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Motivation - 1982  

• Punch cards 
• Optical disks      
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Can a previously recorded optical disk be re-used? 

Optical Disk Recording 
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• Flash memory 
 

• A flash memory “block” is an array of ~220 “cells”. 
• A cell is a floating-gate transistor with q “levels”.  

corresponding to the voltage induced by the 
number of electrons stored on the gate. 

• Terminology: 
– Single-level cell (SLC) stores 1 bit per cell 

(q=2) 
– Multi-level cell (MLC) stores 2 (or more) bits 

per cell (q=4 or more). 
 

 

 
Motivation - 2012  
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Flash Programming 

• To increase a cell level, you just 
add more electrons.  

• To reduce the cell level, you must 
first erase the entire block of cells 
and then reprogram the block to 
reflect the updated data.  
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• Block erasure degrades the flash memory cells. 

• Flash memory endurance (also called lifetime) is  
measured in terms of the number of program 
and erase (P/E) cycles it tolerates before failure. 

• SLC flash memory lifetime is  ~105  P/E cycles. 

• MLC flash memory lifetime is  ~104  P/E cycles. 

 Can new data be written to a flash memory cell 
without first erasing the entire block? 

 
 

 
Flash Memory Endurance 
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Write-Once Memory (WOM) Model 

• Introduced in 1982 by Rivest and Shamir  
• An array of “write-once bits” (or wits) with 

2 possible values: 0 and 1. 
• Initial state of every wit is 0. 
• Each wit can be irreversibly programmed 

to  1. 
Can a WOM be rewritten? 
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Information and Control , vol. 55 nos. 1-3, December 1982  
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The Mother of all WOM codes 

“Only 3 wits are needed to write 2 bits twice” 
 
 

 
 

 
 

Data  1st  Write 2nd  Write 
00 000 111 

01 100 011 

10 010 101 

11 001 110 
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• 1st write:   
– Encode 2-bit word using                                                           

1st-write codebook. 
 

•  2nd write: 
– Decode first 2-bit woes from the written codeword. 
– If new 2-bit word is the same as the first, there is no change 

to the written codeword. 
– If new 2-bit word is different, encode using  2nd-write 

codebook. This never changes a written 1 to a 0. 
• Decoding: Each codeword is associated with a unique 2-bit 

data pattern. 

 

Encoding and Decoding 

Data  1st  Write 2nd  Write 
00 000 111 
01 100 011 
10 010 101 
11 001 110 
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• No 2nd write codeword changes a 1 to a 0. 

000 

100 

001 

010 

111 

011 

110 

101 

00 

01 

10 

11 

00 

01 

10 

11 

Another Representation 
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Binary WOM Codes 

• An < M1,…, Mt >/n binary WOM code is a coding 
scheme that guarantees any sequence of            
t writes using alphabet sizes M1,…, Mt on n cells. 

• We consider two cases 
– unrestricted rate: M1,…, Mt may differ. 
– fixed rate: M= M1 = … = Mt. 

• Rivest-Shamir code is a < 4,4 >/3 WOM code. 
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<26,26> / 7 Binary WOM Code [RS82] 

• Stores 26  messages twice in 7 binary cells 
(R≈1.34) 
 
 
 

 
• Letter in row I, column J stored as the 7-bit 

binary representation of I*32+J 
• 1st  write:  Upper case letters 
• 2nd write:  Lower case letters 
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WOM Code Sum-Rate 

•  For an < M1,…, Mt > / n binary WOM code the 
sum-rate R is the total number of bits stored per 
cell in all t writes 

• Thus, 
 
 
 

 where 
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•  < 4 , 4 > / 3  WOM code  
 
 

 
•  < 26 , 26 > / 7  WOM code 

 
 

        
 What is the largest achievable sum-rate for a   

t-write WOM code on n cells? 

Examples 

2
2

1 2
log 2 42  =  1.3333

3 3
R R R= + = ≈

2
1 2

log 26= 2  1.3429
7

R R R= + ≈
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Achievable rate region 
[Heegard 1986, Fu and Han Vinck 1999] 

• For a binary WOM the t-write achievable rate 
region is given by: 
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Achievable region: 2-write WOM codes 
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WOM Capacity 

• The  unrestricted-rate capacity  C(t)  of a     
t-write binary WOM is the maximum of the  
achievable sum-rates. 

– It has been shown that C(t) = log2(t+1). 
 

