Information-Theoretic Limits of Two-Dimensional Optical Recording Channels

Paul H. Siegel Center for Magnetic Recording Research University of California, San Diego

Università degli Studi di Parma

Acknowledgments

- Center for Magnetic Recording Research
- InPhase Technologies
- National Institute of Standards and Technology
- National Science Foundation
- Dr. Jiangxin Chen
- Dr. Brian Kurkoski
- Dr. Marcus Marrow
- Dr. Henry Pfister
- Dr. Joseph Soriaga
- Prof. Jack K. Wolf

Outline

- Optical recording channel model
- Information rates and channel capacity
- Combined coding and detection
- Approaching information-theoretic limits
- Concluding remarks

2D Optical Recording Model

- Binary data: $x_{i,j}$
- Linear intersymbol interference (ISI): $h_{i,i}$
- Additive white Gaussian noise: $n_{i,j}$
- Output: $y_{i,j} = \sum_{k=0}^{K-1} \sum_{l=0}^{L-1} h_{k,l} x_{i-k,j-l} + n_{i,j}$

Holographic Recording

Courtesy of Kevin Curtis, InPhase Technologies

Holographic Channel

Recorded Impulse

Readback Samples

1

1

Normalized
impulse response:
$$h_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

TwoDOS Recording

Courtesy of Wim Coene, Philips Research

TwoDOS Channel

Readback Samples

Normalized impulse response:

$$h_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 0 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 0 \end{bmatrix}$$

Channel Information Rates

- Capacity (C)
 - "The maximum achievable rate at which reliable data storage and retrieval is possible"
- Symmetric Information Rate (SIR)
 - "The maximum achievable rate at which reliable data storage and retrieval is possible using a linear code."

Objectives

- Given a binary 2D ISI channel:
 - 1. Compute the SIR (and capacity).
 - 2. Find practical coding and detection algorithms that approach the SIR (and capacity).

Computing Information Rates

• Mutual information rate:

$$I(X;Y) = H(Y) - H(Y \mid X) = H(Y) - H(N)$$

• Capacity:

$$C = \max_{P(X)} I(X;Y)$$

• Symmetric information rate (SIR):

$$SIR = I(X;Y)$$

where X is i.i.d. and equiprobable

Detour: One-dimensional (1D) ISI Channels

- Binary input process x[i]
- Linear intersymbol interference h[i]
- Additive, i.i.d. Gaussian noise $n[i] \sim N(0, \sigma^2)$

$$y[i] = \sum_{k=0}^{n-1} h[k] x[i-k] + n[i]$$

Example: Partial-Response Channels

Common family of impulse responses:

$$h(D) = \sum_{i=0}^{N} h[i] D^{i} = (1-D)(1+D)^{N-1}$$

• Dicode channel h(D) = (1-D) $h_{dicode} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix}$

Entropy Rates

- Output entropy rate: $H(Y) = \lim_{n \to \infty} \frac{1}{n} H(Y_1^n)$
- Noise entropy rate: *H*

$$H(N) = \frac{1}{2} log(\pi e N_0)$$

• Conditional entropy rate:

$$H(Y \mid X) = \lim_{n \to \infty} \frac{1}{n} H(Y_1^n \mid X_1^n) = H(N)$$

Computing Entropy Rates

• Shannon-McMillan-Breimann theorem implies

$$-\frac{1}{n}\log p(y_1^n) \xrightarrow[a.s.]{} H(Y)$$

as $n \rightarrow \infty$, where y_1^n is a single long sample realization of the channel output process.

Computing Sample Entropy Rate

- The forward recursion of the sum-product (BCJR) algorithm can be used to calculate the probability $p(y_1^n)$ of a sample realization of the channel output.
- In fact, we can write

$$-\frac{1}{n}\log p(y_1^n) = -\frac{1}{n}\sum_{i=1}^n \log p(y_i / y_1^{i-1})$$

where the quantity $p(y_i / y_1^{i-1})$ is precisely the normalization constant in the (normalized) forward recursion.

Computing Information Rates

• Mutual information rate:

$$I(X;Y) = H(Y) - H(N)$$

computable known
for given X

• SIR = I(X;Y) where X is i.i.d. and equiprobable

• Capacity:
$$C = \max_{P(X)} I(X;Y)$$

SIR for Partial-Response Channels

Computing the Capacity

- For Markov input process of specified order *r*, this technique can be used to find the mutual information rate. (Apply it to the combined source-channel.)
- For a fixed order *r*, [Kavicic, 2001] proposed a Generalized Blahut-Arimoto algorithm to optimize the parameters of the Markov input source.
- The stationary points of the algorithm have been shown to correspond to critical points of the information rate curve [Vontobel,2002].

Capacity Bounds for Dicode h(D)=1-D

Approaching Capacity: 1D Case

- The BCJR algorithm, a trellis-based "forwardbackward" recursion, is a practical way to implement the optimal *a posteriori* probability (APP) detector for 1D ISI channels.
- Low-density parity-check (LDPC) codes in a multilevel coding / multistage decoding architecture using the BCJR detector can operate near the SIR.

Multistage Decoder Architecture

Multistage Decoding (MSD)

- The maximum achievable sum rate $R_{av,m} = \frac{1}{m} \sum_{i=1}^{m} R_m^{(i)}$ with multilevel coding (MLC) and multistage decoding (MSD) approaches the SIR on 1D ISI channels, as $m \to \infty$.
- LDPC codes optimized using density evolution with design rates close to $R_m^{(i)}$, i = 1, ..., myield thresholds near the SIR.
- For 1D channels of practical interest, *m* need not be very large to approach the SIR.

Information Rates for Dicode

5/19/06

Information Rates for Dicode

Back to the Future: 2D ISI Channels

- In contrast, in 2D, there is
 - no simple calculation of the H(Y) from a large channel output array realization to use in information rate estimation.
 - no known analog of the BCJR algorithm for APP detection.
 - no proven method for optimizing an LDPC code for use in a detection scheme that achieves information-theoretic limits.
- Nevertheless...

Bounds on the 2D SIR and Capacity

- Methods have been developed to bound and estimate, sometimes very closely, the SIR and capacity of 2D ISI channels, using:
 - Calculation of conditional entropy of small arrays
 - ➤ 1D "approximations" of 2D channels
 - Generalizations of certain 1D ISI bounds
 - Generalized belief propagation

Bounds on SIR and Capacity of h_1

Bounds on SIR of h_2

5/19/06

2D Detection – IMS Algorithm

- Iterative multi-strip (IMS) detection offers near-optimal bit detection for some 2D ISI channels.
- Finite computational complexity per symbol.
- Makes use of 1D BCJR algorithm on "strips".
- Can be incorporated into 2D multilevel coding, multistage decoding architecture.

Iterative Multi-Strip (IMS) Algorithm

iterate

Step 1. Use 1D BCJR to decode strips.

Step 2. Pass extrinsic information between *overlapping* strips.

2D Multistage Decoding Architecture

2D Interleaving

• Examples of 2D interleaving with m=2,3.

m=3

IMS-MSD for h_1

Parma

IMS-MSD for h_1

Alternative LDPC Coding Architectures

- LDPC (coset) codes can be optimized via "generalized density evolution" for use with a 1D ISI channel in a "turbo-equalization" scheme.
- LDPC code thresholds are close to the SIR.
- This "turbo-equalization" architecture has been extended to 2D, but "2D generalized density evolution" has not been rigorously analyzed.

1D Joint Code-Channel Decoding Graph

check nodes

variable nodes

channel output nodes (MPPR)

2D Joint Code-Channel Decoding Graph

Concluding Remarks

- For 2D ISI channels, the following problems are hard:
 - Bounding and computing achievable information rates
 - Optimal detection with acceptable complexity
 - Designing codes and decoders to approach limiting rates
- But progress is being made, with possible implications for design of practical 2D optical storage systems.