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How Jack Did It
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DATA STORAGE AND TRANSMISSION SYSTEMS
THAT LAUNCHED THE INFORMATION AGE.

DEDICATED OCTOBER 16, 2001
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Data Storage and Transmission

® A data transmission system communicates
Information through space, i.e.,

“from here to there.”

® A data storage system communicates information
through time, 1.e.,

“from now to then.”

[Berlekamp, 1980]
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Figure 1
(for Magnetic Recording)
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® Binary-input
® Inter-Symbol Interference (ISI)
® Additive Gaussian Noise
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A Miraculous Technology

o Areal Density Perspective — 45 Years of Progress
o Average Price of Storage
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Average Price of Storage
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The Formula on the “Paper”

Capacity of a discrete channel with noise [Shannon, 1948]
C =Max (H(x) — Hy (X))
For noiseless channel, H,(x)=0, so:

C =Max H(x)

Gaylord, MI: C =W log (P+N)/N
Bell Labs: no formula on paper

(“H=-plogp-qglogqg” on plaque)
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Discrete Noiseless Channels
(Constrained Systems)

® A constrained system S is the set of sequences generated
by walks on a labeled, directed graph G.

Telegraph channel constraints [Shannon, 1948]
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Magnetic Recording Constraints

Runlength constraints

Spectral null constraints

(“finite-type”: determined by (“almost-finite-type™)
finite list F of forbidden words)

Biphase

0 0
Even
1
0 O >
Forbidden words F={101, 010} 1
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Practical Constrained Codes

Finite-state encoder Sliding-block decoder
(from binary data into S) (inverse mapping from S to data)
n bits
m data bits n code bits |
e e e e e m - — a
— | Encoder Logic [ 1
Rate m:n Decoder
Logic
— (states)
m bits

We want: high rate R=m/n
low complexity
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Codes and Capacity

® How high can the code rate be?
® Shannon defined the capacity of the constrained system S:

1
C =|im—log N(S,n)

n—w [

where N(S,n) is the number of sequences in S of length n.

Theorem [Shannon,1948] : If there exists a decodable code at
rate R=m/n from binary data to S, then R UC.

Theorem [Shannon,1948] : For any rate R=m/n < C there
exists a block code from binary data to S with rate km:kn,
for some integer k D1.
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Computing Capacity:
Adjacency Matrices

® Let Ag be the adjacency matrix of the graph G
representing S.

® The entries In AGn correspond to paths in G of length n.
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Computing Capacity
(cont.)

® Shannon showed that, for suitable representing graphs G,

C =log p(Ag)

where p(Ag)=max{ ||: 2 is an eigenvalue of Ag } , i.e.,
the spectral radius of the matrix Ag.

® Assigning “transition probabilities” to the edges of G, the
constrained system S becomes a Markov source x, with
entropy H(x). Shannon proved that

C =max H(x)
and expressed the maximizing probabilities in terms of the
spectral radius and corresponding eigenvector of Ag .
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Constrained Coding Theorems

® Stronger coding theorems were motivated by the problem
of constrained code design for magnetic recording.

Theorem[Adler-Coppersmith-Hassner, 1983]

Let S be a finite-type constrained system. If m/n <C, then
there exists a rate m:n sliding-block decodable, finite-state
encoder.

(Proof is constructive: state-splitting algorithm.)

Theorem|[Karabed-Marcus, 1988]
Ditto if S is almost-finite-type.
(Proof not so constructive...)
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Distance-Enhancing Codes
for Partial Response Channels

e Beginning in 1990, disk drives have used a technique
called partial-response equalization with maximum-
likelihood detection, or PRML. In the late 1990’s,
extensions of PRML, denoted EPRML and EEPRML
were introduced.

e The performance of such PRML systems can be improved
by using codes with “distance-enhancing’ constraints.

* These constraints are described by a finite set D of
“forbidden differences,” corresponding to differences of
channel input sequences whose corresponding outputs are
most likely to produce detection errors.
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Codes that Avoid Specified Differences

* The difference between length-n binary words u and v is
U—v=(U —Vq,...,u, =V )€ {-1,0,1}"

e A length-n code avoids D if no difference of codewords
contains any string in D.