• The fixed-rate capacity  C0
(t) of a t-write 

binary WOM does not have a simple 
expression, but can be computed 
recursively. 
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Capacity: 2-write WOM 
• The  unrestricted-rate capacity of 2-write binary WOM is: 

 
 
 
 
• This sum is maximized when p=1/3, implying 
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2log 3 1.5849C = ≈
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Fixed-rate Capacity: 2-write WOM 
• The  fixed-rate capacity of a 2-write binary WOM 

is: 
 
  
 where  p*≈0.227  satisfies 
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Achievable region: 2-write WOM codes 
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Coset Coding Construction 
[Cohen, Godlewski, and Merxx 1986] 

 
• Let C[n,k] be a binary linear block code with parity-check 

matrix H. 

• 1st write:  Write a “syndrome” s1  of  r=n−k  bits by means 
of a low-weight “error vector” y1 such that H⋅ y1 = s1. 

• 2nd write:  Write another “syndrome” s2 of  r bits by finding 
(if possible) a vector y′2 not “overlapping” y1  such that   
H⋅ y′2 = s1+s2 . 

• Write  y2= y1+ y′2  and decode using  

H⋅ y2=H⋅ ( y1+ y′2 ) = s1 + (s1+s2) = s2 
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<4,4>/3 as a “Coset” WOM Code 
• Let C[n,k] be the binary 3-repetition code with parity-

check matrix  
 
 

• 2-bit “syndromes”   s1 = 00, 01, 10, 11 correspond to 
vectors  y1 = 000, 100, 010, 001. 

• All 2 x 2 submatrices of H are invertible, so, given  y1      
we can find non-overlapping vector y′2 such that               
H⋅ y′2 = s1+s2 , and then write y2= y1+ y′2 . 
 

0 1 1
1 0 1

H  
=  
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• 1st write: Encode s1 = 01 into y1 = 100     
                    satisfying  H⋅ y1 = s1 
• 2nd write: Decode y1 = 100 to s1 = 01. 

              Encode s2 = 10 by finding non-  
              overlapping y′2 such that               
               H⋅ y′2 = s1+s2 =11,  namely y′2=001   
               and writing y2= y1+ y′2 =100+001=101. 
[Note:  101 correctly decodes to s2 = 10 ] 

<4,4>/3 Coset Coding Example 

0 1 1
1 0 1

H  
=  
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Generalized Coset Coding  
[Wu 2010, Yaakobi et al. 2010] 

• Let C[n,n-r] be a code with r×n parity-check matrix H. 
• For a vector v ∊ {0,1}n, let Hv be the matrix H with 0’s in the 

columns that correspond to the positions of the 1’s in v. 

• 1st Write: write a vector v1∈ VC = { v ∊ {0,1}n  | rank(Hv) = r}. 

• 2nd Write: Write an r-bit vector s2 as follows: 
– Decode s1 = H⋅v1 
– Find non-overlapping v′2 with H⋅ v′2 = s1+s2                          
   (possible because  rank(Hv1) = r). 

– Write v2 = v1+ v′2 to memory. 

• Decoding: Compute  H⋅v2= H⋅(v1 + v′2) = s1+ (s1 + s2) = s2. 
• [Note:  The set VC is independent of the choice of H.] 
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Sum-Rate Results 
• The construction works for any code C[n,k]. 
• The rate of the first write is:  

R1(C) = ( log2|VC| ) /n 

• The rate of the second write is:   
R2(C) = r/n 

• Thus, the sum-rate is: 
R(C) = (log2|VC| + r)/n 

 
• Goal: Choose a code C to maximize R(C). 
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Specific Constructions 
• [ n,k,d ]=[16,5,8]  first-order Reed-Muller code:  

 |VC | = 5065,  (R1, R1)=(0.7691,0.6875), so  R ≈ 1.4566. 

 Restricting first write to 211< 5065 messages  yields a 
fixed-rate code with R1= R2=11/16, so R ≈ 1.375. 

• [ n,k,d ]=[23,12,8] Golay code:  
   |VC | = 3300179,  (R1, R1)=(0.9415,0.5217),  so  R ≈ 1.4632. 

• Previous best constructions: 
– Fixed-rate: R-S <26, 26>/7 with R ≈ 1.34 
– Unrestricted rate: Wu  <176,76>/10 with R ≈ 1.371 

6/11/2012 29 ICC 2012 



Achievable region: 2-write WOM codes 
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• Recall: The 2-write achievable rate region is 

R(2) ={(R1, R2)| R1 ≤ h(p), R2 ≤ 1 − p,  
                    for 0 ≤ p ≤ 1/2}. 

