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On the Capacity of Channels With
Timing Synchronization Errors
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Abstract— We consider a new formulation of a class of
synchronization error channels and derive analytical bounds and
numerical estimates for the capacity of these channels. For the
binary channel with only deletions, we obtain an expression for
the symmetric information rate in terms of subsequence weights,
which reduces to a tight lower bound for small deletion proba-
bilities. We are also able to exactly characterize the Markov-1
rate for the binary channel with only replications. For a channel
that introduces deletions as well as replications of input symbols,
we design approximating channels that parameterize the state
space and show that the information rates of these approximate
channels approach that of the deletion–replication channel as the
state space grows. For the case of the channel where deletions and
replications occur with the same probabilities, a stronger result
in the convergence of mutual information rates is shown. The
numerous advantages this new formulation presents are explored.

Index Terms— Synchronization errors, deletions, insertions,
replications, channel capacity.

I. INTRODUCTION

CHANNELS with synchronization errors have been
familiar to information and coding theorists and prac-

titioners alike ever since the advent of the digital information
era. Although Dobrushin [2] established the coding theorem
for such channels as early as 1967, tackling these channels
in terms of estimating information rates and constructing
codes with good performance has proved to be very tough.
In the last decade, significant progress has been made in
estimating achievable information rates for certain channels
with synchronization errors. However, a coding scheme with
provably “good” performance remains elusive thus far.

In this paper, we start by revisiting Dobrushin’s model
of channels with synchronization errors, henceforth referred
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to as the synchronization error channel (SEC). We model
channels with timing-synchronization errors as channels with
states, and show that these channels are equivalent to a sub-
class of SECs considered by Dobrushin—called the deletion-
replication channels (DRCs). Using our model for the DRC,
we establish several bounds on achievable rates under spe-
cial cases. We also construct a sequence of channels that
“approximate” the DRC and whose limit is the DRC itself.
We then use these approximate channels to derive some
numerical estimates of the information rates achievable over
the DRC. Although the motivation behind the alternative
model is straightforward, its use to obtain non-trivial bounds
on the capacity of the SEC has, to the best of our knowledge,
not been found in literature. While the present paper concerns
only a few asymptotic results on information rates of channels
with timing synchronization errors, we think that the model
presented here can be utilized to design codes for SECs in
general.

The remainder of this paper is organized as follows.
In Section II, we revisit Dobrushin’s model of a SEC and
recall the main results on capacity of SECs. In Section III, we
formulate our model for channels with timing synchronization
errors and establish their equivalence to Dobrushin’s model for
the DRCs. We explore the advantages of our formulation of
the DRC model in the two subsequent sections. Under special
cases of channels with only deletions or only replications, we
give some simple, non-trivial and sometimes tight bounds on
the capacity in Sections IV-A and IV-B. We then construct a
sequence of finite state channels that approximate the DRC and
establish certain properties of this sequence of channels that
serve as estimates for the capacity of the DRC in Section V.
We conclude with summary and remarks in Section VI.

II. SYNCHRONIZATION ERROR CHANNELS

Remark 1 (Notation): Non-random variables are written as
lowercase letters, e.g., n. We denote sets by double-stroke
uppercase letters, e.g., X. We will reserve N, Z and R to
denote the sets of natural numbers, integers and real numbers,
respectively. Z

+ denotes the set of non-negative integers.
We define

[n] � {1, 2, · · · , n}, n ∈ N, (1)

[0] � ∅, (2)

[m : n] �
{

{m,m + 1, · · · , n}, m ≤ n,

∅, n < m.
and (3)

Z±m � {−m,−m + 1, · · · , 0, 1, · · · ,m} ∀m ∈ Z
+. (4)

For some n ∈ N, we will let X
n denote the set of vectors

of dimension n with elements from X. We will write x to
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denote a string, and λ to denote the empty string. The length
of a string, denoted |x |, is the number of symbols in it, and
by definition, |λ| = 0. With some abuse of notation, we
will use “vectors of dimension n” and “strings of length n”
interchageably. The set of all strings of length n over the
alphabet X is hence also denoted X

n , and X
0 = {λ}. We write

X to denote the set of all strings over the set X, i.e.,

X =
∞⋃

i=0

X
i . (5)

We will use the notation “◦” to denote the concatenation
operation, so that x ◦ y is the concatenation of strings x and y.
Similarly, ◦(x [n]) denotes concatenation of the n strings
xi , i ∈ [n].

Throughout the paper, we assume an underlying probability
space (S,B,P) over which random variables, denoted by
uppercase letters, e.g., X , are defined. Random vectors are
denoted by uppercase letters with the multiset of indices as
subscripts, e.g., X[n] = (X1, X2, · · · , Xn), or XY[n] when
the multiset of indices is itself the elements of a random
vector Y[n]. Random processes (assumed discrete-time) are
denoted by script letters X , or subscripted by the set of natural
numbers, XN.

We will use the asymptotic notations O(·), o(·), ω(·) as
in [3] and [4]. We will write an

.= bn for real sequences
{an}n≥1 and {bn}n≥1 to mean limn→∞ an

n = limn→∞ bn
n . �

We start by defining the synchronization error channels as
considered by Dobrushin [2].

Definition 1 (Memoryless SECs): Let X be a finite set.
A memoryless synchronization error channel is specified by
a stochastic matrix

{q(y | x), y ∈ Y, x ∈ X}
where Y is the output alphabet. From the properties of a
stochastic matrix, we have

0 ≤ q(y | x) ≤ 1,
∑
y∈Y

q(y | x) = 1 ∀x ∈ X. (6)

Further, we will assume that the mean value of the length
of the output string arising from one input symbol is strictly
positive and finite, i.e.,

0 <
∑
y∈Y

|y| · q(y | x) < ∞. (7)

For x[n] = (x1, x2, · · · , xn) ∈ X
n and y[n] =

(y1, y2, · · · , yn) ∈ Y
n
, we write

qn(y[n] | x[n]) =
n∏

i=1

q(yi | xi ). (8)

The transition probabilities of the memoryless SEC are
defined as

Qn(y | x[n]) =
∑

◦(y[n])=y

qn(y[n] | x[n]) (9)

for y ∈ Y and x[n] ∈ X
n . The memoryless SEC is given by the

triplet Qn � (X,Y,Qn), the input and the output alphabets,

and the transition probabilities between input strings of
length n and all output strings. �

Consider the sequence of memoryless SECs {Qn}∞n=1. Then,
we have the following.

Theorem 2 (Capacity [2]): Let X[n] and Y denote the input
and the output of the SEC Qn . Let

Cn = sup
P(X[n])

1

n
I (X[n]; Y ). (10)

Then,

C = lim
n→∞ Cn = inf

n≥1
Cn (11)

exists and is equal to the capacity of the sequence of
SECs. �

The quantity C represents the maximum rate at which
information can be transferred over the SEC with vanishing
error probability. Furthermore, the following result shows that,
in estimating the capacity of the SEC, we can restrict ourselves
to a subclass of possible input processes X .

Proposition 3 (Markov Capacity [2]): Let XM be a
stationary, ergodic, Markov process over X. Then the capacity
of the sequence {Qn}∞n=1 is

C = sup
XM

lim
n→∞

1

n
I (X[n]; Y ). (12)

The capacity is therefore the supremum of the rates achievable
through stationary, ergodic, Markov processes XM. �

We will now give an example of a memoryless SEC.
Throughout the paper, we will assume that the input alphabet
for the SECs is X = {0, 1}, i.e., the channels considered are
binary memoryless SECs. However, we note here that all the
results in the paper can be straightforwardly extended to the
case where X is any finite set.

Example 4 (Deletion-Replication Channel (DRC)): Con-
sider the binary SEC with X = Y = {0, 1} and the following
stochastic matrix.

q(y | x) =
{

pd, y = λ

pt p�−1
r , y = x�, ∀� ≥ 1.

(13)

Intuitively, we can think of pd as the deletion probability,
pt as the transmission probability, and pr as the replication
probability, i.e., when x ∈ X is sent, it is either deleted with
probability pd, or transmitted and replicated (� − 1) times
with probability pt p�−1

r for � ≥ 1. From (6), we get for pr < 1

pd +
∞∑
�=1

pt p�−1
r = pd + pt

1 − pr
= 1, (14)

or equivalently

pt = (1 − pd)(1 − pr). (15)

From (7),

0 <
∞∑
�=1

�pt p�−1
r = pt

(1 − pr)2
= 1 − pd

1 − pr
< ∞ (16)

where we use Equation (15). Hence (pd, pr) ∈ [0, 1)2. Note
that when pr = 0, the DRC is the same as the binary
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deletion channel (BDC); and when pd = 0, it is the binary
replication channel (BRC), also referred to as the geometric
binary sticky channel [5]. �
A. Prior Work

The BDC has been the most well-studied SEC. In [6], the
author surveys the results that were known prior to 2009.
To summarize, the best known lower bounds were obtained,
chronologically, through bounds on the cutoff rate for sequen-
tial decoding [7], bounding the rate with a first-order Markov
input [8], reduction to a Poisson-repeat channel [9], analyzing
a “jigsaw-puzzle” coding scheme [10], or by directly bounding
the information rate by analyzing the channel as a joint
renewal process [11]. Recently, Kanoria and Montanari [12]
and Kalai et al. [13] independently gave the capacity of a BDC
with small deletion probabilities, and showed that it is achieved
by independent and uniformly distributed (i.u.d.) inputs. The
known upper bounds for the BDC have been obtained by
genie-aided decoder arguments [14], [15]. An idea from [15]
was extended to obtain some analytical lower bounds on the
capacity of channels that involve substitution errors as well as
insertions or deletions [16]. The idea in [12] was extended to
obtain a better approximation for the capacity of the BDC with
small deletion probabilities in [17]. More recently, the authors
of [18] obtained numerical lower bounds on the capacity of
the BDC. To do this, they estimate the information rates
achieved by Markov sources through a Monte-Carlo estimation
of the output entropy rate and an estimation of the conditional
output entropy (conditioned on the input process) via a sum-
product algorithm; and then optimized the input distribution
using the Nelder-Mead algorithm.

