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Outline 

• Flash Memory Structure 
• Error Characterization 
• Error Correction Code (ECC) Comparison 

– Bit-level (binary) codes 
– Cell-level (multilevel) codes 

• Observations and Future Directions 
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Flash Memory Basics 
• A flash memory contains arrays (“blocks”) of floating-gate 

transistors (“cells”). 

• A cell can support q voltage levels , e.g. q = 2, 4, 8. 

• Increasing the voltage level of a cell is easy to do. 

• To decrease a cell level, we must first erase its entire block, 
then re-program all cells to reflect the intended values.  

• Such a  block erase is costly in time, power, and cell wear. 

 

 

 Asilomar 2012 3 11/6/2012 



4th Non-Volatile Memories Workshop 
 

March 3-5, 2013 
UC San Diego 

La Jolla, California USA 
http://nvmw.ucsd.edu 

 
 

NVMW 2013 

11/6/2012 Asilomar 2012 4 

http://nvmw.ucsd.edu/


SLC, MLC, and TLC Flash 

 
5 

High Voltage 

Low Voltage 

1 Bit Per Cell 
2 States 

SLC Flash 

011 
010 
000 
001 
101 
100 
110 
111 

01 

00 

10 

11 

0 

1 

High Voltage 

Low Voltage 

2 Bits Per Cell 
4 States 

MLC Flash 

High Voltage 

Low Voltage 

3 Bits Per Cell 
8 States 

TLC Flash 

Asilomar 2012 11/6/2012 



Flash Memory Structure - SLC 

• A group of cells (2KB) constitute a page. 
• A group of pages constitute a block. 

              Typical SLC Block Layout 
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Flash Memory Structure - MLC 

• The two bits in a cell belong to different pages: 
 the MSB page and the LSB page 
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Flash Memory Structure - TLC  
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Error Characterization 
• We tested several blocks on MLC and TLC chips. 
• For each block the following steps were repeated: 

• The block is erased. 
• Pseudo-random data are programmed to the block. 
• The data are read and errors are identified. 

 

• Disclaimers: 
• We measured many more P/E cycles than the manufacturer’s 

guaranteed lifetime of the device. 
• The experiments were done in laboratory conditions and 

related factors such as temperature change, intervals between 
erasures, or multiple readings before erasures were not 
considered. 
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Test Board (Ming I) 
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Device Control and Data Collection 
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BER per page - MLC 
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ECC Comparison for TLC flash 

• BCH Codes 
• LDPC Codes 

– Gallager codes (3,k)-regular, R=0.8, 0.9, 0.925, length 216 

– AR4JA protograph-based codes, R=0.8, lengths 1280, 
5120, 20480 

– MacKay codes variable-regular degree (3 or 4) ;  no 4-
cycles, R=0.82, 0.87, 0.93; lengths 4095, 16383, 32000. 

– IEEE 802.3an* (10Gb/s Ethernet), R ≈0.84, length 2048.  

• Cell-based algebraic codes 
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* Djurdjevic et al., IEEE Commun. Letters, July 2003. 



ECC Comparison for TLC flash 
• BER computed for the first 100 iterations, then 

every 25th iteration from then on. 

• Data averaged over 6 TLC blocks. 

• BCH decoder: corrects error patterns with up 
to t errors; detects and leaves unchanged more 
than t errors. 

• LDPC decoders: assume binary symmetric 
channel model BSC(p), with empirical error 
probability p. 
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LDPC Decoders 
• Sum-product algorithm (SPA) 

– Floating-point, max iterations 200 
– (5+1)-bit quasi-uniform quantization 

• Min-sum algorithm (MSA) 
– No LLR limits, max iterations 200 

• Linear programming (LP) decoding 
– Alternating Direction Method of Multipliers 

(ADMM)* with new fast “projection step” 
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* Barman, et al.,  Proc. 46th Allerton Conference,  Sept. 2011.  
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R≈0.8, LDPC with SPA Decoding 
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R≈0.9, LDPC with SPA Decoding*  
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*Yaakobi, et al., Proc. Int. 
Conf. on Comp., Network. 
Commun. (ICNC), Jan.-Feb. 
2012.  
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R≈0.925, LDPC with SPA Decoding*  

*Yaakobi, et al., Proc. Int. 
Conf. on Comp., Network. 
Commun. (ICNC), Jan.-Feb. 
2012.  
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R≈0.8, MSA vs. SPA Decoding  



Linear Programming Decoding 

• Linear Programming (LP) decoding of LDPC codes 
was introduced by Feldman in 2003. 

• LP decoding with Alternating Direction Method of 
Multipliers (ADMM) recently proposed to speed 
up LP decoding (Barman, et al., 2011) 

• We show results using a more efficient  scheme 
based upon Adaptive LP decoding (ALP) with fast 
Cut-Search Algorithm (CSA) to further speed up 
the key “projection step” in LP-ADMM. 
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(q+1)-bit Quasi-uniform Quantization* 
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Legend Notation 

• M4376:  MacKay code,  length 4376 and rate 0.9356 

• DJCM-4:   MacKay code, length 3200 and rate 0.93 

• LP:   ADMM-based LP decoder, max iterations 200 

• ft-SPA:   floating-point SPA 

• Quantized SPA:  (5+1)-bit quasi-uniform quantized SPA 
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R≈0.925, LP vs. SPA Decoding on TLC  
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Cell-based ECC 

• Experiments have shown that certain specific cell-
error types are dominant in MLC and TLC flash 
memories. 

• The dominant cell errors in MLC involved a                      
change in cell voltage by only one level:                                
10 to 00  or 00 to 01. 

•  An algebraic code that targets such errors                        
by sharing redundancy between MSB and                      
LSB pages showed improved BER vs. P/E.* 
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ECC Scheme for TLC Flash 

• If a TLC cell is in error, then with high probability 
only one of the three bits in the cell is in error. 

• The probability of a bit being in error does not 
depend on the target cell level. 

• Algebraic coding schemes that target such errors 
offer potential BER improvements.1,2 
 

[1] Yaakobi, et al., Proc. Int. Conf. on Comp., Network. Commun. (ICNC), 
Jan.-Feb. 2012.  

[2] Gabrys, et al., Proc. IEEE Int. Symp. Inf.  Theory,  July 2012.  
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BER for Cell-based Code for TLC Flash* 
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*Yaakobi, et al., Proc. Int. Conf. on Comp., Network. Commun. (ICNC), Jan.-Feb. 2012.  
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General Observations 
• Best LDPC performance surpasses BCH at all code rates 

R≈ 0.8, 0.9, 0.925. 
• R≈0.8 LDPC codes at 15k cycles has BER comparable to 

R≈0.9 LDPC codes at 10k cycles. 
• MSA was inferior to SPA decoding at R≈0.8. 
• LP-ADMM was comparable to SPA decoding at 

R≈0.925, with slightly steeper slope. 
• (5+1)-bit quasi-uniform quantized SPA (not optimized) 

matches floating-point SPA.  
• Algebraic codes that target dominant cell-error types 

can offer improved performance. 
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MLC  Data Retention 
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Future Directions 

• Further characterization of dominant cell-error 
types in multilevel flash memory is needed. 

• ECC, in combination with constrained codes, 
will need to address effects of inter-cell and 
inter-page interference, as well as effects of 
device aging, power cutoff, and other factors. 

• Soft-decision decoding should offer further 
challenges and potential performance gains. 
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