• Theorem: For any (R1, R2)∊ R(2) and ε > 0, there exists a 
linear code C satisfying 

R1(C) ≥ R1 – ε  and  R2(C) ≥ R2 – ε 
 Proof: Use the “coset coding” construction with a 

randomly chosen (n – k) x k parity-check matrix with      
                    where R1 ≤ h(p), R2 ≤ 1 − p. 

Random codes and WOM Capacity 
[Yaakobi et al. 2010 and Wu 2010] 

 npk =
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Computer search results 
• Computer search using “randomly” chosen H. 

– Best unrestricted-rate WOM code (22x33):  
  
 
  

 
– Best fixed-rate WOM code (24x33):  

 
 
 

1.4928R ≈

1.4546R ≈
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( ) 33/2,2/ 228261.033
21 >=<>< ×nMM

33/2,2/ 2424
21 >=<>< nMM



Rate Region and Code Constructions 
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Capacity-achieving 2-write codes 
[Shpilka 2012] 

• Efficient capacity-achieving construction 
based upon modified “coset coding”. 
– 1st write: Program any binary vector of 

weight at most m (fixed). 
– 2nd write: Use a set of matrices (derived 

using the Wozencraft code ensemble) such 
that at least one of them succeeds on the 
second write. 
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3-write Binary WOM Codes 

• Recall that C(3) = log2(3+1)=2. 

• [Kayser et al. 2010]: General construction based upon  
2-write ternary WOM code, yielding sum–rate R ≈ 1.61  
(with R ≈ 1.66 the best it can achieve). 
 

• [Shpilka 2011]: Construction based upon efficient 2-write 
WOM codes, yielding sum-rate R ≈ 1.8. 
 

• [Yaakobi & Shplika 2012]: Further refinements leading to 
sum-rate R ≈ 1.88. 
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WOM codes for Non-Binary Flash 

 
36 
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8 States 
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Non-Binary WOM-Codes 

• Each cell has q levels {0,1,…,q-1}. 
• The achievable rate region of non-binary WOM-codes 

was given by  Fu and Han Vinck, 1999. 
• The maximal sum-rate of a t-writes, q-ary WOM code   

is  
   

 
 

• Random “partition” coding achieves capacity. 
• Recent works give specific code designs. 
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Lattice-based q-ary WOM Codes 
[Kurkoski 2012, Bhatia et al. 2012] 

• Lattice-based WOM codes for multi-level 
flash provides a possible way to combine 
increased endurance with error resilience. 

• Techniques developed for lattice-based 
data modems can be applied in the design 
of WOM codes with worst-case optimal 
sum-rates. 

• The key tool is “continuous approximation”. 
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2-cell 8-level WOM 

• The x and y axis denote the cell levels in [0,7].  
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Cell 2 

Cell 1 



• The initial level on each cell is 0.  

2-write q-level WOM Code 
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• Messages on the first write are encoded to points in 
the first write region, shown in blue.  

2-write q-level WOM Code 
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• The written cell levels (2,4) are indicated by the red dot. 

2-write q-level WOM Code 
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• Messages on 2nd write must encode to the red region. 

2-write q-level WOM Code 
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2-write q-level WOM Code 

• The 2nd second write region depends on 1st write 
• We want to optimize the worst-case sum-rate. 
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2-write q-level WOM Code 

• When the number of levels q is large, the lattice 
becomes denser. 
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Continuous Approximation 

• For large q, we approximate the discrete levels by a continuous 
region whose area reflects the number of messages. 
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Region 
[0,ℓ1]x[0,ℓ2] 



• First write: 
– Number of messages  

 
 

– Message encoded to  
 
 

• Second write: 
– Message encoded to  
 

 
– Number of 2nd-write messages that can be stored  in worst case: 

 
 

 
 

Continuous Approximation: 2-writes 

1 1V = L
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• We want to find the 1st -write  
 region Λ1 that maximizes the  
 total number of messages  
 on both writes when the  
 first encoding is the point 
                         with  the fewest 
 choices in its 2nd-write region. 
• So, we find Λ1 that maximizes:   
 

Optimal Worst-case Sum-rate: 2-writes 

( )
( )