For the BRC, [5] obtained lower bounds on the capacity
by numerically estimating the capacity per unit cost of the
equivalent channel of runs through optimization of 8 and 16 bit
codes. This approach was further improved in [18] to obtain
sharp lower and upper bounds (with negligible gap). These
results showed a surprising characteristic of the BRC—that
the capacity approaches a non-zero value as the probability of
replication approaches 1.

There are very few results on channels including both
deletions and replications. Although the method in [11] can be
applied to such channels, no estimates of the achievable rates
were presented therein. In [18], the authors estimate numerical
lower bounds on the capacity of binary DRC using the same
approach as for BDCs mentioned above. They also present
upper bounds on the capacity by estimating the capacity per
unit-cost of an equivalent block channel with a genie-aided
decoder that truncates input and output runs.

B. Contributions

In contrast to the existing results on the BDC, our approach
explicitly characterizes the achievable information rates in
terms of “subsequence-weights”, which is a measure relevant
in maximum-likelihood (ML) decoding for the BDC [6].
Additionally, the method proposed here gives the tight bound
on capacity for small deletion probabilities obtained in [12]
more directly.1 In contrast to the lower bound in [18], our

1Note that although we obtain the same lower bound for the capacity of the
BDC as in [12], we do not prove a converse here.

results are analytical and readily generalize to any finite
alphabet.

For the BRC, we obtain direct analytical lower bounds on
the capacity, including an exact expression for the Markov-1
rate that was evaluating numerically in [18]. Interestingly, the
expression for the Markov-1 rate presented in [10] is different
from our result, although the values of the expressions match.

For the case of DRCs, by approximating them using finite-
state channels (FSCs), we establish results that show that the
information rates of these approximating channels approach
that of the DRC as the state space grows. For the case of DRCs
with equal deletion and replication probabilities, we prove that
a sublinear growth in the state space of the approximating
FSCs is sufficient for the convergence of information rates to
that of the underlying DRC. We also estimate numerically the
information rates achievable on these FSCs. Although these
estimates are not direct bounds on the capacity of the DRC,
we provide empirical evidence to support the claim that the
information rates of these approximating FSCs converge a lot
more quickly than is guaranteed by theory for small deletion-
replication probabilities. This implies that in the range of small
deletion-replication probabilities, our estimates serve as good
upper bounds for the capacity of the DRC. Moreover, due to an
artifact of the channel model considered in [18], the complete
channel space is not representable, and therefore, for the
channels that cannot be represented by the model, no results
are known. Our approach does not have this limitation and the
results we obtain apply to all channels in the family of DRCs.

III. TIMING SYNCHRONIZATION ERROR CHANNELS

We now present a mathematical model for channels with
timing synchronization errors. Intuitively, the noise in timing
synchronization error channels manifests as a time-drift
between the inputs and the outputs of the channel.

A. Channel Model

We model the timing synchronization error channels as
channels with states where the state governs the drift between
the channel input and output. The realization of the channel
state process produces a noisy version of the channel input at
its output where the exact correspondence between the output
symbol indices and the input symbol indices are lost due to
randomness. We start with a few definitions that will help
us in describing the channel model that will be considered
throughout the paper.

Definition 5 (State Process): The state process Z is defined
to be a first-order Markov process over the set of integers Z

with the transition probabilities, for i ∈ Z, given by

P(Zi = zi | Zi−1 = zi−1) =
{

pr, zi = zi−1 + 1

p�d pt, zi = zi−1 − � ∀� ≥ 0

(17)

where (pd, pr) ∈ [0, 1)2 and pt is as defined in
Equation (15). �

We note that the transition probabilities defined above
are independent of the time index i . Also, the probabilities
are only functions of the “increments” of the state process
(zi − zi−1).
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Pn(y | x[n],B0) =
∑

{z[|y|]:z1<1}
P
(

Nn = |y|, Z[|y|] = z[|y|],Y[|y|] = y | X[n] = x[n],B0

)
(18)

=
∑

{z[|y|]:z1<1}
P(Z |y|+1 < |y| + 1 − n | Z |y| = z|y|) · P(Z1 = z1 | B0) · P(Y1 = y1 | X[n] = x[n], Z1 = z1)

·
|y|∏

i=2

(
P(Zi = zi | Zi−1 = zi−1) · P(Yi = yi | X[n] = x[n], Zi = zi )

)
(19)

= 1

1 − pr
·

∑
{z[|y|]:z1<1}

P(Z |y|+1 < |y| + 1 − n | Z |y| = z|y|) ·
|y|∏

i=1

(
P(Zi = zi | Zi−1 = zi−1) · 1{yi=xi−zi }

)
(20)

=
∑

{z[|y|]:z1<1}
p

n−|y|+z|y|
d ·

|y|∏
i=1

(
P(Zi = zi | Zi−1 = zi−1)1{yi=xi−zi }

)
. (21)

Definition 6 (Compatible State Paths): For n ∈ N, a state
path z[n] ∈ Z

n that has a strictly positive probability accord-
ing to the transition probabilities in Equation (17) is called
compatible. �

Therefore, without loss of generality, we will confine
attention to the full set comprising only compatible state paths
in our discussion throughout the paper.

Definition 7 (Index Process): We define the index process
Γ as the random process related to the state process Z as

�i � i − Zi ∀ i∈ Z. �
It is easy to see that the index process inherits the first-order
Markovity from the Z process. Moreover, we also have that
the Γ process is almost surely non-decreasing, i.e.,

�i+ j ≥ �i ∀i ∈ Z, j ≥ 0 a. s., (22)

a fact that we will use often throughout the paper.
Definition 8 (Maximal Index Times): For n∈ Z, we define

the nth maximal index time, denoted Nn , as

Nn � sup{i ∈ Z : �i ≤ n}. (23)

In words, the nth maximal index time is the maximum time
instant for which the index process is bounded by n. �

Although we have thus far defined the state and index
processes to be doubly-infinite random processes, we will
henceforth be only interested in the semi-infinite processes
{Zn}n∈Z+ and {�n}n∈Z+ . We further impose the following
boundary conditions which we will later expound

B0 � {Z0 = 0 and N0 = 0}. (24)

With the above boundary conditions, it is easy to see that
Z[Nn ] ↔ �[Nn ] ↔ N[n] for every n ∈ N.

Definition 9 (Index Vector and Index Set): For n ∈ N, the
random vector �[Nn ] is referred to as the index vector.
We denote by {�[Nn ]} the set of elements in the index
vector �[Nn ] and refer to it as the index set. �

We can now define the channel model for timing
synchronization errors.

Definition 10 (Channel Model for Timing Synchronization
Errors): Let X be a finite set. For a fixed n ∈ N, the channel
input is a realization X[n] ∈ X

n of the input process X .

We define the channel output as

Yi = X�i = Xi−Zi , ∀i ∈ [Nn], (25)

where the state process Z is assumed to be independent of the
channel input process X , i.e., X ⊥⊥ Z . �

Remark 2: We will henceforth assume that S = SX × SZ
and that B = BX ×BZ with BX = σ(X ) and BZ = σ(Z),
i.e., the space (S,B) is a product space. Since in our channel
model in Definition 10, we have X ⊥⊥ Z , there is no loss
of generality in making this assumption on the space (S,B)
where the probability measure P is defined.

It is clear that the channel output alphabet Y = X. With the
model above, we can now provide an operational significance
of the boundary condition B0 in Equation (24). Z0 = �0 = 0
implies that the channel is perfectly synchronized before
transmission commences, and N0 = 0 implies that the channel
commences transmission of input symbols of interest, i.e.,
input symbols with indices in the set [n], at time index 1.
The random variable Nn can also be interpreted as the length
of the output produced by the channel upon feeding an input
of length n.

For y ∈ Y and x[n] ∈ X
n , the channel transition probabilities

are given as in Equation (21), as shown at the top of this
page, where we have assumed that z0 = 0, and (21) follows
from (20), as shown at the top of this page, from the transition
probabilities (17) and the fact that γ|y| = |y| − z|y| ≤ n.
We emphasize that the channel transition probabilities Pn are
implicitly conditioned upon the boundary conditions B0.

Definition 11 (Timing Synchronization Error Channels):
For each n ∈ N, we define the timing synchronization error
channel as the channel Pn � (X,Y, Pn) where Y = X and Pn

is as in Equation (21). �
Remark 3: Dobrushin’s model of SEC (cf. Definition 1)

tracks the output string generated by each input symbol. In our
model of the timing synchronization error channels, we track
the input symbol that gave rise to each output symbol. We note
that although the idea of modeling the “drift” between the
transmitter and the receiver has been previously proposed,
this has not been directly used to define a channel model.
We show that many properties of this model can be exploited
to arrive at bounds on the capacity of the channels with timing-
synchronization errors.
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Fig. 1. Plot of state path realization z[n] for n = 10. The corresponding
realization of the Γ process can be seen by drawing contours of �i : Zi = i−γ .
These contours are also shown in the figure, and the corresponding �i values
are noted along the top and the right edges of the plot. The �[10] values
realized by the state path z[10] are shown in bold larger font. The space of
all compatible state paths is confined to the white (unshaded) portion of this
graph.

Fig. 1 illustrates the way the channel Pn operates. The
state process realization z[n] shown for n = 10 in Fig. 1
is a compatible state path, since it corresponds to the
state sequence z[10] = (0,−1,−1, 0, 1, 1,−1,−1,−2,−2)
and a non-decreasing index process realization γ[10] =
(1, 3, 4, 4, 4, 5, 8, 9, 11, 12). This path produces the output
y[10] = xγ[10] from the input x[12].

Equation (21) says that the transition probability of the
channel Pn is the sum over all compatible state paths satisfying
the boundary conditions B0 producing output y from input
x[n] of the probability of the state path times the probability of
deleting the (n − γ|y|) trailing symbols of x[n]. The following
result, whose proof is deferred to Appendix VI, establishes
the relation between the Dobrushin DRC Qn and the timing
synchronization error channel Pn .

