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• Binary data:  

• Linear intersymbol interference (ISI):  

• Additive white Gaussian noise: 

• Output:  

 

2D Optical Recording Model 
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Holographic Recording 
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Dispersive channel 
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Holographic Channel 

1 

0 

0 

0 0 

0 

0 0 0 

1 1 

0 0 0 

0 

0 1 1 

Recorded Impulse Readback Samples 









=

11
11

2
1

1 hNormalized 
impulse response: 



5/19/06 Parma 7 

TwoDOS Recording  

Courtesy of Wim Coene, Philips Research 
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TwoDOS Channel 
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Channel Information Rates 

• Capacity (C) 
 
– “The maximum achievable rate at which reliable data 

storage and retrieval is possible” 
 

• Symmetric Information Rate (SIR) 
 
– “The maximum achievable rate at which reliable data 

storage and retrieval is possible using a linear code.” 
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Objectives  

• Given a binary 2D ISI channel:  
 

1. Compute the SIR (and capacity) . 
 

2. Find practical coding and detection algorithms that 
approach the SIR (and capacity) . 
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Computing Information Rates 

• Mutual information rate: 
 
 

• Capacity: 
 
 
 

• Symmetric information rate (SIR): 
  
 
     where        is i.i.d. and equiprobable 
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Detour: One-dimensional (1D) ISI Channels 

• Binary input process 
 

• Linear intersymbol interference 
 

• Additive, i.i.d.  Gaussian noise   
 
   

 
 

∑
−

=

+−=
1

0
][][ ][][

n

k
inkixkhiy

][ix

][ih

)( 2,0~][ σNin



5/19/06 Parma 13 

Example: Partial-Response Channels 

• Common family of impulse responses:  
 
 
 

• Dicode channel   
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Entropy Rates 

 
• Output entropy rate: 

 
• Noise entropy rate:  

 
• Conditional entropy rate: 
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Computing Entropy Rates 

• Shannon-McMillan-Breimann theorem implies 
 

     
  
  
  
 as               , where          is a single long sample 

realization of the channel output process. 
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Computing Sample Entropy Rate 

• The forward recursion of the sum-product (BCJR) 
 algorithm can be used to calculate the probability  
 p(y1

n) of a  sample realization of the channel output. 
  
• In fact, we can write 

 
 
 

  
  
 where the quantity                      is precisely the  
 normalization constant in the (normalized) forward 
 recursion. 
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Computing Information Rates 

• Mutual information rate: 
 
 
 
 
 

•                       where        is i.i.d. and equiprobable 

 
• Capacity: 
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SIR for Partial-Response Channels 
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Computing the Capacity 

• For Markov input process of specified order r , this  
 technique can be used to find the mutual information 
 rate. (Apply it to the combined source-channel.)  
 
• For a fixed order r , [Kavicic, 2001] proposed a 

Generalized Blahut-Arimoto algorithm to optimize the 
parameters of  the Markov input source. 
 

• The stationary points of the algorithm have been shown 
to correspond to critical points of the information rate 
curve [Vontobel,2002] . 
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Capacity Bounds for Dicode h(D)=1-D 
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• The BCJR algorithm, a trellis-based “forward-
backward” recursion, is a practical way to 
implement the optimal a posteriori probability 
(APP) detector for 1D ISI channels. 
 

• Low-density parity-check (LDPC) codes in a 
multilevel coding / multistage decoding 
architecture using the BCJR detector can 
operate near the SIR.   

Approaching Capacity: 1D Case 
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Multistage Decoder Architecture 

Multilevel encoder 

Multistage decoder 
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Multistage Decoding (MSD)  

• The maximum achievable sum rate                       
     with  multilevel coding (MLC) and  multistage 
     decoding (MSD) approaches the SIR on 1D   
     ISI channels, as               .                       

 

• LDPC codes optimized using density evolution 
   with design rates close to 
   yield thresholds near the SIR. 

 

• For 1D channels of practical interest,     need 
not be very large to approach the SIR. 
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Information Rates for Dicode 
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Information Rates for Dicode 

Symmetric  
information rate 

Capacity lower bound 

Achievable multistage  
decoding rate  Rav,2 

Multistage 
LDPC threshold  



5/19/06 Parma 26 

Back to the Future: 2D ISI Channels 

• In contrast, in 2D, there is  
– no simple calculation of the H(Y ) from a large  

channel output array realization to use in 
information rate estimation. 

– no known analog of the BCJR algorithm for APP 
detection. 

– no proven method for optimizing an LDPC code for 
use in a detection scheme that achieves 
information-theoretic limits. 

• Nevertheless… 
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Bounds on the 2D SIR and Capacity 

• Methods have been developed to bound and estimate, 
sometimes very closely, the SIR and capacity of 2D ISI 
channels, using: 

 

Calculation of conditional entropy of small arrays  
  

1D “approximations” of 2D channels 
 

Generalizations of certain 1D  ISI bounds 
 

Generalized belief propagation 
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Bounds on SIR and Capacity of h1 

Tight SIR lower bound  

Capacity lower bounds 

Capacity upper bound 
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Bounds on SIR of h2 
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2D Detection – IMS Algorithm 

• Iterative multi-strip (IMS) detection offers near-optimal 
bit detection for some 2D ISI channels. 
 

• Finite computational complexity per symbol. 
 

• Makes use of 1D BCJR algorithm on “strips”. 
 

• Can be incorporated into 2D multilevel coding, 
multistage decoding architecture. 
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Iterative Multi-Strip (IMS) Algorithm 

Step 1. Use 1D BCJR to  
decode strips. 

Step 2. Pass extrinsic 
information between 
overlapping strips. 

iterate 
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2D Multistage Decoding Architecture 

Previous stage 
decisions pin trellis  
for strip-wise 
BCJR detectors 



5/19/06 Parma 33 

2D Interleaving 

• Examples of 2D interleaving with m=2,3.  
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IMS-MSD for h1 
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IMS-MSD for h1 

Achievable multistage  
decoding rate  Rav,2 

Achievable multistage  
decoding rate  Rav,3 

Multistage LDPC threshold m=2 

SIR upper bound 

SIR lower bound 
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Alternative LDPC Coding Architectures 

• LDPC (coset) codes can be optimized via  “generalized 
density evolution” for use with a 1D  ISI channel in a 
“turbo-equalization” scheme. 
 

• LDPC code thresholds are close to the SIR. 
 

• This “turbo-equalization” architecture has been extended 
to 2D, but  “2D generalized density evolution” has not 
been rigorously analyzed. 
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1D Joint Code-Channel Decoding Graph 
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2D Joint Code-Channel Decoding Graph  

check nodes 

   variable nodes 

      channel state nodes 
     (IMS) 

check nodes 

   variable nodes 

channel output nodes 
(“Full graph”) 

Full graph 
detector 

IMS 
detector 
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Concluding Remarks 

• For 2D ISI channels, the following problems are hard: 
 
– Bounding and computing achievable information rates 
– Optimal detection with acceptable complexity 
– Designing codes and decoders to approach limiting 

rates 
 

• But progress is being made, with possible implications 
for design of practical 2D optical storage systems. 
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