1 1 1
1 2 1 2 1 1,

min ,
x y

V V x y
∈

⋅ = ×
L

L L

1 1 1( , )x y ∈L
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• The region Λ1 that  
 maximizes the worst-case  
 total number of messages  
 on both writes is a rectangular  
 hyperbola defined by 
 
 
  
 where                      .  The resulting sum-rate is given by: 
  

2-write Worst-case Sum-rate Region 

1 2
1 2

( , )  1 1x yx y ω
    = − − ≥   

     
L

( )( )21
1 2 2 2 1 22 1V V ω ω⋅ = −  

2 0.2847ω ≈
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• For 3 writes on 2 cells, 
 similar reasoning shows that 
 the optimal boundary of  
 the second-write region  
                  is a rectangular  
 hyperbola that maximizes the  
 number of messages for the   
 2nd and 3rd writes. 
  

 

Continuous approximation: 3 writes 

( )2 1 1,x yL
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• For 3 writes on 2 cells, 
 similar reasoning shows that 
 the optimal boundary of  
 the second-write region  
                  is a rectangular  
 hyperbola that maximizes the  
 number of messages for the   
 2nd and 3rd writes. 
  

 

Continuous approximation: 3 writes 

( )2 1 1,x yL
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• For 3 writes on 2 cells, 
 similar reasoning shows that 
 the optimal boundary of  
 the second-write region  
                  is a rectangular  
 hyperbola that maximizes the  
 number of messages for the   
 2nd and 3rd writes. 
• If  Λ1 is a rectangular hyperbola, the corresponding 

boundaries line up perfectly.  
 

 

Continuous approximation: 3 writes 

( )2 1 1,x yL
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• For 3 writes on 2 cells, 
 similar reasoning shows that 
 the optimal boundary of  
 the second-write region  
                  is a rectangular  
 hyperbola that maximizes the  
 number of messages for the   
 2nd and 3rd writes. 
• If  Λ1 is a rectangular hyperbola, the corresponding 

boundaries line up perfectly.  
•  The optimal write-region boundaries are all hyperbolas. 

 

Continuous approximation: 3 writes 

( )2 1 1,x yL
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• For 2 cells, t >3 writes, unrestricted rates, the 
optimal worst-case sum-rate is achieved when  
the boundaries of the write regions are   all 
rectangular hyperbolas. 
 

• Further generalizations characterize the optimal 
write regions for n cells, t writes, for both fixed-
rate and unrestricted-rate WOM codes. 
 
 

Generalizations 
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• To design codes for cells with q levels, we quantize the optimal 
write regions, creating corresponding codeword regions. 

• Messages in i-th write are encoded into cell-level pairs in the   
i-th region. 

• Consistent labeling of messages to codewords is needed 
 

Codes for Discrete-level Cells 
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Example: 2-write 8-level WOM Code 
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24 points in 
1st write 
region 



Example: 2-write 8-level WOM Code 
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Worst-case 2nd –write 
region size contains 
23 points 



Example: 2-write 8-level WOM Code 
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Consistent message  
assignment for all 2nd 
write region points 



Example: 2-write 8-level WOM Code 
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Concluding Remarks 
• WOM codes offer the possibility of increasing flash 

endurance by reducing the number of program-
erase cycles.  

• Recent studies show they may reduce write 
amplification [Luojie et al. 2012]. 

• WOM codes have been proposed as a way to 
combat inter-cell interference  [Li 2011]. 

• The combination of error-correction and WOM 
coding is an active area of research. 

• Progress has been made in the design and analysis 
of  WOM codes,  but much remains to be done! 
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0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

T 0 0 0 1 1 0 0 

H 0 0 0 0 0 0 1 

A 0 0 0 0 0 0 0 

N 1 0 0 0 0 0 1 

K 1 0 0 1 0 0 0 

Y 0 0 0 0 1 0 1 

O 0 1 1 0 0 0 0 

U 0 0 1 0 1 0 0 

Thank You for Your Attention 

• Using the   < 26,26 > / 7 Rivest-Shamir code 
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v 0 0 1 1 1 0 0 

e 0 0 1 1 0 1 1 

r 0 0 0 1 0 1 1 

y 1 0 1 0 1 1 1 

m 1 0 1 1 0 0 0 

u 0 0 1 1 1 1 1 

c 0 1 1 1 0 0 1 

h 1 1 1 1 1 0 0 
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