Proposition 12 (Channel Equivalence): For each n ∈ N,
the channels Qn and Pn are identical. �

Henceforth, we will use the terms timing synchronization
error channels and DRCs interchangeably. We note the fol-
lowing useful results and omit their proofs since they follow
as a consequence of Proposition 12.

Corollary 13: For the channel Pn, n ∈ N, we have

(i) The ratio of the output length to the input length
Nn
n → 1−pd

1−pr
almost surely as n → ∞.

(ii) By definition, {�[Nn ]} ⊆ [n]. We have P(i /∈ {�[Nn ]}) =
pd for i ∈ [n].

(iii) The cardinality of the index set, |{�[Nn ]}|, is the number
of symbols among n input symbols that were not deleted

at the output. We have E
[
|{�[Nn ]}|

]
=n(1 − pd). Note

that |{�[Nn ]}| = Nn in general when pr > 0. �
Corollary 14 (Dobrushin’s Results for {Pn}∞n=1): For input

X[n] and output Y[Nn ] of the channel Pn , the quantity

C = lim
n→∞ sup

P(X[n])

1

n
I (X[n]; Y[Nn ]| B0) (26)

= sup
XM

lim
n→∞

1

n
I (X[n]; Y[Nn ]| B0), (27)

where XM represents stationary, ergodic, Markov processes
over X, exists and is equal to the capacity of the sequence of
channels {Pn}∞n=1. �

We will henceforth restrict our attention to this class of input
processes.

Remark 4: Variants of the channel model introduced here
can be used to represent wider classes of channels. By consid-
ering the channel state process Z to be a higher-order Markov
process, synchronization channels with memory such as the
segmented deletion channels [19], [20] can be modeled. Note
however, that higher-order Markov processes can also be used
to model some memoryless synchronization error channels,
such as the elementary sticky channel [5] and Gallager’s
insertion-deletion channel [7]. Bounded memoryless synchro-
nization channels [16] can also be modeled via higher-order
Markov Z processes. Some results on the achievable rates of
such channels and cascades of such channels with subsitution
error channels and inter-symbol interference (ISI) channels can
be found in [21], and [22] and [23], respectively. Another set
of channels that can also be modeled are the jitter [24], [25]
and bit-shift channels [26] as well as the write-channel
or grain-error channels studied in the context of magnetic
recording [27], [28]. These latter channels can actually be
seen as variants of the finite-state channel approximations
we will introduce to the timing-synchronization channels in
Section V. Permuting [29], Trapdoor [30] channels and Mole-
cular Communication channels [31] can also be thought of
as variants of the timing synchronization error channel model
defined here. Although each of the aforementioned cases are
interesting in their own right, further consideration of these
channels is beyond the scope of our paper. We emphasize that
alternative channel state-based models might be of use in a
wide context, but will stick to the DRC and its special cases
henceforth.

B. Bounds on the Capacity of the DRC

The formulation of the DRC in Section III-A allows us
to immediately establish the following simple bounds on the
capacity of the DRC for (pd, pr) ∈ [0, 1)2:

(1 − pd)
(

1 − h2(pr)

1 − pr

)
− h2(pd) ≤ C ≤ 1 − pd. (28)

Here

h2(x) �
{

−x log2 x − (1 − x) log2(1 − x), x ∈ (0, 1)

0, x ∈ {0, 1}
(29)

is the binary entropy function [32]. In fact, the lower bound
above is actually a lower bound on the rate achieved by i.u.d.
inputs, referred to as the symmetric information rate (SIR) and
denoted Ciud . Three special cases of the DRC are of particular
interest: the binary deletion channel (BDC) with pd = p,
pr = 0; the symmetric deletion-replication channel (SDRC)
with pd = pr = p; and the binary replication channel (BRC)
with pd = 0, pr = p. Specializing the bounds in (28) to these
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cases gives us the following.

1 − p − h2(p) ≤ Ciud
BDC ≤ CBDC ≤ 1 − p,

1 − p − 2h2(p) ≤ Ciud
SDRC ≤ CSDRC ≤ 1 − p,

1 − h2(p)

1 − p
≤ Ciud

BRC ≤ CBRC ≤ 1. (30)

Although these bounds have simple closed-form expressions
with well known information theoretic functions, they are
loose compared to the best known (analytical or numerical)
bounds for the capacity of these channels. We note here that
bounds similar to the above are shown to be tight for channels
with large alphabets in [18]. We can, however, improve these
bounds. Using Corollary 13 (ii), it can be shown that

I (X[n]; Y[Nn ]| B0) ≥ (1 − pd)H (X[n])+ I (Y[Nn ]; Z[Nn ]| B0)

− H (Z[Nn]| B0)

+ H (Z[Nn] | X[n],Y[Nn ],B0). (31)

Further from the transition probabilities in (17) and
Corollary 13 (i), it is easy to see that

H (Z[Nn] | B0)
.= n

(1 − pd

1 − pr
h2(pr)− h2(pd)

)
. (32)

Consequently, we have

C ≥ sup
X

(
(1 − pd)H(X )+ Ĥ(Z | X ,Y,B0)

)

− 1 − pd

1 − pr
h2(pr)− h2(pd), (33)

where we have written the entropy rate of the input
process X as H(X ) and defined

Ĥ(Z | X ,Y,B0) � lim
n→∞

1

n
H (Z[Nn] | X[n],Y[Nn ],B0). (34)

We have
1

n
H (Z[Nn] | X[n],Y[Nn ],B0)

= 1

n
H (Z[Nn] | X[n],Y[Nn ], Nn ,B0) (35)

= 1

n
E
( Nn∑

i=1

H (Zi | Zi−1, X[�i−1:n],Y[i:Nn ], Nn ,B0)
)
.

(36)

For each i ∈ [Nn], Zi is lower bounded by i − n with
probability 1. In the limit n → ∞, however, this is a
trivial lower bound. For the term in the sum with i = 1
in Equation (36), we have the additional information that
Z1 ≤ Z0 = 0, by the boundary condition B0 in (24). However,
for i ≥ 2, B0 does not limit the state space of Zi . From the
fact that the transition probabilities (17) of the Z process are
time-invariant, as n → ∞, confining expectations to the set
(of probability 1) where Nn → ∞,

H (Zi | Zi−1, X[�i−1 :n],Y[i:Nn ], Nn ,B0)

→ H (Z1 | Z0 = 0, X0,XN,YN)

� H (Z1 | Z0 = 0, X0,X ,Y). (37)

We re-emphasize that the entropy term above is without the
conditioning on the boundary condition N0 = 0. Here, we

assume that X0 is distributed according to the stationary
marginal distribution of the X process. Since E(Nn )

n → 1−pd
1−pr

,
optimizing over input processes X gives us

C ≥ sup
X

(
H(X )+ H (Z1 | Z0 = 0, X0,X ,Y)

1 − pr

)
(1 − pd)

− 1 − pd

1 − pr
h2(pr)− h2(pd). (38)

It is not easy to evaluate the above bound. However, we
can further lower bound the capacity by introducing some
conditioning.

Lemma 15: The sequence of lower bounds {DX
i }∞i=1, where

DX
i �

(
H(X )+ H (Z1 | Zi , Z0 = 0, X0,X ,Y)

1 − pr

)
(1 − pd)

− 1 − pd

1 − pr
h2(pr)− h2(pd), i ∈ N (39)

is non-decreasing.
Proof: Since we have introduced extra conditioning, the

DX
i s are lower bounds. We have

H (Z1 | Zi+1) = H (Z1, Zi | Zi+1)−H (Zi | Z1, Zi+1) (40)

= H (Zi | Zi+1)+ H (Z1 | Zi )

− H (Zi | Z1, Zi+1) (41)

≥ H (Z1 | Zi ) (42)

where (41) follows from the Markovity of the Z process. Since
conditioning on (Z0 = 0, X0,X ,Y) preserves the above chain
of inequalities, {DX

i }∞i=1 is non-decreasing.
Observing Zi essentially establishes synchronization at the

time instant i by spelling out the index of the input which is
produced as the output at that instant. The idea that “the longer
we wait before establishing the synchronization, the harder it
is to predict the input index of the first output” is intuitive.
This is formalized above by showing that the conditional
entropy of Z1 given (Z0 = 0, X0,X ,Y) increases as the
observation Zi is delayed. This fact is used in obtaining a
sequence of lower bounds on the capacity of the DRC that are
non-decreasing in i . Note that this approach is similar to the
one in [11] wherein the authors try to estimate the entropy of
the input sequence length producing an output run. However,
the difference here is that by conditioning on Zi , we are not
imposing the constraint that the synchronization is established
at the end of output runs, and that we are considering the
entropy of the input symbol index corresponding to the first
output symbol.

Starting from (31), without dropping the
I (Y[Nn ]; Z[Nn] | B0) term, and following similar steps
as before, we can arrive at

C ≥ sup
X

(
(1− pd)H(X )− Ĥ(Z | Y,B0)+ Ĥ(Z | X ,Y,B0)

)
(44)

= sup
X

[
(1 − pd)

(
H(X )− H (Z1 | Z0 = 0,Y0,Y)

1 − pr

+ H (Z1 | Z0 = 0, X0,X ,Y)
1 − pr

)]
(45)

� sup
X

RX
i , (46)
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for every i ∈ N. Following arguments similar to the ones used
in Lemma 15, we can show the following.

Lemma 16: The sequence of lower bounds {RX
i }∞i=1, where

RX
i ’s are as defined in Equation (46), is non-decreasing. �
The bounds in Lemmas 15 and 16 have a couple of

properties that render them amenable to analysis. Since the
bounds are free of any maximal index time terms, the analysis
in subsequent sections is largely simplified. Moreover, dealing
with the conditional entropy of a single random variable as
opposed to the conditional entropy rate of a process makes
the derivations less cumbersome.

The task of finding the rate-maximizing input distributions
appears to be tough, with no theoretical insights2 or efficient
numerical algorithms. Often, to establish lower bounds on
achievable rates, special classes of input processes are con-
sidered, and we will resort to a similar strategy here to obtain
some expressions for the bounds we have so far developed.
The following section will consider special cases of the DRC
wherein there are either only deletions, i.e., the BDC, or
only replications, i.e., the BRC. In a subsequent section, the
symmetric DRC will be studied.

