours �Bours��� provided a construction of synchronization�error correcting RLL codes
with �xed length over the binary alphabet that also relies on an underlying Lee�metric code�
He did not require the underlying code to be a Lee�metric BCH code� however� and thereby
avoided having the error�correction capability limited by the code alphabet size�

The de�nition of the Lee metric can also be generalized in a straightforward manner to
integer rings� Orlitsky described in �Or�
� a nonlinear construction of codes over the ring
of integers modulo �h for correcting any prescribed number of Lee errors� His construction
is based on dividing a codeword of a binary BCH code into nonoverlapping h�tuples and
regarding the latter as the Gray�code representations of the integers between � and �h � ��
It is also worth remarking that all of the Lee�metric codes mentioned above can be

e ciently decoded algebraically�

We close the discussion of Lee�metric codes by noting that the de�nition of the class of
Lee�metric BCH codes was motivated by a Lee�metric generalization of the result of Immink
and Beenker in Theorem ���� to integer�valued spectral�null constraints �KS��a�� �EC����

Theorem ���� Let S be a constrained system over an integer alphabet with order�K
spectral null at f � �� presented by a labeled graph G� Let x�y be distinct sequences in S
generated by paths in G� both of which start at a common state u and end at a common state
v� Then� the Lee distance satis�es

�Lee�x�y	 � �K �

This result will play an important role in the next section in the context of Euclidean�
metric codes for PRML�

When combining bitshift and synchronization errors� any bitshift error can obviously be
regarded as two consecutive synchronization errors in opposite directions � one e�insertion�
one e�deletion � thus reducing to the synchronization�only model of errors� However� such
an approach is not optimal� and better constructions have been obtained to handle a limited
number of bitshift and synchronization errors �combined	� See Hod �Hod���� Kl"ve �Kl����
and Kuznetsov and Vinck �KuV�
a�� �KuV�
b��

��	 Soft�decision decoding through Euclidean metric

Let x and y be sequences of length n over the real numbers� The squared�Euclidean distance
between these sequences� denoted ��

Euclid�x�y	 is given by

��
Euclid�x�y	 �

nX
i��

�xi � yi	
� �
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The Euclidean metric is most relevant in channels with additive white Gaussian noise
�AWGN	� In particular� it is of interest in connection with the model of the magnetic record�
ing channel as a binary input� partial�response system with AWGN� The success of trellis�
coded modulation� as pioneered by Ungerboeck� in improving the reliability of memoryless
channels with AWGN provided the impetus to design coding schemes for channels with
memory� such as partial�response channels� in AWGN� For binary input�restricted partial�
response channels suitable as models for recording channels� such as the Class�� channel
characterized by the input�output relation yi � xi � xi��� several approaches have been
proposed that make use of binary convolutional codes� These approaches typically require a
computer search of some kind to determine the codes that are optimal with respect to rate�
Euclidean distance� and maximum�likelihood detector complexity� See� for example� Wolf
and Ungerboeck �WU���
 Calderbank� Heegard� and Lee �CHL���� Hole �Hole���
 and Hole
and Ytrehus �HoY����

There is another approach� however� that relies upon the concepts and code construction
techniques that have been developed in the previous chapters� The underlying idea is as
follows� First� �nd a constrained system S� presented by a labeled graph G� that ensures a
certain minimum Euclidean distance between the partial�response channel output sequences
generated when channel inputs are restricted to words in S� Then� apply state�splitting �or
other	 methods to construct an e cient encoder from binary sequences to S� Since the graph
structure E underlying the encoder is often more complex �in terms of number of states and
interconnections	 than the original graph G� use G rather than E as the starting point for
the trellis�based Viterbi detector of the coded channel�

Karabed and Siegel �KS��a� showed that this approach can be applied to the family of
constrained systems S whose spectral null frequencies coincide with those of the partial�
response channel transfer function� The resulting codes are referred to as matched�spectral�
null codes� We conclude this section with a brief summary of the results that pertain to the
application of this technique to the Class�� and related partial�response systems� We will
refer to the dicode channel� which is characterized by the input�output relation yi � xi�xi���
and has a �rst�order spectral null at f � �� and we remark that the Class�� partial�response
channel may be interpreted as a pair of interleaved dicode channels� one operating on inputs
with even indices� the other on inputs with odd indices�

Lemma ���� Let S be a constrained system over an integer alphabet with order�K spec�
tral null at zero frequency� Let S � be the constrained system of sequences at the output of
a cascade of N dicode channels� with inputs restricted to words in S� Then� S � has an
order��K�N� spectral null at zero frequency�

Noting that any lower bound on Lee distance provides a lower bound on squared�
Euclidean distance for sequences over integer alphabets� we obtain from the preceding lemma
and Theorem ���� the following lower bound on the minimum squared�Euclidean distance of
a binary� matched�spectral�null coded� partial�response channel with spectral null at f � ��
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Theorem ���	 Let S be a constrained system over the alphabet f�����g� with order�K
spectral null at zero frequency� Let x and y be distinct sequences in S� di�ering in a �nite
number of positions� If x� and y� are the corresponding output sequences of a partial�response
channel consisting of a cascade of N dicode channels� then

��
Euclid�x�y	 � ��K �N	 �

It is easy to see that the lower bound of Theorem ���� remains valid in the presence
of J�way� symbol�wise interleaving of the constrained sequences and the partial�response
channel� In particular� for the Class�� partial�response channel �i�e�� the ��way interleaved
dicode channel	� the application of sequences obtained by ��way interleaving a code having a
�rst�order spectral null at zero frequency doubles the minimum squared�Euclidean distance
at the channel output� relative to the uncoded system�

We remark that J�way interleaving of sequences with an order�K spectral null at f � �
generates sequences with order�K spectral nulls at frequencies f � r�J � for r � �� �� � � � � J��
�MS���� Thus� a ��way interleaved� dc�free code has spectral nulls at zero frequency and at
frequency f � ���� corresponding to the spectral null frequencies of the Class�� partial�
response channel�

Graph presentations for spectral null sequences are provided by canonical diagrams� in�
troduced by Marcus and Siegel �MS��� for �rst�order spectral null constraints and then
extended to high�order constraints by� among others� Monti and Pierobon �MPi���
 Karabed
and Siegel �KS��a�
 Eleftheriou and Cideciyan �EC���
 and Kamabe �Kam����

Discussion of the canonical diagrams requires the notion of a labeled graph with an in�nite
number of states� Speci�cally� a countable�state labeled graph G� � �V�E� L	 consists of a
countably�in�nite set of states V 
 a set of edges E� where each edge has an initial state and
a terminal state� both in V � and the states in V have bounded out�degree and in�degree
 and
an edge labeling L � E � �� where � is a �nite alphabet�

We say that a countable�state graph G� is a period�p canonical diagram for a spectral
null constraint if�

�� Every �nite subgraphH 
 G� generates a set of sequences with the prescribed spectral
null constraint�

�� For any period�p graph G�
� that presents a system with the speci�ed spectral null

constraint� there is a label�preserving graph homomorphism of G�
� into G�� meaning

a map from the edges of G�
� to the edges of G� that preserves initial states� terminal

states� and labels�

The canonical diagram G� for a �rst�order spectral null constraint at zero frequency�
with symbol alphabet f�����g� is shown in Figure ���� As mentioned in Example 
���



CHAPTER �� ERROR�CORRECTING CONSTRAINED CODING ���

� � � ��
��
� ��
��
� ��
��
� ��
��

 ��
��
� ��
��
� ��
��
� � � �����

��
����

��
����

��
����

��
����

��
����

��

Figure ���� Canonical diagram for �rst�order spectral null at f � ��

the capacity of the constrained system generated by a subgraph GB� consisting of B��
consecutive states and the edges with beginning and ending states among these� is given by

cap�S�GB		 � log
�
� cos




B��

�
�

From this expression� it follows that

lim
B��

cap�S�GB		 � � �

We pointed out in Chapter � that the constrained system generated by any �nite subgraph
of G� is almost��nite�type� Applying Theorem ����� we see that by choosing B large enough�
we can construct a sliding�block decodable �nite�state encoder for the constrained system
S�GB	 at any prespeci�ed rate p � q with p�q � ��

From the structure of the canonical diagram� it is clear that any constrained system with
�rst�order spectral null at f � � limits the number of consecutive zero samples at the output
of the dicode channel� When the constrained sequences are twice�interleaved and applied to
the Class�� partial�response channel� the number of zero samples at the output is limited
�globally� as well as in each of the even�odd interleaved subsequences� This condition is
analogous to that achieved by the ���G�I	 constraints for the baseline PRML system�

The subgraph GB chosen for the code construction may be augmented to incorporate
the dicode channel memory� as shown in Figure ��� for the case M � �� providing the
basis for a dynamic programming �Viterbi	 detection algorithm for the coded�dicode channel
with AWGN� Each state in the trellis has a label of the form vm� where v is the state in
Figure ��� from which it is derived� and the superscript m denotes the sign of the dicode
channel memory� Just as does the uncoded dicode detector graph� represented by the trellis
in Figure ���� of Chapter �� the coded�dicode detector graph supports sequences that can
cause potentially unbounded delays in the merging of survivor sequences and� therefore� in
decoding� The spectral�null code sequences that generate these output sequences are called
quasicatastrophic sequences� and they are characterized in the following proposition�

Proposition ���
 The quasicatastrophic sequences in the constrained system presented
by GB are those generated by more than one path in GB�

To limit the merging delay� the matched�spectral�null code is designed to avoid these
sequences� and it is shown in �KS��a� that this is always possible without incurring a rate
loss for any GB� with B � 
�
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Figure ���� Graph underlying coded�dicode channel Viterbi detector for G
�

Further details and developments regarding the design and application of matched�
spectral�null codes to PRML systems may be found in �Shung���� �Thap���� �Thap�
��
�Fred���� and �Rae����

��
 Forbidden list codes for targeted error events

This section �which is yet to be written	 will be based on results taken from Karabed�Siegel�
Soljanin �KSS����

Problems

Problem ��� A graph G is called binary if its labels are over the alphabet f�� 
g� The �Hamming�

weight of a word w generated by a binary graph G is the number of 
�s in w� The weight of a path

in a binary graph G is the weight of the word generated by that path�
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Given a binary graph G and states u and v in G� denote by �
���
u�v�k the number of paths of length

� and weight k in G that originate in u and terminate in v� For states u and v in G� de�ne the

length�� weight�distribution polynomial �of paths from u to v�� in the indeterminate z� by

P ���
u�v�z� 


�X
k��

�
���
u�v�kz

k �

As an example� for the graph H in Figure ���� P
���
A�C 
 z� � �z�� since there are three paths of

length � that originate in A and terminate in C� one path has weight �� and the other paths each

has weight ��

��
��
A

��
��
B

��
��
C

�	
�
�

�
�
���


S
S
SSw




��
�




Figure ��
� Graph H for Problem ����

For a binary graph G 
 �V�E�L�� let BG�z� be the jV j � jV j matrix in the indeterminate z�
where

�BG�z��u�v 
 P ���
u�v �z�

for every u� v � V � Each entry in BG�z� is therefore a polynomial in z of degree at most 
�


� Compute BH�z� for the graph in Figure ����

�� For the matrix BH�z� found in 
� compute �BH�z��
� and �BH�z��

��

�� Let BG�z� be the matrix associated with a binary graph G� and let u and v be states in G�

Given a positive integer �� obtain an expression for the polynomial P
���
u�v�z� in terms of BG�z��

�� Identify the matrix BG�
� associated with a binary graph G�

�� Identify the matrix BG����

�� Let G be a binary graph and let z� be a positive real number� Show that G is irreducible if

and only if the matrix BG�z�� is irreducible� Does this hold also when z� 
 ��

Problem ��� Recall the de�nitions from Problem ��
� Let G be a binary lossless graph and let u

and v be states in G� For positive integers � and d� denote by J
���
u�v�d the number of words of length

� and weight � d that can be generated in G by paths that originate in u and terminate in v�
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� Show that for every � � d � ��

J
���
u�v�d 


dX
k��

�
���
u�v�k �

�� Based on 
� show that for every real z in the range � � z � 
�

J
���
u�v�d �

�X
k��

�
���
u�v�kz

k�d

and� therefore�

J
���
u�v�d � min

��z��
z�dP ���

u�v�z� �

�� Based on � and �� derive an upper bound on the number of words of length � and weight � d

in S�G�� as a function of BG�z�� �� and d�

Problem ��� Recall the de�nitions from Problem ��
� Let S be a constrained system presented

by a deterministic binary graph G with �nite memoryM� For nonnegative integers � and k� denote

by Y
���
k the number of �ordered� pairs �w�w�� of words of length � in S such that w and w

� are at

Hamming distance k� i�e�� they di�er on exactly k locations� De�ne the polynomial Y ����z� by

Y ����z� 

�X

k��

Y
���
k zk �


� Show that Y ������ 
 jS � f�� 
g�j�

�� Show that Y ����
� 
 �Y ���������

�� Let S��� denote the ��� 
��RLL constrained system� Show that when S 
 S���� the polynomial

Y ����z� can be written as

Y ����z� 
 �
 z z 
� �BG	G�z��
���

� �

where � is the all�one column vector and

BG	G�z� 


�
BBB	


 z z 



 � z �


 z � �


 � � �



CCCA �

�� Compute Y��z� explicitly for S 
 S����

�� Find the largest integer n for which there exists a block �S�
���� n��encoder whose codewords

are at Hamming distance at least � from each other�

�� Generalize � for any constrained system S over f�� 
g with �nite memory M�


