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Abstract

In this work, we study a recently proposed direct shaping code for flash memory. This rate-1 code is designed to

reduce the wear for SLC (one bit per cell) flash by minimizing the average fraction of programmed cells when storing

structured data. Then we describe an adaptation of this algorithm that provides data shaping for MLC (two bits per

cell) flash memory. It makes use of a page-dependent cost model and is designed to be compatible with the standard

procedure of row-by-row, page-based, wordline programming. We also give experimental results demonstrating the

performance of MLC data shaping codes when applied to English and Chinese language text. We then study the

potential error propagation properties of direct shaping codes when used in a noisy flash device. In particular, we

model the error propagation as a biased random walk in a multidimensional space. We prove an upper bound on the

error propagation probability and propose an algorithm that can numerically approach a lower bound. Finally, we

study the asymptotic performance of direct shaping codes. We prove that the SLC direct shaping code is suboptimal

in the sense that it can only achieve the minimum average cost for a rate-1 code under certain conditions on the

source distribution.

I. INTRODUCTION

NAND flash memory has become a widely used data storage technology. It uses rectangular arrays, or

blocks of floating-gate transistors (commonly referred to as cells) to store information. The flash memory

cells gradually wear out with repeated writing and erasing, referred to as program/erase (P/E) cycling, but

the damage caused by P/E cycling is dependent on the programmed cell level. For example, in SLC flash

memory, each cell has two different states, erased and programmed, represented by 1 and 0, respectively.

Storing 1 in a cell causes less damage, or wear, than storing 0. More generally, in multilevel flash memories,

the cell wear is an increasing function of the programmed cell level.
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Many works have considered the problem of designing codes that can combat the limited-endurance in

flash memory. For example, in Chee et al. [2], write l-step-up memories codes, which can be viewed as a

generalization of non-binary write-once memory codes [14], was proposed. This coding scheme improves

the lifetime of a flash device by writing multiple messages to the flash cell before it is erased. In Liu

et al. [12], a bad page detector was introduced. This scheme improves the lifetime of a flash device by

blocking the cells that wear out and store data in the remaining part of the device.

The damage caused by programming the cell is usually modeled as a cost, and increasing the lifetime

of flash memories can be converted to the problem of encoding information for use on channels with a

cost constraint. This type of code is often referred to as a shaping code. Starting from Shannon [15], there

is a substantial literature on shaping codes, for example, see Golin et al. [5], Guazzo [6], Karp [8] and

Krause [9]. For pointers to more literature on shaping codes, see [11]. Here we highlight two works that

specifically address shaping codes for flash memory.

In [7], Jagmohan et al. proposed endurance coding. For a given cost model and a specified target code

rate, the optimal distribution of cell levels that minimizes the average cost was determined analytically,

reproducing the results in the references cited above. For SLC flash memory, with associated level costs

of 0 and 1, greedy enumerative codes that minimize the number of cells with cost 1 were designed and

evaluated in terms of the rate-cost trade-off. However, endurance coding is intended for uniform i.i.d. source

data. For structured source data, which would include a general i.i.d. source, the idea of combining source

compression with endurance coding was proposed, but the relationship between the code performance and

the code rate for arbitrary sources was not thoroughly studied.

In Sharon et al. [16], low-complexity, rate-1, fixed-length direct shaping codes for structured data were

proposed for use on SLC flash memory. The code construction used a greedy approach based upon an

adaptively-built encoding dictionary that does not require knowledge of the source statistics.

In this paper, we study the properties of direct shaping codes. In Section II we review the SLC direct

shaping codes proposed in [16]. We illustrate its effectiveness by given an application to the English-

language novel The Count of Monte Cristo. In Section III we describe the structure and programming of

MLC flash memory, and then propose a content-dependent cost model that reflects the cell wear associated

with programming each level. Based on this model, we extend the data shaping code introduced in Section II

to MLC flash memory. We also present experimental results of applying MLC shaping codes to The Count
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of Monte Cristo and Chinese-language text Collected Works of Lu Xun, Volumes 1–4. In Section IV, we

study the problem of error propagation by means of a random-walk recurrence analysis. We derive the upper

bound on the probability of error propagation during the encoding and decoding process. We also propose

an algorithm that can numerically approximate the lower bound. The analysis shows that if a sufficiently

large number of codewords have been read correctly, error propagation can be avoided. In Section V, we

derive the asymptotic average cost of a SLC shaping code and compare the result to the asymptotically

average cost of an optimal type-I shaping code, which was introduced in [11].

II. SHAPING CODES FOR SLC FLASH

A. Encoder and Decoder

In the context of SLC flash memory, direct shaping codes were first introduced in [16]. Their construction

makes use of a rate-1, adaptive encoding dictionary D that is used to map successive words of length m in

the input sequence W into codewords of length m. Denote by wi ∈ {0, 1}m, i = 1, . . . 2m, the input word

and by Pi its probability. Without loss of generality, we assume that P1 > P2 > . . . > P2m . The dictionary

D comprises two lists, a dynamically ordered list X and a fixed output codeword list Y . The output list

Y consists of codewords yk ∈ {0, 1}m, k = 1, 2, . . . , 2m, ordered by non-decreasing cost, where the cost

of a codeword yk in this context means the number of 0 symbols in yk.