IV. CHANNELS WITH DELETIONS OR REPLICATIONS

For the case of the BDC or the BRC, evaluating some of the
bounds developed in the previous section is somewhat easy,
owing to the fact that the Z process is monotonic in these two
special cases, i.e., it is non-increasing or non-decreasing with
increments of at most one, respectively. This monotonicity in
Z implies that the � process is strictly increasing for the BDC
and non-decreasing with increments of at most one for the
BRC. This translates to the output being a subsequence of the
input sequence for the BDC and vice versa for the BRC.

A. Information Rates for the BDC

In this subsection we estimate the information rates possible
over the BDC, i.e., pd = p, pr = 0, when the input process
is either i.u.d. or when it is a first-order Markov process.

For the BDC with i.u.d. inputs, we can easily show that
Y is also an i.u.d. sequence. Combining with the fact that
the Γ -process is strictly increasing for the BDC, we have
I (Y[Nn ]; Z[Nn ] | B0) = 0 so that the lower bound in (38) is
actually the SIR. We are hence interested in evaluating Diud

i
as defined in Lemma 15, where the superscript “iud” stands

2A new result on BDC with small deletion probability [17] provides a partial
answer to this question.

for independent, uniformly distributed inputs. In particular, we
have the SIR

C iud
BDC = lim

i→∞ Diud
i = sup

i≥1
Diud

i . (47)

We start with some definitions and notation.
Definition 17 (Subsequence Weights): We call a vector xA

a subsequence of a vector xB if A ⊂ B and the order of the
elements in A is the same as the order in which those elements
appear in B . For ease of notation, we will write wy[i] (x[ j ]) to
denote the number of subsequences of x[ j ] ∈ X

j that are the
same as y[i] ∈ X

i , which is referred to as the y[i]-subsequence
weight of the vector x[ j ]. We can write

wy[i] (x[ j ]) =
∑

S⊂[ j ]:|S|=i

1{xS=y[i]} (48)

where the elements of the set S are arranged in ascend-
ing order. Clearly, wy[i](x[ j ]) = 0 for i > j . We define

wλ(x[ j ]) = 1 ∀x[ j ] ∈ X
j for j ≥ 0 corresponding to the

subsequence defined by S = ∅. �
Definition 18 (Runs and Run-Lengths): For a binary

sequence, a run is a maximal block of contiguous 0s or 1s.
The run-length of a run is the number of symbols in it.
We denote by r1(x[ j ]) the length of the first run in the vector
x[ j ] ∈ X

j , j ≥ 1. Clearly, 1 ≤ r1(x[ j ]) ≤ |x[ j ]| = j . �
We will denote by Z

i↑ and Z
i↓ the sets of non-decreasing

and non-increasing vectors of length i , respectively, for i ≥ 1.
Theorem 19 (SIR for the BDC): For the BDC,

C iud
BDC = 1 − p − h2(p)

+ (1 − p)
(

lim
i→∞

∑
m≥0

ψi,m pm(1 − p)i
)
, (49)

where ψi,m �
(m+i−1

m

)
H
(i)
m , with H

(i)
m as given in

Equation (43), as shown at the bottom of this page.
Proof: For the BDC, we have from Lemma 15 that

Diud
i = 1− p −h2(p)+ (1− p)H (Z1 | Z0 = 0, Zi , X0,X ,Y).

(51)

From Equation (47), we need to show that

H (Z1 | Z0 = 0, Zi , X0,X ,Y) =
∑
m≥0

ψi,m pm(1 − p)i . (52)

We first note that

H (Z1 | Z0 = 0, Zi , X0,X ,Y)
= H (Z1 | Z0 = 0, Zi ,X ,Y)
= H (Z1 | Z0 = 0, Zi , X[i−Zi −1],Y[i−1]), (53)

H(i)m � H (Z1 | Z0 = 0, Zi = −m, X0,X ,Y) =
∑

x[m+i−1]∈Xm+i−1

1

2m+i−1 H(x[m+i−1]),

H(x[m+i−1]) =
∑

y[i−1]∈Yi−1

wy[i−1](x[m+i−1])(m+i−1
m

) h(x[m+i−1], y[i−1]),

h(x[m+i−1], y[i−1]) = −
0∑

z=−m

1{x1−z=y1}
wy[2:i−1](x[2−z:m+i−1])
wy[i−1](x[m+i−1])

log2

(
1{x1−z=y1}

wy[2:i−1](x[2−z:m+i−1])
wy[i−1](x[m+i−1])

)
. (43)
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since for the BDC, none of the outputs YN can correspond
to X0. Clearly, the above entropy term is zero for i = 1. For
i ≥ 2, given Z0 = 0, Zi = −m, X[m+i−1] = x[m+i−1] and
Y[i−1] = y[i−1], it is easy to see that

Z1 ∈ {z ∈ {0,−1, · · · ,−m} : x1−z = y1,

wy[2:i−1](x[2−z:m+i−1]) > 0}. (54)

That is, Z1 = z only if x1−z and y1 match, and the subsequent
part of the output vector y[2:i−1] is a subsequence of the
subsequent part of the input vector x[2−z:m+i−1]. It is easy
to see that when wy[i−1](x[m+i−1]) > 0,

P(Z1 = z | Z0 = 0, Zi = −m, x[m+i−1], y[i−1])

= 1{x1−z=y1}wy[2:i−1](x[2−z:m+i−1])
wy[i−1](x[m+i−1])

. (55)

Since, with i.u.d. inputs, P(X[m+i−1] = x[m+i−1] | Zi =
−m) = 2−(m+i−1) and

P(Y[i−1] = y[i−1] | X[m+i−1] = x[m+i−1], Zi = −m)

= wy[i−1](x[m+i−1])(m+i−1
m

) , (56)

we have that H (Z1 | Zi = −m,X ,Y) = H
(i)
m as in

Equation (43). By noting that

P(Zi = −m | Z0 = 0) =
(

m + i − 1

m

)
pm(1 − p)i (57)

from Equation (17) (with pd = p, pr = 0, pt = 1 − p), we
have the desired result.

The subsequence weights in the expression for H can
be easily evaluated through recursive counting techniques
(See [6] for a brief summary). The difficulty in evaluating H

(i)
m

is the exponential number of terms in the summation, which is
computationally prohibitive for i +m ≥ 16. However, we can
evaluate it in two specific cases: for every m when i = 2 (when
all but a single bit are deleted) and for all i when m = 1 (when
only a single bit is deleted). We examine these two cases in
detail in Appendix VI-A, VI-B and state the results here.

Corollary 20 (Lower Bound for C iud
BDC): For the BDC,

C iud
BDC ≥ Diud

2 ≥ 4(1 − p)3

(2 − p)2
− h2(p)

+ (1 − p)3
( ∑

m≥2

mpm−1 log2 m
)
. �

Corollary 21 (Small Deletion Probability SIR): For the
BDC,

C iud
BDC = 1 + p log2 p − dp + O(p2)

where d ≈ 1.154163765. �
Fig. 2 plots the bounds for CBDC.

Fig. 2. Bounds on the capacity for the BDC in bits per channel use as a
function of the deletion probability p. Diud

2 (cf. Corollary 20 ) is shown as the
long-dashed blue line and C iud (or equivalently Diud

1 ) with the O(p2) term
dropped as the solid red line (cf. Equation (101)). The best known numerical
lower [9], [11], [18] and upper bounds [15], [33], [34] are shown as black
and white circles respectively. The inset shows the bounds for small p values
where the red solid curve is known to be tight from [12].

B. Information Rates for the BRC

In this subsection, we will consider information rates for the
BRC, i.e., pd = 0, pr = p. As in the previous subsection, we
will consider i.u.d. and symmetric first-order Markov inputs.
For the BRC, the Z process is non-decreasing. Moreover,
when it increases, the increment is at most 1 at each time
instant. This simplifies the evaluation of information rates and
we will, in fact, be able to write exact expressions for the
Markov-1 rates, as will be shown shortly.

Theorem 22 (Markov-1 Rates for the BRC): For the BRC,
the Markov-1 rate is given as in Equation (50), as shown at
the bottom of this page.

Proof: First we note that since Z1 ∈ {0, 1} given Z0 = 0,
we have H (Z1 | Z0 = 0, X0,X ,Y) = E[h2(P(Z1 = 0 |
Z0 = 0, x0, xN, yN))] and H (Z1 | Z0 = 0, y0, Y) =
E[h2(P(Z1 = 0 | Z0 = 0, y0, yN))]. Further, we have for the
BRC that whenever Yi = Yi−1, we must have Zi = Zi−1 or
equivalently �i = �i−1 +1. This means that Z1 is independent
of subsequent runs of Y (and X ) given the first run of Y
(and X ) since we can achieve synchronization at the end
of each run. Thus we can write the conditional probabilities
P(Z1 = 0 | Z0 = 0, X0,X , Y) and P(Z1 = 0 |
Z0 = 0,Y0,Y) in terms of the first runs of X and Y , i.e.,
P(Z1 = 0 | Z0 = 0, x0, xN, yN) = P(Z1 = 0 | Z0 = 0,

CM1
BRC = max

α

[
h2(α)+ α

∑
l≥1

(
(1 − α)

1 − p

p

)l(∑
k≥l

(
k

l

)
pkh2(

l

k
)
)

− p + (1 − α)(1 − p)

1 − p
h2

( p

p + (1 − α)(1 − p)

)]
. (50)
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x0, r1(xN), r1(yN)) and P(Z1 = 0 | Z0 = 0, y0, yN) =
P(Z1 = 0 | Z0 = 0, y0, r1(yN)). Recall that we assume
Z0 = 0 so that Y0 = X0. Thus, if x1 = x0, then Z1 is 0 or 1
accordingly as y1 is not equal or equal to y0, respectively.
This means that there is no uncertainty in Z1 given the output
sequence. Therefore, in estimating the entropy of Z1 given the
output sequence, or given the output and the input sequences,
we can confine our attention to those sequences xN and yN

whose first runs are comprised of zeros with the assumption
that x0 = y0 = 0, without loss of generality. We shall denote
such runs as r0

1 (·). For a first-order Markov input process, we
have, for l ≥ 0

P(r0
1 (xN) = l| x0 = 0) = (1 − α)lα, (58)

and we can get from the definition of the BRC that

P(r0
1 (yN) = k | x0 = 0, r0

1 (xN) = l) =
(

k

l

)
(1 − p)l+1 pk−l

(59)

for k ≥ l. Consequently, and since Y0 = X0, we have

P(r0
1 (yN) = α(1 − p)

(
p + (1 − α)(1 − p)

)k
. (60)

Since Z1 = 0 excludes the first bit in the received sequence
from being a replication, we can easily obtain

P(Z1 = 0 | x0 = 0, r0
1 (xN) = l, r0

1 (yN) = k) = l

k
(61)

for k ≥ l + 1{l=0}. For k ≥ 1, we can show that

P(Z1 = 0 | y0 = 0, r0
1 (yN) = k) = (1 − α)(1 − p)

p + (1 − α)(1 − p)
.