« Example: D = {+ +,+ -}
Length-2 code: Co = {u,v}= {0010}
u—v=(-0)
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Capacity of Difference Set D
[Moision-Orlitsky-Siegel]

® How high can the rate be for a code avoiding D?
® Define the capacity of the difference set D:

cap(D)log| fim (5,(D)F" |

where o SD) IS the maximum number of codewords in a
(block) code of length n that avoids D.

® Problem: Determine cap(D) and find codes that achieve it.
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Computing cap(D):
Adjacency Matrices

® Associate to D a set of graphs and corresponding set Z(D)
of adjacency matrices reflecting disallowed pairs of code

patterns:
>»=%(D)={A:i=1,... k}

® Consider the set of n-fold products of matrices in 2 :

Z”:<HB B, eZ;

L )=

® Each product corresponds (roughly) to a code avoiding D.
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Generalized Spectral Radius p(X)

® Define
: n
Pn(Z)= SUP{P(A) AEZ } ’
the largest spectral radius of a matrix in 2’ N

® The generalized spectral radius of 2’ is defined as:

p(2)=limsup[p, ()] ¥"

N—0o0

[Daubechies-Lagarias,1992], cf. [Rota-Strang, 1960]
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Computing cap(D)
(cont.)

Theorem[Moision-Orlitsky-Siegel, 2001]
For any finite difference set D,

cap(D)=log p(£(D)) .
Recall formula for the capacity of a constrained system S

C =log p(Ag) .

® Computing cap(D) can be difficult, but a constructive
bounding algorithm has yielded good results.
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A Real Example: EEPRML

® Codes can improve EEPRML performance by avoiding
D={0+-+0}
® Codes satisfying the following constraints avoid D:

» F={101,010} C=0.6942...
» F={101} C=0.8113...
» F={0101,1010} C=0.8791... MTR [Moon,1996]

® What is cap(D), and are there other simple constraints
with higher capacity that avoid D ?
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EEPRML Example
(cont.)

® For D:{O+—+O} ,
0.9162 <cap(D) < 0.9164.

® The lower bound, conjectured to be exactly cap(D), Is
achieved by the “time-varying MTR (TMTR)”
constraint, with finite periodic forbidden list:

F = {1010°% 010190 |

® Rate 8/9, TMTR code has been used in commercial disk
drives [Bliss, Wood, Karabed-Siegel-Soljanin].
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Periodic Finite-Type Constraints

of constraints, called “periodic finite-type,” characterized
by a finite set of periodically forbidden words.

[Moision-Siegel, ISIT 2001]

FINITE-TYPE

PERIODIC
FINITE-TYPE

BIPHASE

TMTR
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Other Storage-Related Research

® Page-oriented storage technologies, such as holographic
memories, require codes generating arrays of bits with
2-dimensional constraints. This is a very active area of
research.

[Wolf, Shannon Lecture, ISIT 2001]

® There has been recent progress related to computing the
capacity of noisy magnetic recording (1SI) channels,

C = Max (H(x) — H,(x)) .

[Arnold-Loeliger, Arnold-Vontobol, Pfister-Soriaga-Siegel,
Kavcic, 2001]
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Conclusion

® The work of Claude Shannon has been a key
element in the “miraculous’ progress of modern
Information storage technologies.

® In return, the ongoing demand for data storage
devices with larger density and higher data
transfer rates has “miraculously” continued to

Inspire new concepts and results in information
theory.

10/15/01 Shannon Symposium

30



	Slide Number 1
	Outline
	Claude E. Shannon
	Acknowledgments
	How Jack Did It
	The Inscription
	Data Storage and Transmission
	Figure 1 �(for Magnetic Recording)
	A  Miraculous Technology
	Areal Density Perspective
	Average Price of Storage
	The Formula on the “Paper”
	Discrete Noiseless Channels�(Constrained Systems)
	Magnetic Recording Constraints
	Practical Constrained Codes
	Codes and Capacity
	Computing Capacity:�Adjacency Matrices
	Computing Capacity �(cont.)
	Constrained Coding Theorems
	Distance-Enhancing Codes �for Partial Response Channels
	Codes that Avoid Specified Differences
	Capacity of Difference Set D� [Moision-Orlitsky-Siegel]
	Computing cap(D):�Adjacency Matrices
	Generalized Spectral Radius ()
	Computing cap(D)�(cont.)
	A Real Example: EEPRML
	EEPRML Example�(cont.)
	Periodic Finite-Type Constraints
	Other Storage-Related Research 
	Conclusion