At any given time during the encoding process, the list X consists of pairs {(xk, nk)}, k = 1, 2 . . . , 2m,

where each pair represents a distinct length-m input word xk ∈ {0, 1}m and the frequency count, or number

of times, nk, that it has appeared up to that point in the input data sequence. The list of pairs is dynamically

ordered such that the nk values are in non-increasing order, i.e, n1 > n2 > ... > n2m . At the start of the

encoding process, the nk are all initialized to the value 0, and the words xk are ordered lexicographically.

Encoding proceeds as follows. When a data word x of length m is encountered in the input data sequence,

its corresponding pair (xk, nk) = (x, n) is found in the ordered list X . The encoder then maps x to the

length-m output word y that occupies the same position in output list Y . The frequency count n of the

word x is increased by 1 and the list X is reordered accordingly, with the pair (x, n + 1) moved above all

pairs with counts less than or equal to n + 1.

Example 1. Consider a direct shaping code with parsing length m = 2. In the encoding dictionary D, the

ordered output list Y is {11, 10, 01, 00}. Consider the length-14 data sequence w = 10.11.00.10.11.10.00.
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The first six length-2 input words contain three words x1 = 10, two words x2 = 11 and one word x3 = 00.

The state of the dictionary D after encoding these 6 words is shown in Table Ia.

The final input word is x = 00. According to Table Ia, it is mapped to output codeword y3 = 01. We

then add 1 to the count n3 in the table and update the ordering of the entries in the input list X . The

updated dictionary D is shown in Table Ib. 2

Fig. 1: Direct shaping codes applied to The Count of Monte Cristo.
(a)

x n y

10 3 11
11 2 10
00 1 01
01 0 00

(b)

x n y

10 3 11
00 2 10
11 2 01
01 0 00

TABLE I: Length-2 dictionary when encoding x = 00.

The decoder dynamically reconstructs the table and inverts the encoder mapping. When a codeword y is

encountered in the encoded sequence, it is mapped to the binary length-m data word x that occupies the

same position in the input list X . Then the frequency count n of the word x is increased by 1 and the

ordering of the input list X is updated accordingly. This rate-1 shaping code incurs no rate penalty and

both encoding and decoding can be implemented with low complexity.

4



B. Simulation Results

We now present simulation results quantifying the endurance gain which can be achieved by the use of

SLC direct shaping codes. The structured data we used was the English-language novel The Count of Monte

Cristo (TCMC), represented in ASCII Code. We evaluated the shaping code using encoder parsing length

m equal to 2, 4 and 8. Fig. 1 shows the fraction of 0 symbols in the first γ bits in the original data file and

in the corresponding encoded files. The fraction of 0’s in the entire original data file was approximately

0.55. With parsing length equals to 2 bits, the fraction of 0’s dropped to about 0.41. With parsing length

equal to 4 bits, the fraction of 0’s dropped to about 0.29, and with parsing length of 8 bits, the fraction

was further reduced to about 0.16.

III. DATA SHAPING CODES FOR MLC FLASH

A. Cost Model for MLC Flash

Every cell in an MLC flash memory can be charged to 4 different values of the threshold voltage, Vth.

Thus, each cell can represent 2 bits of information. The levels are denoted by 0, 1, 2, 3, respectively, from

lowest to highest, and the corresponding binary representations are given by the Gray code {11, 10, 00, 01}.

In the binary representation of a level, the left-most bit is called the lower bit and the right-most bit is

called the upper bit. To program the MLC flash cell, we assume the controller uses a two-step process. It

first charges the cell to an intermediate voltage level that reflects the value of the lower bit. Then, taking

into account the value of the upper bit, it completes charging of the cell to reach the appropriate final

threshold voltage level. This process is shown schematically in Fig. 2.

The rows of cells in a flash memory block are called wordlines, and the wordlines are programmed

sequentially, in a row-by-row manner. The lower bits of cells in a wordline constitute the lower page, while

the upper bits form the upper page. When programming a block, information is programmed separately to

lower pages and upper pages. During data retrieval, pages are also retrieved independently, with lower bit

values recovered by reference to read threshold VB, and upper bit values by reference to read thresholds

VA and VC, also shown in Fig. 2.

To characterize and quantify the damage caused by different programmed levels in an MLC flash memory,

we performed an experiment on several blocks in which we repeatedly programmed all the cells in the block

to a specified, constant level, erasing the block (i.e., reducing voltage to level 0) after each programming
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Fig. 2: Schematic of MLC flash cell programming.

cycle. The device we used was a 1x nm MLC flash chip with the default read threshold positions. After

every 100 of these P/E cycles, we programmed the block with pseudo-random data, read it back, and

recorded the cell error rate. The error rates, averaged over the blocks used in the experiment, are shown

in Fig. 3. We see that cell damage caused by the levels 0, 1, 2, 3 increases monotonically. A cost model,

in the form of a vector of cell-level costs C = [c0, c1, c2, c3], is used to quantify the relative amount of

device wear associated with each of the cell levels. In practice, these costs will satisfy c0 6 c1 6 c2 6 c3,

reflecting the increased damage induced by higher programmed levels.

Given a length-m cell-level codeword z = [z1, . . . , zm], we denote the cost associated with the symbol zi

by c(zi), and the total cost c(z) associated with programming z is assumed to be the sum of the individual

symbol costs; i.e., C = c(z) = ∑
m
i=1 c(zi).

Remark 1. A method for determining physically meaningful values of ci was proposed by Li et al. in

[10]. It is based upon measuring the number of cycles it takes for the error rate associated with a certain

programmed level to reach a prespecified maximum tolerable cell error rate. If the design lifetime of the

flash memory is T0 P/E cycles, the maximum tolerable cell error rate CERmax is defined as the cell error

rate after the memory is programmed with random data for T0 P/E cycles. We view the damage caused by

programming random data to the memory as being proportional to 1/T0.

We define Φi(T) to be the cell error rate observed after T cycles of programming the blocks to the level

i, for i = 0, 1, 2, 3. Let Ti
max denote the P/E cycle number at which Φi(T) equals CERmax. We view the
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Fig. 3: Cell error rate of MLC Flash for different programming levels, while repeatedly programming a
constant level.

damage caused by programming to level i as proportional to 1/Ti
max, so we define the cost associated with

each level i, i = 0, 1, 2, 3, to be

ci =
T0

Ti
max

. (1)

We calculate the cost model corresponding to the error rate results in Fig. 3, assuming a design lifetime of

T0 = 4000 cycles. The error rate associated with level 0 remains essentially constant, so we set c0 = 0.

For the other levels, we find that T1
max = 6900, T2

max = 4600 and T3
max = 3100, so the complete cost

model is computed to be [0, 0.58, 0.87, 1.29]. 2

B. Shaping Codes for MLC Flash

Application of the SLC shaping code independently to lower and upper pages will not be effective in

reducing the average cost. This can be seen by referring to the schematic of the MLC flash cell programming

process in Fig. 2. As shown in the schematic, the cost associated with an upper bit 1 or 0 depends on the

value of the corresponding lower bit in the cell. The proposed MLC shaping encoder achieves improved

wear reduction by using lower-page dependent dictionaries when encoding the upper pages, as we now

describe.

First, fix a parsing length m. Encoding and programming of wordlines is done in a row-by-row, sequential

manner. Suppose that we want to encode L data words to both lower and upper pages. For the lower pages,
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the encoder simply uses the direct shaping code with parsing length n. When programming an upper page,

however, the encoder first reads the corresponding, previously programmed lower page.

Now, suppose the lower page that has been programmed and presumably correctly recovered consists of

the sequence of length-m codewords v(k), k = 0, . . . , L. Consider the sequence of length-m data words

w(k), k = 0, . . . , L that need to be encoded for the upper page. To encode the kth data word w(k),

we encode using a direct shaping code that is based upon an adaptively-built dictionary that depends on

the corresponding lower page codeword v(k). The only difference in the operation of each lower-page

dependent shaping encoder is that the ordering of the length-m encoder output words in terms of increasing

cost depends specifically on the lower page codeword v and the cost model [c0, c1, c2, c3].

To illustrate the design of the encoder, we will use the cost model [c0, c1, c2, c3] = [0, 1, 1, 2]. This

simple cost model is motivated as follows. Consider the standard lower-upper page binary representation

of the cell levels: 0=11, 1=10, 2=00, 3=01. We assign a cost of 0 to lower bit value 1, and a cost of 1

to lower bit value 0, in accordance with the MLC cell programming schematic. When the lower bit value

is 1, we assign a cost of 0 to upper bit value 1, and a cost of 1 to upper bit value 0. On the other hand,

when the lower bit value is 0, we assign a cost of 0 to upper bit value 0, and a cost of 1 to upper bit

value 1. Again, these cost assignments are consistent with the MLC cell programming schematic. The cost

associated with a cell level is then defined as the sum of the corresponding lower bit and upper bit costs.

Choose parsing length n = 4 and assume the lower page codeword is v = 1110. For the first three bits,

where the corresponding lower bit is a 1, programming the upper bit to 1 is better than to 0. For the last

bit, where the corresponding lower bit is a 0, programming the upper bit to 0 is better than to 1. This

implies that the lowest cost output word in the dictionary is 1110, corresponding to cell level word 0002,

which has total cost 1. Similar reasoning leads to the ordered list of output words shown in Table II. The

corresponding list of cell level words is given in Table III.

It is easy to verify that the costs of the corresponding cell level words are non-decreasing: cost 2 for

words 1 to 4, cost 3 for words 5 to 10, cost 4 for words 11 to 14, and cost 5 for word 15. In general,

the encoder uses 2m direct shaping encoders operating in a sequence determined by the sequence of lower

page codewords v(k), k = 0, . . . , L.
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index Output List index Output List

0 1110 8 1000
1 1111 9 0100
2 1100 10 0010
3 1010 11 1001
4 0110 12 0101
5 1101 13 0011
6 1011 14 0000
7 0111 15 0001

TABLE II: Ordered list of upper page words for lower page codeword 1110.

index Output List index Output List

0 0002 8 0112
1 0003 9 1012
2 0012 10 1102
3 0102 11 0113
4 1002 12 1013
5 0013 13 1103
6 0103 14 1112
7 1003 15 1113

TABLE III: Corresponding list of cell level words for lower page codeword 1110.

C. Encoding Algorithm for MLC Shaping Codes

The upper page encoder uses an encoding table in which the order of the output codewords depends

on the lower page codeword. The encoding table provides a mapping from an index I ∈ {1, . . . , 2m} to

the corresponding upper page output word y in the ordered list. This mapping can be implemented using

enumerative coding, introduced by Cover [3]. To explain the algorithm, we first introduce some notation.

We denote the length-m lower page codeword by v and the upper page word by y. They determine the

cell level output word z = [z1, . . . , zm], where zi is the cell level associated with the lower and upper bit

pair vi yi.

Let n(v, C, y1, y2, . . . , yk) be the number of upper page words y that, together with lower page

codeword v, yield total cost C, and whose first k coordinates are equal to [y1, y2, . . . , yk]. To determine

n(v, C, y1, y2, · · · , yk), we first calculate the polynomial gv,k(x) = (xc0 + xc1)n1(xc2 + xc3)n0 , where nb,

b ∈ {0, 1} is the number of bits equal to b in the last m− k bits of the lower page codeword, [vk+1, . . . , vm].

The degrees of terms in gv,k(x) represent the possible total costs of cell level vectors [z′k+1, . . . , z′m] with

associated lower bit vector [vk+1, . . . , vm], and the corresponding coefficients represent the number of such
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vectors. Then n(v, C, y1, y2, · · · , yk) is equal to the coefficient of the term in gv,k(x) whose degree is

equal to C− ∑
k
i=1 ui. If there is no such term in the polynomial, we set n(v, C, y1, y2, · · · , yk) = 0. In

particular, the polynomial gv,0(x) corresponding to [v1, . . . , vm] tells us the costs C j, j = 1, . . . , J of all

possible length-m cell level vectors with associated lower bit vector v, along with the number of upper

page words that together with v produce these costs. From these we calculate n(v, C), the number of

upper page words that produce total cost less than or equal to U, given lower page codeword v. Example

2 illustrates how to calculate n(v, C, y1, y2, · · · , yk).

Example 2. We want to calculate n(v, C, 1, 1) where the lower page codeword is v = 1110 and the total

cost is C = 2. The combined cost of the first two cells is 0, so the remaining cost is 2. We calculate

the polynomial (xc0 + xc1)n1(xc2 + xc3)n0 = (1 + x)(x + x2) = x + 2x2 + x3. The coefficient of x2 is 2,

meaning there are two possible codewords with total cost C = 2 and first two bits [1, 1]. 2

With enumerative coding, instead of storing the ordered upper page output word list, we only need to

store the values n(v, C, y1, y2, · · · , yk) and n(v, C). Algorithm 1 describes the encoding process.

Algorithm 1 Encoding upper page codewords
Input: Codeword length m, lower page codeword v, index I
Output: Upper page codeword y = (y1, y2, . . . , ym)

1: Find j such that I > n(v, C j−1) and I 6 n(v, C j), set I = I − n(v, C j−1)
2: If I > n(v, C j, 0) set y1 = 1 and set I = I − n(v, C j, 0), otherwise set y1 = 0
3: For ith bit, if I > n(v, C j, y1, · · · , yi−1, 0) set yi = 1 and set I = I − n(v, C j, y1, · · · , yi−1, 0),

otherwise set yi = 0

D. Simulation Results

We assessed the performance of the MLC shaping encoder using TCMC. The data file was divided into

two consecutive subfiles of size 11, 134, 796 bits; the first was used for lower page encoding and the second

for upper page encoding.

Fig. 4 shows the respective fractions of the encoded cell levels 0, 1, 2, 3 appearing in the cell level

sequences produced when no shaping code was applied to the first γ bits of each subfile. Fig. 5 shows

the corresponding fractions when the proposed MLC shaping encoder is applied using the empirical cost

model derived in Remark. 1.
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Fig. 4: Fractions of MLC cell levels for segments of The Count of Monte Cristo without a shaping code.

Fig. 5: Fractions of MLC cell levels for segments of The Count of Monte Cristo with MLC shaping code.

From these figures, we see that for TCMC, the average cost when no coding is applied is 0.66. When

SLC shaping is applied independently to lower and upper pages, the average cost is 0.48 (not shown). In

contrast, after MLC shaping, the average cost is reduced to 0.39.

E. Experimental Results on MLC Flash Memory

In this subsection, we present the experimental results that evaluate the performance of MLC shaping

codes. To characterize the performance of the shaping code, we performed a program/erase (P/E) cycling

experiment on the MLC flash memory by repeating the following steps, which collectively represent one

P/E cycle.

• Erase the MLC flash memory block.

• Program the MLC flash memory.
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• For each successive programming cycle, “rotate” the data, so the data that was written on the ith

wordline is written on the i + 1st wordline, wrapping around the last wordline to the first wordline.

• After every 100 P/E cycles, erase the block and program pseudo-random data. Then perform a read

operation, record bit errors, and calculate the bit error rate.

The experiment was conducted with the uncoded source data, and then with the output data from the MLC

shaping code described in Section III-D. The average bit error rates (BERs) are shown in Fig. 6. The

black dash line represents the maximum tolerable cell error rate introduced in Remark 1 and the increased

lifetime was measured at this rate. The results indicate that applying MLC shaping codes to English text

increases the lifetime of flash memory device by 900 P/E cycles. A similar experiment was done using the

Chinese text Collected Works of Lu Xun, Volumes 1–4. Fig. 7 shows that MLC shaping codes increase the

lifetime of flash memory device by 800 P/E cycles.

Fig. 6: BER performance of English-language text The Count of Monte Cristo.

Fig. 7: BER performance of Chinese-language text Collected Works of Lu Xun, Volumes 1–4.
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(a) (b)
Fig. 8: Error propagation examples.

IV. ERROR PROPAGATION ANALYSIS

The direct shaping decoder reproduces the dynamic construction of the encoding list X . Errors in reading

the flash memory can lead to incorrect word frequency counts that, in turn, can cause decoding errors if

word counts are not sufficiently separated. In this section we introduce a framework for analyzing potential

error propagation properties of direct shaping codes, based upon recurrence properties of random walks.

A. Recurrence probability of a two-word dictionary

We first consider the case when m = 1, where the input dictionary contains only two words w1 and

w2. Suppose that, at time t0, the input word counts satisfy n1(t0) 6= n2(t0). Since there are only 2 words,

the dictionary after time t can be represented by the word that has the higher count, denoted by s(t) ∈

{w1, w2}, and the distance, denoted simply by N(t) = n1(t) − n2(t). Let se(t), Ne(t) represent the

dictionary evolution during the encoding process, and let sd(t), Nd(t) represent the dictionary evolution

during decoding process. The distance behaves like a one-dimensional random walk, as depicted in Fig. 8a.

In the figure, the blue line represents the encoding process, starting at time denoted as t = 0, with se(0) =

w1 and Ne(0) = 5.

Assuming no read errors through time t = 5, the decoder correctly reconstructs the encoding dictionary,

retracing the blue line. At time t = 5, we have sd(5) = se(5) = w1 and Ne(5) = Nd(5) = 4. At t = 6,

the input was w2, implying se(6) = w1 and Ne(6) = 3, producing output codeword 0. This point is

marked by A on the blue line. Now, suppose a read error occurs at decoding time t = 6. The codeword
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t 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(se, Ne) (w1, 5) (w1, 4) (w1, 5) (w1, 6) (w1, 5) (w1, 4) (w1, 3) (w1, 2) (w1, 1) (w2, 0) (w2,−1) (w2,−2) (w2,−1) (w1, 0)
input — w2 w1 w1 w2 w2 w2 w2 w2 w2 w2 w2 w1 w1

output — 0 1 1 0 0 0 0 0 0 1 1 0 0

(sd, Nd) (w1, 5) (w1, 4) (w1, 5) (w1, 6) (w1, 5) (w1, 4) (w1, 5) (w1, 4) (w1, 3) (w1, 2) (w1, 3) (w1, 4) (w1, 3) (w1, 2)
input — 0 1 1 0 0 1 0 0 0 1 1 0 0

output — w2 w1 w1 w2 w2 w1 w2 w2 w2 w1 w1 w2 w2

TABLE IV: Encoding and decoding processes in Fig. 8a.
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(se, Ne) (w1, 5) (w1, 4) (w1, 5) (w1, 6) (w1, 5) (w1, 4) (w1, 3) (w1, 2) (w1, 3) (w1, 4) (w1, 5) (w1, 4) (w1, 5) (w1, 4)
input — w2 w1 w1 w2 w2 w2 w2 w1 w1 w1 w2 w1 w2

output — 0 1 1 0 0 0 0 1 1 1 0 1 0

(sd, Nd) (w1, 5) (w1, 4) (w1, 5) (w1, 4) (w1, 3) (w1, 2) (w1, 1) (w2, 0) (w2,−1) (w2,−2) (w2,−3) (w2,−2) (w1,−3) (w1,−2)
input — 0 1 0 0 0 0 0 1 1 1 0 1 0

output — w2 w1 w2 w2 w2 w2 w2 w2 w2 w2 w1 w2 w1

TABLE V: Encoding and decoding processes in Fig. 8b.

is incorrectly read as 1, which is decoded as input w1, resulting in sd(6) = w1 and Nd(6) = 5. This

deviation is marked by A′ on the red dashed line, which represents the decoding process. Assume no

further read errors occur. The decoder trace remains separated from the encoder trace, but the following

three codewords are nevertheless decoded correctly. At time t = 9, since Ne(9) = 0, the encoder changes

to se(9) = w2, while Nd(9) = 2 implies that the decoder continues with sd(9) = w1. These two points

are indicated by B and B′ on the encoding and decoding traces, respectively. The next input word was w2

and the encoder output was 1, but, even though it is read correctly, the decoded word is w1. In fact, after

this point, all codewords will be decoded incorrectly. This example shows that if the encoding dictionary

reaches a point where Ne(t) = 0, there is the potential for error propagation. Fig. 8b also shows the

potential of error propagation if the decoding dictionary reaches a point where Nd(t) = 0. The encoding

and decoding processes in Fig. 8 are summarized in Tables IV and V.

In order to analyze the error propagation behavior of direct shaping codes, we make use of a result

about one-dimensional random walks. Here we use the encoding process as an example. For a two-word

dictionary with input words w1 and w2 and respective counts ne
1(t) and ne

2(t), suppose ne
1(t0) 6= ne

2(t0) at

time t0. We say a recurrence occurs if, at some future time t > t0, ne
1(t) = ne

2(t). The following theorem,

stated in [4, Theorem 4.8.9], determines the recurrence probability.

Theorem 1. Consider two input words w1, w2, with probabilities P1, P2 respectively (P1 + P2 = 1, P1 > P2).

Let Ne(t) = ne
1(t)− ne

2(t). At time t0, the probability Q that a recurrence involving w1, w2 will occur in

the future is

14



Fig. 9: Two dimensional random walk on (Ne
i , Nd

i )-plane

Q =


(

P2
P1

)Ne(t0)
if Ne(t0) > 0,

1 if Ne(t0) 6 0.
(2)

2

Here we assume that the SLC flash memory is a binary symmetric channel with transition probability

ρ. The pair {Ne(t), Nd(t)} acts like a two-dimensional random walk, as shown in Fig. 9. The transition

probabilities of this random walk are

P({Ne(t), Nd(t)} → {Ne(t) + 1, Nd(t) + 1}) = (1− ρ)P1,

P({Ne(t), Nd(t)} → {Ne(t) + 1, Nd(t)− 1}) = ρP1,

P({Ne(t), Nd(t)} → {Ne(t)− 1, Nd(t)− 1}) = (1− ρ)P2,

P({Ne(t), Nd(t)} → {Ne(t)− 1, Nd(t) + 1}) = ρP2.

(3)

We say a recurrence occurs if, at future time t > t0, either Ne(t) or Nd(t) equals to zero. We denote by

Ee the event that the recurrence occurs during the encoding process (at future time t > t0, Ne(t) equals to

zero) and Ed the event that the recurrence occurs during the decoding process. The recurrence probability

is

Q = Pr{Ee ∪ Ed}. (4)
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Using Theorem 1, we can calculate Pr{Ee} and Pr{Ed}. When ρ > 0.5, Nd(t) increases by 1 with

probability

Pd = (1− ρ)P1 + ρP2

= (1− ρ)P1 + ρ(1− P1)

=
1
2
− 1

2
(1− 2ρ)(1− 2P1) 6

1
2

.

(5)

This indicates that Pr{Ed} = 1 when Nd(t) > 0. Similarly, when Ne(t) < 0, from Theorem 1 we have

Pr{Ee} = 1. To avoid these situations, we assume that ρ < 0.5 and Ne(t0), Nd(t0) > 0 at time t0. we

say the pair {Ne(t0), Nd(t0)} is stable if Ne(t0), Nd(t0) > 0. The following theorem provides an upper

bound on Q.

Theorem 2. For a two-word dictionary with a stable pair {Ne(t0), Nd(t0)} at time t0, the probability Q that

a recurrence will occur in the future is bounded by

Q 6
(

P2

P1

)Ne(t0)

+

[
ρP1 + (1− ρ)P2

(1− ρ)P1 + ρP2

]Nd(t0)

. (6)

Proof: A simple union bound yields

Q = Pr{Ee ∪ Ed} 6 Pr{Ee}+ Pr{Ed}. (7)

From Theorem 1, we have

Pr{Ee} =
(

P2

P1

)Ne(t0)

(8)

and

Pr{Ed} =
[
ρP1 + (1− ρ)P2

(1− ρ)P1 + ρP2

]Nd(t0)

. (9)

Combining equations (7), (8) and (9) completes the proof.

B. Recurrence probability of a pair of words in a general dictionary

In this subsection, we study the recurrence probability of a pair of words in the general dictionary

with 2m entries. We first establish some notation. Assume t data words have been encoded. Let

ne(t) = {ne
1(t), ne

2(t), ne
3(t), . . . , ne

2m(t)} be the word counts and let Ne
i (t) = ne

i (t) − ne
i+1(t) denote

the distance between the ith and (i + 1)st words. Similarly, for the decoding process, let nd(t) =
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{nd
1(t), nd

2(t), . . . , nd
2m(t)} be the word counts and let Nd

i (t) = nd
i (t)− nd

i+1(t) denote the distance. We

say the pair {ne(t), nd(t)} is stable if ne
1(t) > ne

2(t) > . . . > ne
2m(t) and nd

1(t) > nd
2(t) > . . . > nd

2m(t).

We sometimes use the term stable to describe a dictionary that has a stable {ne(t), nd(t)}. When the

dictionary is stable, the probability of reading word wi from flash memory is

Pd
i = ∑

j
ρd{i, j}(1− ρ)m−d{i, j}Pj, (10)

where d{i, j} is the Hamming distance between wi and wj. Here we always assume that ρ is small enough

so that Pd
1 > Pd

2 > . . . > Pd
2m .

We assume that the dictionary is stable at some t0. We denote by {i, i + 1}e the event that a recurrence

occurs between the ith and (i + 1)st words during the encoding process and by {i, i + 1}e its complement.

Similarly, we denote by {i, i + 1}d the event that a recurrence occurs between the ith and (i + 1)st words

during the decoding process and by {i, i + 1}d its complement. In this subsection, we study the recurrence

probability Qi(Ne
i (t), Nd

i (t)) = Pr{{i, i + 1}e ⋃{i, i + 1}d}. We first note the following lemma which is

a direct corollary of Theorem 2.

Lemma 3. For a general dictionary with a stable pair {Ne
i (t0), Nd

i (t0)} at time t0, the probability

Qi(Ne
i (t0), Nd

i (t0)) that a recurrence will occur in the future between wi and wi+1 is bounded by

Qi(Ne
i (t0), Nd

i (t0)) 6
(

Pi+1

Pi

)Ne
i (t0)

+

(
Pd

i+1

Pd
i

)Nd(t0)

, (11)

where {Pd
i } is given by equation (10). 2

Here we provide a way to numerically approximate a lower bound of Qi(Ne
i (t0), Nd

i (t0)). Consider a

closed region in the (Ne
i , Nd

i )-plane defined by four line segments, which are divided into two groups BL
r

and BL
c .

BL
r : Ne

i = 0, 0 6 Nd
i 6 L, and Nd

i = 0, 0 6 Ne
i 6 L,

BL
c : Ne

i = L, 0 < Nd
i 6 L, and Nd

i = L, 0 < Ne
i 6 L,

(12)

where L > max{Ne
i (t0), Nd

i (t0)}. As shown in Fig. 10, BL
r is represented by the red line and BL

c is

represented by the blue dashed line. The interior region is denoted by I .
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Fig. 10: Two dimensional random walk in a general dictionary

Unlike the two-word dictionary, where the pair (Ne
i , Nd

i ) behaves like a two-dimensional random walk

with only 4 directions of movement, the pair (Ne
i , Nd

i ) in a general dictionary can move in 8 directions or

stand still. Denote the probability of going from (Ne
i , Nd

i ) to (Ne
i + x, Nd

i + y) by Pi
{x,y}, x, y ∈ {−1, 0, 1}.

The transition probabilities of this random walk are shown in Table VI. Note that in the first four entries

of the table, the summations actually include only one term. They have been written as summations to

highlight the similar form of the various transition probabilities.

Direction Transition Probability

{1, 1} Pi
{1,1} = ∑ j=i ρ

d{i, j}(1− ρ)m−d{i, j}Pi

{−1,−1} Pi
{−1,−1} = ∑ j=i+1 ρ

d{i+1, j}(1− ρ)m−d{i+1, j}Pi+1

{1,−1} Pi
{1,−1} = ∑ j=i+1 ρ

d{i, j}(1− ρ)m−d{i, j}Pi

{−1, 1} Pi
{−1,1} = ∑ j=i ρ

d{i+1, j}(1− ρ)m−d{i+1, j}Pi+1

{1, 0} Pi
{1,0} = ∑ j 6=i,i+1 ρ

d{i, j}(1− ρ)m−d{i, j}Pi

{−1, 0} Pi
{−1,0} = ∑ j 6=i,i+1 ρ

d{i+1, j}(1− ρ)m−d{i+1, j}Pi+1

{0, 1} Pi
{0,1} = ∑ j 6=i,i+1 ρ

d{i, j}(1− ρ)m−d{i, j}Pj

{0,−1} Pi
{0,−1} = ∑ j 6=i,i+1 ρ

d{i+1, j}(1− ρ)m−d{i+1, j}Pj

{0, 0} Pi
{0,0} = 1− ∑x,y∈{−1,0,1},{x,y}6={0,0} Pi

{x,y}

TABLE VI: Transition probability of a random walk in a general dictionary.

For any point (Ne, Nd) in the closed region, denote by EL(Ne, Nd) (or EL for convenience) the event

that a random walk starting at (Ne, Nd) will hit boundary group BL
r before it hits BL

c and denote by Q̃i(EL)

its probability. Clearly EL2 ⊆ EL1 when L2 > L1, because if a random walk hits BL1
r before hitting BL1

c ,
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it also hits BL2
r before hitting BL2

c . Therefore we have

Q̃i(EL) 6 Q̃i(EL+1) 6 . . . 6 Qi,

⇒ Q̃i(Ne, Nd)
def
= lim sup

L→∞ Q̃i(EL) 6 Qi(Ne, Nd).
(13)

Q̃i(EL(Ne, Nd)) has the following properties.

Q̃i(EL(0, Nd)) = Q̃i(EL(Ne, 0)) = 1, (14)

Q̃i(EL(L, Nd)) = 0 when Nd > 0,

Q̃i(EL(Ne, L)) = 0 when Ne > 0,
(15)

Q̃i(EL(Ne, Nd)) =
∑{x,y}6={0,0} Pi

{x,y}Q̃i(EL(Ne + x, Nd + y))

1− Pi
{0,0}

. (16)

To find Q̃i(EL(Ne
i (t0), Nd

i (t0))), we first define the recurrence probability vector QL
i by

QL
i = [Q̃i(EL(0, 0)), . . .︸ ︷︷ ︸

BL
r

, Q̃i(EL(1, L)), . . .︸ ︷︷ ︸
BL

c

, Q̃i(EL(1, 1)) . . .︸ ︷︷ ︸
I

]> (17)

where, within each subvector, the ordering of the values corresponds to the lexicographical ordering of the

locations (Ne
i (t0), Nd

i (t0)). Updating QL
i based on equations (14), (15) and (16) can then be represented

by a matrix multiplication TQL
i . The transition matrix T has the form

T =

 I 0

R S

 . (18)

It is easy to check that T satisfies the following properties.

• T is non-negative.

• The row sum ∑ j ti j = 1 for all i.

• I is an identity matrix of size 4L, representing the boundary conditions.

• S is irreducible and there exists row i such that ∑ j si j < 1.

• Th can be represented as

Th =

 I 0

R(I + S + . . . + Sh−1) Sh

 . (19)
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Since S has rows with row sum strictly less than 1, we can always find an irreducible matrix S̃ such that

S̃ > S, S̃ 6= S and its row sum ∑ j s̃i j = 1 for all rows. From [13, Lemma 1.2], the Perron root λ(S) of S

is strictly less than that of S̃ and

λ(S) < λ(S̃) = 1. (20)

Thus we have

lim
h→∞ Sh = 0, (21)

lim
h→∞ I + S + . . . + Sh−1 = (I− S)−1. (22)

By combining equations (19), (21) and (22), we have

lim
h→∞ Th = lim

h→∞
 I 0

R(I + S + . . . + Sh−1) Sh

 =

 I 0

R(I− S)−1 0

 . (23)

Equation (23) indicates that Q̃i(EL(Ne, Nd)) is determined solely by the boundary values (equations (14)

and (15)) and can be numerically approached by Algorithm 2. By increasing L, Q̃i(EL(Ne, Nd)) can be

used to approach Q̃i(Ne, Nd), which is the lower bound on Qi(Ne, Nd).