(62)

Therefore,

H (Z1 | X0,X ,Y)
= α(1 − p)

∑
l≥1

(
(1 − α)

1 − p

p

)l(∑
k≥l

(
k

l

)
pkh2(

l

k
)
)

(63)

and

H (Z1 | Y0,Y)
= (p + (1 − α)(1 − p))h2

( p

p + (1 − α)(1 − p)

)
. (64)

Substituting these in (45) specialized to the BRC and first-
order Markov inputs, we have the desired result.

The following results are shown in Appendix III.
Corollary 23 (Lower Bound for CM1

B RC): For the BRC,

CM1
BRC ≥ RM1

2 = h2

( 1

(1 − p)(4p + 1)

)
+

( 2 p

1 − p

)( (1 − p)4p − p

4p + 1

)
−

( 1

1 − p

)( 4p

4p + 1

)
h2

( p(4p + 1)

4p

)
(65)

for 0 ≤ p ≤ p∗ ≈ 0.734675821. �
Corollary 24 (Small Replication Probability SIR): For the

BRC,

C iud
BRC = 1 + p log2 p + rp + O(p2)

where r ≈ 0.845836235. �

Fig. 3. Lower bounds on the capacity for the BRC. The bound

RM1
2 from Corollary 23 is shown as the long-dashed blue line and the

Markov-1 rate in Equation (50) is shown as the solid red line. The SIR (α = 1
2

in Equation(50)) is the dash-dotted green line. The inset shows the bounds
for small replication probabilities. Note that the Markov-1 rate in solid red
matches with the estimates in [10] and [18]. Shown as dots are the numerically
evaluated capacity from [18].

Fig. 3 plots these bounds. Note that the Markov-1 rate
evaluated here exactly agrees with the numerically evaluated
rates in [18]. Although sharper bounds on the capacity were
provided in [18], we note that these bounds were all arrived
at numerically. Interestingly, although the expression derived
here is itself different from the expression for the Markov-1
rate in [10], the numerical values agree. Our result therefore
represents an alternative proof technique for the rates achieved
by first-order Markov processes over the BRC.

Remark 5: Note that the generalization of the results pre-
sented here to Markov processes of higher order is straight-
forward. The only changes to be made are in Equation (58)
that tracks the probability of input runs, and the entropy
rate of the input Markov process. The advantage with first-
order Markov processes is that the corresponding probability
of output runs also turns out to have a simple closed-form
expression, resulting in a simplified expression for the rate
achieved.

V. CHANNELS WITH DELETIONS AND REPLICATIONS

Although the bounds in the previous section provide us
some idea of the achievable information rates for the BDC
and the BRC, they do not generalize in a straightforward
manner for an SEC with both deletions and replications.3

In order to obtain bounds when both deletions and replications
are present, we take a different approach. We attempt to
approximate the achievable rates on the DRC by judiciously

3It is possible to obtain, albeit with a lot more effort than in the cases of
the BDC or the BRC, the lower bound DX

2 for a first-order Markov input
process for a DRC. We shall omit this here.
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constructing a sequence of finite-state channels for which
methods of optimizing input distributions are known. In the
next two subsections, we highlight the general approach and
discuss its advantages and limitations.

A straightforward way to obtain a finite-state channel (FSC)
that approximates the timing synchronization error channels is
to restrict the state space by clipping the Z-process, i.e., by
defining the channel state

Z (m)i �
(
1{|Zi |≤m}

)
Zi +

(
1{|Zi |>m}

)
m · sgn(Zi ), i ∈ Z,

(66)

where sgn(·) is the sign function. Writing �(m)i and N (m)
n based

on the so-obtained process Z(m) � {Z (m)i }i∈Z, it can be shown
that the FSCs P†

n,m are totally ordered in terms of their mutual
information rates. That is, for a fixed n ∈ N, we can show that
for any m ∈ N,

I (X[n]; Y[Nn ]) ≤ I (X[n]; Y (m)[N (m)
n ]) ≤ I (X[n]; Y (m−1)

[N (m−1)
n ]). (67)

Despite this useful property, the channels {P†
n,m}m≥0 are not

useful in evaluating bounds on the achievable rates of the
timing synchronization error channel Pn . This is because Zn ,
which can be written as the nth-partial sum of i.i.d. random
variables, has a variance that grows with n. Consequently, the
probability of |Zn| < m goes to zero for any m ∈ Z

+, so that
the Z(m) process loses information of the Z process unless
m = �(n), i.e., the channel is no more a “finite-state” channel.

A. Constructing Indecomposable FSCs

We now construct FSCs for which the achievable informa-
tion rates can be estimated. The channel model for the FSC
indexed by m ∈ Z

+ is given by

Y (m)i = X
�
(m)
i

= X
i−Z (m)i

, i ∈ Z, (68)

where the channel state Z (m)i is as defined in Equation (66).
We define the measure P〈m〉 governing the channel behavior
such that the Z(m) process is a finite, time-homogeneous, first-
order Markov chain with transition probabilities

P〈m〉(Z (m)i = k | Z (m)i−1 = j) = P(Z (m)i = k | Z (m)i−1 = j) (69)

when −m < j < m, and

P〈m〉(Z (m)i = k | Z (m)i−1 = −m) =

⎧⎪⎨
⎪⎩

1 − pr, k = −m

pr, k = −m + 1

0, otherwise,

(70)

and

P〈m〉(Z (m)i = k | Z (m)i−1 = m)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − pd(1 − pr), k = m

(1 − pd)(1 − pr)pm−k
d , −m < k < m

(1 − pr)p2m
d , k = −m

0, otherwise.

(71)

The transition probabilities P�n,m for the channel P�n,m can now
be defined as in Equation (21), but under the measure P〈m〉.

Remark 6: Note that the sequence of sigma-algebras
{Gm}m≥0 where Gm � σ(Z(m)) forms a filtration. The
sequence of measures P〈m〉 as defined above seem to be
defined only on the corresponding sigma-algebras Gms for
each m ∈ Z

+. However, we can extend these measures to
the sigma-algebra B as in Appendix IV, and will henceforth
consider P〈m〉 : B �→ [0, 1] for each m ∈ Z

+. �
The lemma below shows that for a fixed m ∈ Z

+, the FSC
P�n,m is an indecomposable FSC [35, §4.6].

Lemma 25 (P�n,m Indecomposable): The FSC P�n,m is inde-

composable for every m ∈ Z
+ for (pd, pr) ∈ (0, 1)2.

Proof: Fix m ∈ Z
+. We need to make a couple of

modifications to put the channels {P�n,m}n≥1 in the parlance
of discrete FSCs. First, we set

Ý (m)i = Y (m)i−m = X
i−m−Z (m)i−m

= X
i−Ź (m)i

, i ∈ Z. (72)

Note that Ź (m)i = m + Z (m)i−m ∈ [0 : 2m], and hence the

channel producing Ý (m)i is “causal”. Let the “state” W (m)
i of

the channel P�n,m at time i ∈ Z be defined as

W (m)
i � (X[i−2m:i−1], Ź (m)i ) ∈ X

2m × [0 : 2m]. (73)

Note that we need to redefine the state of the channel in this
case to keep the factorization

P〈m〉(Ý (m)i ,W (m)
i+1 | Xi ,W (m)

i )

= P〈m〉(Ý (m)i | Xi ,W (m)
i ) · P〈m〉(W (m)

i+1 | Xi ,W (m)
i ). (74)

Since Ź(m) is a finitely delayed, finitely shifted version
of Z(m), and because Z(m) is an irreducible, aperiodic
Markov chain [36, Ch. 1] under the measure P〈m〉 as long as
(pd, pr) ∈ (0, 1)2, so is Ź(m). In particular, we have that for
every j ≥ 2m,

min
z∈[0:2m] P〈m〉(Ź (m)i+ j = z | Ź (m)i = z′) > 0 ∀z′ ∈ [0 : 2m]. (75)

This implies that for i = 1, j = 2m and x ∈ X, by choosing
w = (x[2m], z), for any z ∈ [0 : 2m], we see that

P〈m〉(W (m)
2m+1 = w | X = x,W (m)

1 = w′) > 0 (76)

for every w′ ∈ X
2m ×[0 : 2m]. From [35, Th. 4.6.3], we have

the desired result.
A consequence of the above result and the fact that the chan-

nel input alphabet X is finite is that the boundary condition
imposed on the W(m) process will not influence the capacity
of the indecomposable FSC [35, Th. 4.6.4]. We will therefore
assume the boundary condition

B
(m)
0 � {Z (m)0 = 0, N (m)

0 = 0}. (77)

It is clear that the maximal index times for the Z(m) process
satisfy |N (m)

n − n| ≤ m for n ∈ N under B
(m)
0 . Note that by

definition, the measure P〈m〉 differs from P only for state paths
that reach beyond the states ±(m − 1). The following result
follows immediately from [37].
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Fig. 4. SIR estimates for the FSCs {P�n,m}n≥1 with pd = pr = p ∈ [0, 1)
for different m values. The lower bound on the SIR of the SDRC from
Equation 30 is also shown as the gray-dotted line. The inset shows the regime
where we expect C�iud(32) to be close to C�iud(∞).

Corollary 26 (Capacity of P�n,m): For the FSCs {P�n,m}n≥1,
the capacity C�(m) can be written as

C�(m) = sup
X

lim
n→∞

1

n
I (X[n]; Y (m)[N (m)

n ] | B
(m)
0 )

= sup
X

lim
n→∞ I �n,m � sup

X
I �X (m) (78)

where the supremum is over all stationary, ergodic input
sources X . �

From Lemma 25, since {P�n,m}n≥1 are indecomposable
FSCs, we have from [38] that

− 1

n
log2 P〈m〉(X[n],Y (m)[N (m)

0 +1:N (m)
n ])

→ lim
n→∞

H (X[n],Y (m)[N (m)
0 +1:N (m)

n ])

n
= Ĥ(X ,Y(m)), (79)

− 1

n
log2 P〈m〉(Y (m)[N (m)

0 +1:N (m)
n ])

→ lim
n→∞

H (Y (m)[N (m)
0 +1:N (m)

n ])

n
= Ĥ(Y(m)), (80)

as n → ∞ almost surely, where the entropies are calculated
with respect to the measure P〈m〉. Therefore,

I �X (m) = H(X )+ Ĥ(Y(m))− Ĥ(X ,Y(m)) (81)

can be estimated numerically using the forward passes of the
BCJR algorithm [39] to estimate Ĥ(X ,Y(m)) and Ĥ(Y(m)), as
in [40] and [41]. In Fig. 4, we plot the SIRs, C�

iud(m), for the
indecomposable FSCs {P�n,m}n≥1 obtained through numerical
simulations for m = 2k, k ∈ {2, 3, 4, 5} and pd = pr = p ∈
[0, 1). The value of n used for the estimation was 106.

A couple of observations are worthwhile noting. First, the
SIRs {C�

iud(m)}m≥0 are non-increasing. This hints at a total
ordering of the FSCs {P�n,m}m≥0 with respect to the infor-
mation rates similar to what can be shown for the channels
{P†

n,m}m≥0. Second, we see that for small values of p, the
SIRs get bunched up as m increases, i.e., the SIRs C�

iud(m)
converge quickly, so that we have a good estimate of

C�
iud(∞) � lim

m→∞ C�
iud(m) (82)

for p close to 0. However, the estimates are loose for p close
to 1. This is because for any m ∈ N, as p approaches 1, the
stationary distribution of the Z(m) process under the measure
P〈m〉 converges to a distribution with all the mass on the state
m, and consequently, the channel converges to a noiseless
channel. On the other hand, the SDRC becomes more noisy
as p approaches 1.

Proposition 27: For n ∈ N, we have

I �n � lim inf
m→∞ I �n,m = In . (83)

Thus,

C = sup
X

inf
n≥1

lim inf
m→∞ I �n,m . (84)

Proof: For a fixed n ∈ N, since we have that
P〈m〉(X[n],Y (m)[N (m)

n ] | B
(m)
0 ) → P(X[n],Y[Nn ] | B0) as m → ∞

for every ϑ ∈ S, we also have the convergence. Consequently,
from [42, Corollary 1′], we have the desired result.

Remark 7: We conjecture that I �n,m → I �n = In as m →
∞. From [42, Corollary 1′], one needs to show uniform
integrability of the information densities i(X[n],Y (m)[N (m)

0 +1:N (m)
n ])

for the conjecture to be true. Alternatively, if the sequence of
channels {P�n,m}m≥0 is totally ordered for every n ∈ N with
respect to the mutual information rates, i.e., if {I �n,m}m≥0 is a
non-increasing sequence for every n ∈ N, then we know that

lim
m→∞ I �n,m = I �n , (85)

and from Proposition 27, I �n,m ↓ I �n follows. Unfortunately,
we are not able to show this monotonicity in the sequence
{I �n,m}m≥0. However, Fig. 4 provides sufficient empirical evi-
dence for this monotonicity conjecture. �

B. Approximating Channels for the SDRC

In this subsection, we consider the SDRC, i.e., the case
when pd = pr = p ∈ [0, 1). This channel is of interest since in
practice, systems prone to mis-synchronization are usually not
biased to produce more deletions or replications. For the case
of the SDRC, we can strengthen the result from the previous
subsection. We leave the proof to Appendix V.

Proposition 28 (Approximating SDRC): For the SDRC,

IX = lim
n→∞ In = lim inf

n→∞ I �n,m(n)

where m(n) = ω(
√

n), for stationary, ergodic input
process X . �

The channels {P�n,m}m≥0 give us a way to approach the
problems of optimizing input distributions as well as designing
coding schemes for the SDRC. We can optimize the inputs
of P�n,m , starting with small values of m, under some input
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assumptions, e.g., for fixed-order Markov inputs [43], [44].
Note that the numerical estimation of I �n,m is possible (as
described in the previous subsection) only when m < n, since
setting the channels as indecomposable FSCs (cf. Lemma 25)
is possible only in this case. Moreover, for a good estimate of
the information rate, we will require m � n. For the SDRC,
Proposition 28 allows us to consider some P�n,m(n), where m(n)
is both ω(

√
n) as well as o(n), for which a good estimate of

the information rate I �n,m(n) can be obtained. Note that due to
the lack of a result analogous to Lemma 29 in the case of a
general DRC for m < n, generalizing these arguments when
pd = pr is not completely justified.

Starting with some small values of m, we expect that the
information rates and optimal distributions quickly converge
(in m), giving us a way to characterize optimal inputs for the
SDRC Pn . For small values of p, as in Fig. 4, the information
rates for the SDRC can be characterized numerically for
moderate values of m (much smaller than ω(

√
n) guaranteed

by Lemma 29). For optimizing the input distribution for an
approximation P�n,m , we can start with optimizing inputs that
are μth-order Markov processes, for μ ≥ 1. As was observed4

in [45], the convergence of optimal information rates as a
function of the order μ of the input Markov process is expected
to be rapid. The authors in [45] hypothesized that this con-
vergence was exponential in μ. Similar “diminishing returns”
on increasing μ has also been observed by others [43], [44].
We think that a similar rapid convergence of I �n,m(X ∗

Mμ
) to

Cn(X ∗
Mμ) also holds for m, where I �n,m(X ∗

Mμ) is the optimal
information rate achieved by a μth-order Markov input process
on the FSC P�n,m and Cn(X ∗

Mμ) is the optimal information
rate achieved by a μth-order Markov input process on the
SDRC Pn . We use the generalized Blahut-Arimoto algorithm
presented in [44] to evaluate I �n,m(X ∗

Mμ) for some small values
of m and μ. Fig. 5 plots these estimates, which illustrates the
aformentioned observations. Note that it is clear from the plots
in Fig. 5 that Bernoulli equiprobable inputs achieve rates (SIR)
comparable to higher-order Markov inputs for small proaba-
bilities of deletion and replication. It is also evident from
the figure that for small values of the deletion-replication
probabilities, the information rates seem to converge as m
increases even for small values of m (m = 3). This suggests
that Fig. 5 plots good estimates of I �n,m(n) for such channels,
and since the values of n chosen are large, that they indeed
represent good estimates of the Markov capacity of the SDRC.
This is substantiated by the closeness of the estimates to
the bounds from [18] in this regime. However, as was the
case for the SIR estimates, the convergence is slower as p
increases. Note that restricting the state space of the Z process
is equivalent to bounding the drift between the channel input
and output–an approach which was used in [18] to arrive at
the bounds included in Fig. 5. Our treatment here establishes
the theoretical background for the convergence and the rate of
convergence of information rates for channels with growing
drift between input and output.

4Although the validity of the bounds in [45] is unclear (See, e.g., [10]), the
rapid convergence of information rates as a function of the order μ of the
input Markov process is expected to be true.

Fig. 5. Numerical estimates of I�n,m(X ∗
Mμ) for m = 1, 2 and 3, and μ = 2m

(solid lines). For the case where m = 3, μ = 6, only the estimates for small
deletion-replication probabilities have been evaluated. We chose n = 106 for
m = 1, 2 and n = 105 for m = 3. The smaller value of n in the case of m = 3
was chosen for computational convenience. Also shown for comparison are
the corresponding estimates of the SIR (μ = 0) from Fig. 4. The best-known
numerical lower and upper bounds on the capacity of the SDRC from [18]
are shown as black and white circles, respectively.

Apart from the above advantage of facilitating numeri-
cal estimation of information rates, the approximating chan-
nels P�n,m have another important advantage. This is that
since they have immediate factor-graph interpretations, there
is a possibility of constructing sparse graph-based coding
schemes and decoding over the joint graphical model rep-
resenting the channels as well as the codes, as was done
for joint detection and decoding of LDPC codes on partial
response channels [46]. Instead of trying to build codes for
the SDRC Pn , the problem can be reduced to designing
good codes and efficient decoding schemes for the FSCs
P�n,m for small values of m. For small deletion-replication
probabilities p, which is the case of interest in practice,
we can expect these codes to perform well for the SDRC
Pn as well.

VI. CONCLUSIONS

We introduced a new channel model for a class of SECs
which formulated the SEC as a channel with states. This
allowed us to obtain analytical lower bounds for the capacity
of SECs with only deletions or only replications. For the case
of the BDC, we were able to write the SIR in terms of subse-
quence weights of binary sequences. Subsequence weights are
known to be a quantity of interest in the maximum-likelihood
decoding of sequences for the BDC (cf. Equation (43)).
Moreover, it is clear from Equation (43) that the dependence
of information rates for the BDC on the input statistics only
appears in the term H

(i)
m , whereas the subsequence weights
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influence H(x) independently of the input statistics. Thus, our
result establishes a natural link between the capacity of the
BDC and the metric relevant for ML decoding. We were also
able to obtain lower bounds on the capacity of the BDC that
are known to be tight for small deletion probabilities. For
the BRC, we were able to exactly characterize the Markov-1
rate, which agrees with the rates evaluated numerically in [18],
and with the expression in [10] which was proven with a
completely different proof technique.

For the case of an SEC with deletions and replications,
we were able to provide a sequence of approximating FSCs
that are totally ordered with respect to the mutual information
rates achievable, and therefore, with respect to capacities.
These approximating FSCs were shown to be such that the
mutual information rate achievable for the SEC was equal
to the limit of the mutual information rates achievable for
the sequence of FSCs. To obtain numerical estimates of
achievable rates on the DRC, we defined another sequence
of indecomposable FSCs. Computing the mutual information
rates for this sequence of FSCs allows us to relate the mutual
information rate for the DRC to the limiting value of the
mutual information rates of the sequence. For the particular
case of the SDRC, we were able to show a stronger form of
convergence of these mutual information rates.

The formulation in this paper not only allows us to get
estimates of mutual information rates achievable on SECs
but also gives some insight into possible code constructions
and decoding schemes for such channels. The approximations
introduced for the DRC gives us a natural way to reduce
these problems. One would therefore obtain progressively
better performing codes for the DRC by designing good codes
for the sequence of approximating FSCs. We expect that for
small values of the deletion-replication probability, a code
constructed for an approximation with a moderate value of
m will perform well over the DRC as well. Some coding
schemes for special cases of the FSCs (with m = 1) have
been known in various contexts (See Remark 4 and references
therein). Extending these schemes to better approximations
(larger m values) will prove crucial in designing good codes
for the DRC. We emphasize that although the present paper
considers only binary SECs, the results extend naturally to the
case of larger finite alphabets. The expressions for information
rates will perhaps become more complicated, but the meth-
ods to arrive at their bounds or numerical estimates remain
unchanged.

APPENDIX I
PROOF OF PROPOSITION 12

Both Qn and Pn have the same input and output alphabets
X and Y, respectively. That the transition probabilities Qn and
Pn in Equations (9) and (21) are identical is evident by the
following observations:

(i) Given the input sequence x[n], for every parsing of y ∈ Y

as y[n] in Equation (9), there is a corresponding primary
compatible state path z[|y|] ∈ Z

|y| in Equation (21). Let
us construct this state path for the case when the input
x[n] is transformed to the output y[n] where yi = x�i

i ,

i.e., the output substring yi is the input symbol xi

repeated �i ≥ 0 times. Here we write x0 = λ.
Note that there is no loss of generality here since yi =
x�i

i corresponds to every possbile output produced with
non-zero probability by the DRC in Example 4. We
first compute the total length of the output sequence
� = ∑n

i=1 �i = |y|. We then construct the �[�] sequence
γ[�] as follows: for each i ∈ [�], we set γi = j ∈ [n]
if yi is a part of the substring y j . Here yi ∈ Y = X,
or in other words, yi = λ. By definition of the DRC,
the order of the input symbols is preserved so that the
sequence γ[�] will be non-decreasing. We can therefore
obtain the compatible path z[�] from γ[�].

(ii) For every compatible state path z[�] ∈ Z�, � ≥ 1
in Equation (21), given the input sequence x[n], there
is a corresponding parsing y[n] ∈ Y

� in Equation (9).
We construct this parsing as follows. We first obtain the
sequence γ[�] corresponding to z[�]. For each i ∈ [n],
set yi = x

wi (γ[�])
i , where wa(b) denotes the number of

occurrences of a’s in the sequence b. Also, following
the procedure in (VI) above for the so constructed y[n],
it is easy to confirm that we end up with the same z[�]
that we started with, so that the transformation between
the parsed string y[n] and the compatible state path z[�]
is invertible.

(iii) Let us denote the compatible state path z[�] corre-
sponding to parsing y[n] as z[�](y[n]). Clearly, we have
� = | ◦ (y[n])|. Note that i − zi (y[n]) = γi (y[n]) = j

(See (i) above) if yi is a part of the substring y j = x
� j
j ,

i.e., yi = x j . This is true because � j > 0 since a
symbol yi other than λ is produced at the channel output.
We only need to prove

qn(y[n] | x[n])

= p
n−�+z�(y[n])
d ·

�∏
i=1

P(Zi = zi (y[n]) | Zi−1 = zi−1(y[n])).

(86)

This is a straightforward proof by induction and is
omitted here.

APPENDIX II
SPECIAL CASES OF Diud

i

A. Bounds for Diud
2

It is easy to see that when i = 2, Equation (43) reduces to

H(2)m = log2(m+ 1)− 1

2m+1

m+1∑
j=0

(
m + 1

j

)
h2

( j

m + 1

)
, (87)

so we can bound H
(2)
m ≥ log2(m + 1)− 1 + 2−m . This gives

us the desired bound

Diud
2 ≥ (1 − p)3

( 4

(2 − p)2
+

∑
m≥0

(m + 1)pm log2(m + 1)
)

− h2(p). (88)
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It turns out that for

p < p∗ � exp
(

− 1 + ln 2

2 ln 2

)
≈ 0.294832606, (89)

we can further lower bound

Diud
2 ≥ 4(1 − p)3

(2 − p)2
− h2(p)

+ (1 − p)3
log2 e

ln p

( p

ln p
(1 + ln 2)− 2 p ln 2

− 1

p
Ei(2 ln p)

)
, (90)

where Ei(x) is the exponential integral function defined as
Ei(x) = ∫ x

−∞
et

t dt , which can be numerically evaluated to
arbitrary accuracy through a Taylor series expansion. However,
this leads to a small- p series expansion of Diud

2 that is no better
than that of the lower bound for the BDC in (30). We will
improve this bound for small p in the next subsection.

B. Bounds for the Case When m = 1

We now pursue the other case where (43) is easy to evaluate.
Instead of evaluating Diud

i exactly, we can further lower bound
it as follows.

Diud
i ≥ 1 − p − h2(p)

+ (1 − p)
( j∑

m=0

P(Zi = −m | Z0 = 0)

· H (Z1 | Z0 = 0, Zi = −m,X ,Y)
)
(91)

� 1 − p − h2(p)+ (1 − p)�(i)j (92)

� D
(i)
j ∀ j ≥ 0, i ≥ 1. (93)

We are essentially writing a series expansion for Diud
i and

lower bounding5 it by the j th partial sum. Note that we can
write

�
(i)
j = �

(i)
j−1 + ψi, j p j (1 − p)i (94)

where ψi,m was defined in Theorem 19. Clearly, the sequence
{�(i)j } j≥0 is non-decreasing, and, in turn, so is the sequence

{D(i)
j } j≥0. Since �(i)0 = ψi,0 = 0, we have �(i)1 = p(1 −

p)iψi,1. Further, by definition, Diud
i = lim j→∞ D

(i)
j =

sup j≥0 D
(i)
j . Thus for every j ≥ 0, we can write

C iud
BDC = sup

i≥1
Diud

i ≥ sup
i≥1

D
(i)
j � Diud

j . (95)

From the channel model, P(X[i] = x[i] | Z0 = 0,
Zi = −1) = 2−i since X ⊥⊥ Z and X is i.u.d., and

P(Y[i−1] = y[i−1] | X[i] = x[i], Z0 = 0, Zi = −1)

= wy[i−1] (x[i])
i

. (96)

5All terms in the series expansion are non-negative.

For y[i−1] = x[i−1]−z[i−1] for some realization z[i−1] with the
boundary conditions z0 = 0 and zi = −1,

H (Z1 | Zi = −1, X[i] = x[i],Y[i−1] = y[i−1])

= h2

( 1

r1(x[i])

)
1R1(x[i],y[i−1]) (97)

where R1(x[i], y[i−1]) is the event that the single deletion
occurred in the first run of x[i] to result in y[i−1]. To see this,
let y[i−1] represent a received word resulting from a single
deletion upon transmission of x[i]. Consider the two mutually
exclusive and exhaustive cases in this scenario:

• The single deletion occurs in a run other than the first run
of x[i]. In this case, there is no ambiguity that Z1 = 0,
and the first run of y[i−1] is either the same or larger
than6 that of x[i].

• The single deletion occurs in the first run of x[i].
– If r1(x[i]) = 1, there is no ambiguity that Z1 = −1.
– If r1(x[i]) > 1, the deleted symbol could be, with

equal likelihood, one of the symbols comprising the
first run of x[i]. The uncertainty in Z1 is h2

(
1

r1(x[i])

)
.

In both the above cases, the uncertainty can be written as
h2

(
1

r1(x[i])

)
.

Therefore,

ψi,1 = i
∑
x[i]

1

2i

∑
y[i−1]

wy[i−1](x[i])
i

h2

( 1

r1(x[i])

)
1R1(x[i],y[i−1])

(98)

= i
∑
x[i]

1

2i

r1(x[i])
i

h2

( 1

r1(x[i])

)
(99)

= 1

2

i−2∑
j=1

j

2 j
log2 j + 2

i

2i
log2 i. (100)

We observe that ψi,1 is non-decreasing in i , and con-
verges exponentially to the value ψ1 ≈ 1.288531275. From
(94) and (100), we have Diud

i = 1 + p log2 p − p log2(2e)+
ψi,1 p + O(p2) and from Equation (47),

C iud
BDC = 1 + p log2 p − dp + O(p2) (101)

where d = log2(2e) − ψ1 ≈ 1.154163765. We note
here that this is exactly the same bound obtained in [12]
with a completely different technique. Since this bound was
shown to be tight for small p, we have that the capacity
of the BDC itself is given by the above expression for
small p.

Discussion: The advantage in the evaluation of the above
bound was that, when we restrict to the case of a single
deletion, the ambiguity in the first channel state Z1 arises
only when r1(x[i]) > 1, in which case the uncertainty is

exactly h2

(
1

r1(x[i])

)
. This, however, is not true when there

are 2 or more deletions. Although similar methods can be used
to arrive at the corresponding bounds for first-order Markov
sources, these bounds are not improved much over their SIR
counterparts.

6When the second run of x[i] disappears.
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APPENDIX III
PROOFS OF RESULTS FOR THE BRC

A. Proof of Corollary 23

We have from Lemma 16 that

CM1
BRC ≥ RM1

2

� max
α

[
h2(α)+ H (Z1 | Z0 = 0, Z2, X0,X ,Y)

1 − p

− p + (1− α)(1− p)

1 − p
h2

( p

p+ (1− α)(1− p)

)]
(102)

where we have used the expression for H (Z1 | Z0 = 0,Y0,Y)
from the proof of Theorem 22. Observe that Z2 ∈ {0, 1, 2},
and among these possibilities, the only event wherein there is
an ambiguity in the value of Z1 is when Z2 = 1. Thus, we can
see easily that H (Z1 | Z0 = 0, Z2,X ,Y) = 2 p(1− p)(1−α).
Hence

RM1
2 = max

α

[
h2(α)+ 2 p(1 − α)− p + (1 − α)(1 − p)

1 − p

· h2

( p

p + (1 − α)(1 − p)

)]
. (103)

It can be shown that the optimal α in the above is given by

α∗ = 1

(1 − p)(22p + 1)
. (104)

Note that α∗ is always larger than 1
2 , and α∗ ≤ 1 for p ≤ p∗

where p∗ ≈ 0.734675821. Plugging this back in the expression
for RM1

2 ends the proof.

B. Proof of Corollary 24

From Lemma 16, for i.u.d. inputs,

C iud
BRC = 1 − H (Z1 | Z0 = 0,Y0,Y)

1 − p

+ sup
i≥1

H (Z1 | Z0 = 0, Zi , X0,X ,Y)
1 − p

(105)

= 1 − 1 + p

2(1 − p)
h2

( 2 p

1 + p

)
+ sup

i≥1

(
i p(1 − p)i−2

H (Z1 | Z0 = 0, Zi = 1, X0,X ,Y)
)

+ O(p2), (106)

where we have used the expression for H (Z1 | Z0 = 0,Y0,Y)
from the proof of Theorem 22 for α = 1

2 . The last equality is

true since H (Z1 | Z0 = 0, Zi = 0, X0,X ,Y) = 0. As shown
in the proof of Theorem 22, we can write

H (Z1 | Z0 = 0, Zi = 1, X0,X ,Y)
= E[h2(P(Z1 = 0 | Z0 = 0, Zi = 1, x0, r

0
1 (xN), r

0
1 (yN)))].

(107)

Further, there is no ambiguity in Z1 if the single replication
does not occur in the first run of xN. Therefore, for a first-order

Markov input process,

H (Z1 | Z0 = 0, Zi = 1, X0,X ,Y)
= E[h2(P(Z1 = 0 | Z0 = 0, Zi = 1,

x0, r
0
1 (xN) = l, r0

1 (yN) = l + 1))]

=
i−1∑
l=1

(1 − α)lα
l + 1

i
h2

( 1

l + 1

)
+ (1 − α)i h2

(1

i

)
. (108)

For α = 1
2 , we get i H (Z1 | Zi = 1, X0,X ,Y) =

1
2

∑i−2
l=1

l
2l log2 l + 2 i

2i log2 i = ψi,1 from Equation(100),
and therefore

C iud
BRC = 1 − 1 + p

2(1 − p)
h2

( 2 p

1 + p

)
+ sup

i≥1

(
p(1 − p)i−2ψi,1

)
+ O(p2), (109)

= 1 + p log2 p + rp + O(p2), (110)

where r = log2(
2
e )+ψ1 = 2 −d ≈ 0.845836235. As was the

case for the BDC, we expect this to be a tight bound for the
capacity for small p.

APPENDIX IV
EXTENDING THE MEASURES P〈m〉 TO B

By defining the transition probabilities P〈m〉(Z (m)i | Z (m)i−1)
as in Section V-A, the measures P〈m〉 are well-defined over
Gm = σ(Z(m)). Let (Z(m))−1(z) � {ς ∈ SZ : Z(m)(ς) = z}
for z ∈ Z±m , and similarly Z−1(z) � {ς ∈ SZ : Z(ς) = z}.
Then, clearly

Z−1(z) ⊂ (Z(m))−1(z) ∀z ∈ Z±m (111)

and

Z−1(z) ∈ BZ , (Z(m))−1(z) ∈ Gm ∀z ∈ Z±m . (112)

Then, we define

P〈m〉(Z−1(z)) = P〈m〉((Z(m))−1(z)) ∀z ∈ Z±m . (113)

This will imply that for every z ∈ Z±m ,

P〈m〉((Z(m))−1(z) \ Z−1(z)) = 0. (114)

By definition, we also have for z ∈ Z \ Z±m that (Z(m))−1

(z) = ∅ so that the associated probability is zero
under any measure P,P〈m〉. We can now consider the
space (SZ ,BZ ,P〈m〉) to be obtained from (SZ ,Gm ,P〈m〉)
along with the definition (113) and subsequent completion
[47, §2.6.19].

By now defining P〈m〉(X ) = P(X ) independent of m, we
can extend the measure P〈m〉 to B = σ({X ,Z}) for each
m ∈ Z

+ as required.

APPENDIX V
PROOF OF PROPOSITION 28

We start with two Lemmas that will be useful in proving
this result.
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Lemma 29: For the SDRC, for every n ∈ N, let m ∈ N.
Then,

P〈m〉
( N (m)

n
max
i=1

|Zi | ≥ m| B
(m)
0

)

= P
( N (m)

n
max
i=1

|Zi | ≥ m| B0

)
= O

(n + m

m2

)
. �

Proof: We first note that by definition of the measure
P〈m〉,

P〈m〉
(
ϑ ∈ S : N (m)

n (ϑ)
max
i=1

|Zi (ϑ)| < m,B(m)
0 (ϑ)

)

= P
(
ϑ ∈ S : N (m)

n (ϑ)
max
i=1

|Zi(ϑ)| < m,B0(ϑ)
)

(115)

From this and the fact that P〈m〉(B(m)
0 ) = P(B0), we have

P〈m〉
( N (m)

n
max
i=1

|Zi | ≥ m | B
(m)
0

)
= P

( N (m)
n

max
i=1

|Zi | ≥ m | B0

)
.

(116)

From the discussion following Lemma 25, we have
N (m)

n ≤ n + m, which implies that we can bound

P
( N (m)

n
max
i=1

|Zi | ≥ m | B0

)
≤ P(

n+m
max
i=1

|Zi | ≥ m | B0)

≤
( 1

1 − p

)
· P(

n+m
max
i=1

|Zi | ≥ m | B′
0)

(117)

where B′
0 � {Z0 = 0}. The last inequality is true because

we have P(· | B0) = 1
1−pr

P(· | B′
0) for ϑ ∈ S such that

Z1(ϑ) ≤ 0; and for ϑ ∈ S such that Z1(ϑ) = 1, the right
hand side dominates trivially. Under the boundary condition
B′

0, it is easy to see that Zn can be written as the nth partial
sum of the i.i.d. process {�i }i≥1 where

P(�1 = ξ) =
{

pr, ξ = 1

p−ξ
d pt, ξ ≤ 0.

(118)

For the SDRC, we have E[�1] = χ = 0 and Var[�1] = ν2 =
2p

1−p < ∞ since p ∈ [0, 1). Hence, Zn ∈ L2(S,B,P) for
every n ∈ N.

Let Sn = σ({Zn}) ⊂ B, the sigma-algebra generated
by Zn , for every n ∈ N. Clearly, Sn = σ({�[n]}) so that
{Sn}n≥1 is a filtration, and Zn ∈ Sn by definition. Let
Sn ↑ S ⊂ B as n → ∞. Since E[Zn | Sn−1] =
E[Zn−1 + �n | Sn−1] = Zn−1, {Zn,Sn}n≥1 is a martingale
under the measure P(· | B′

0). Consequently, {|Zn|,Sn}n≥1
is a submartingale. Since |Zn| ∈ L2(S,B,P), from Doob’s
submartingale inequality [48, §14.6], we have

P(
n+m
max
i=1

|Zi | ≥ m | B′
0) ≤ E[|Zn+m |2]

m2 =
( 2 p

1 − p

)n + m

m2 .

(119)

Putting (116), (117) and (119) together, we have the desired
result.

Lemma 30: Let (T,A ) be a measurable space, and let
{Qn}n≥1, Q all be probability measures on this space. Suppose
that

i) For every n ≥ 1, there is a set Bn ∈ A such that
Qn(A) = Q(A) for every A ⊂ Bn , A ∈ A .

ii) Q(Bn) → 1 as n → ∞.

Then the measures Qn converge in total variation to Q, i.e.,
Qn

tv−→ Q as n → ∞.
Proof: From ii), for every ε > 0, there exists n′(ε) ∈ N

such that

Q(Bn) ≥ 1 − ε ∀n ≥ n′(ε). (120)

From i), Qn(A ∩ Bn) = Q(A ∩ Bn) for every n ≥ 1, A ∈ A .
Therefore, for every ε > 0,

||Qn − Q|| = 2 sup
A∈A

|Qn(A)− Q(A)| (121)

= 2 sup
A∈A

|Qn(A ∩ B
C
n )− Q(A ∩ B

C
n )| (122)

≤ 2ε ∀n ≥ n′(ε). (123)

Hence Qn
tv−→ Q as n → ∞.

Note that Dn,m �
{
ϑ ∈ S : maxN (m)

n (ϑ)
i=1 |Zi (ϑ)| ≥ m

}
is

the subset of S in B where P〈m〉(X[n],Y (m)[N (m)
n ] | B

(m)
0 ) differs

from P(X[n],Y[Nn ] | B0). From Lemma 29, we have

P〈m(n)〉(Dn,m(n)| B
(m(n))
0 ) = P(Dn,m(n)| B0) → 0 (124)

as n → ∞, whenever m(n) = ω(
√

n). By setting T = S,
A = B, Q = P(· | B0), and for each n ∈ N, Qn =
P〈m(n)〉( · | B

(m(n))
0 ) and Bn = D

C
n,m(n), and extending

P〈m(n)〉 to B (cf. Appendix VI-B) such that it agrees with
the measure P on every subset of Bn for each n ≥ 1, both
conditions i) and ii) in Lemma 30 are satisfied. From this and
[42, Corollary 1′], we have the desired result.
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