Algorithm 2 Approximating Q̃i(EL(Ne
i (t0), Nd

i (t0)))

Input: Area size L, index (Ne
i (t0), Nd

i (t0)), maximum iteration number J.
Output: Approximation of Q̃i(EL(Ne

i (t0), Nd
i (t0))).

1: Initialize QL
i such that Q̃i(EL(0, Nd)) = Q̃i(EL(Ne, 0)) = 1 and Q̃i(EL(Ne, L)) = Q̃i(EL(L, Nd)) =

0. The remaining Q̃i(ELNe, Nd)) are set to 0.
2: for each iteration j = 1, . . . J do
3: Update Q̃i(EL(Ne, Nd)) based on equations (14), (15) and (16).
4: end for

Remark 2. This method can also be applied to the two-word dictionary. However, since the random walk

moves in only four directions, as shown in Fig. 9, point (Ne, Nd) is only connected to other points (Ñe, Ñd)

when Ne + Nd and Ñe + Ñd are both even or odd. This implies that S is not irreducible. To solve this

problem, we can further divide S into two irreducible components, based on the parity of Ne + Nd. The
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(a) Qi(Ne, Nd) (b) Ne = 3. (c) Nd = 8

Fig. 11: Recurrence probabilities of a two-word dictionary with distribution P = {0.6, 0.4} and transition
probability ρ = 0.05.

transition matrix T can then be represented as

T =


I 0 0

R1 S1 0

R2 0 S2

 (24)

and

lim
h→∞ Th =


I 0 0

R1(I− S1)
−1 0 0

R2(I− S2)
−1 0 0

 . (25)

In Fig. 11, the numerical results on the recurrence probabilities of a two-word dictionary with distribution

P = {0.6, 0.4} and transition probability ρ = 0.05 are presented. Both the upper bound in Theorem 2 and

the simulation result using Algorithm 2 are shown. We can see that when Ne or Nd is large, the upper

bound is tight.

C. Recurrence probability of a general dictionary

In this subsection we discuss the recurrence probability of the whole dictionary. Let W be the event that

a recurrence occurs involving any two adjacent words in a stable dictionary, we have

W =

2m−1−1⋃
i=1

{i, i + 1}e

 ∪
2m−1−1⋃

i=1

{i, i + 1}d

 . (26)
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Since a recurrence between words wi and w j always includes recurrence between adjacent words, we know

that the probability of a recurrence involving any two words in the dictionary, denoted PW , is

PW = Pr{W}. (27)

Notice that {i, i + 1}e and {i + 1, i + 2}e are not independent, but {i, i + 1}e and {i + 2, i + 3}e are

independent. This is also true for the decoding process. We now derive an upper bound on PW . We have

the following lemma.

Lemma 4. The probability of recurrence PW satisfies

PW 64−
2m−1

∏
i=1

(
1− P2i

P2i−1

Ne
2i−1(t)

)
−

2m−1−1

∏
i=1

(
1− P2i+1

P2i

Ne
2i(t)
)
−

2m−1

∏
i=1

1−
Pd

2i

Pd
2i−1

Nd
2i−1(t)

− 2m−1−1

∏
i=1

1−
Pd

2i+1

Pd
2i

Nd
2i(t)
 .

(28)

Proof: See Appendix A.

Here we assume that the first t data words are encoded and decoded correctly, i.e. ne(t) = nd(t). We

denote by A(ne(t)) the right side of equation (28). Let P(ne(t)) denote the probability that after t steps

the word counts are ne(t). Then, we have

P(ne(t)) =
(

t
ne

1(t), . . . , ne
2m(t)

)
Pne

1(t)
1 . . . P

ne
2m (t)

2m . (29)

By combining Lemma 4 and the law of total probability, we have the following theorem.

Theorem 5. After t data words are encoded and decoded correctly, the probability P(t) that the dictionary

will be unstable satisfies

P(t) 6 ∑
ne(t)

stable

A(ne(t))P(ne(t)) + ∑
ne(t) not

stable

P(ne(t)). (30)

2

The red dashed line in Fig. 12 shows the upper bound on P(t) when we set m = 2, P =

{0.4, 0.3, 0.2, 0.1} and ρ = 0.05, 0.1 and 0.2. Simulation results are also shown in the figure. The
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(a) ρ = 0.05. (b) ρ = 0.1. (c) ρ = 0.2.

Fig. 12: Upper bound and simulation result of P(t) with different transition probability ρ.

simulation consists of repeating the following steps 2,000 times.

• Generate a length-20,000 sequence with alphabet {11, 10, 01, 00} (40,000 symbols from {0, 1}) and

corresponding probability distribution P = {0.4, 0.3, 0.2, 0.1}.

• Apply SLC direct shaping code to the source sequence. After the first t words having been encoded,

if a recurrence occurs during the encoding process, stop and declare a recurrence.

• Transmit the encoded sequence through a binary symmetric channel BSC(ρ) with transition probability

ρ.

• Decode the received noisy sequence while making sure the first t symbols are decoded correctly (noise

free).

• After the first t symbols having been decoded, if a recurrence occurs during the decoding process,

stop and declare a recurrence.

The green line in Fig. 12 shows the fraction of experiments that stop because of recurrences. We see

that P(t) decreases rapidly as t increases. Other distributions and transition probabilities have also been

simulated and they all produce qualitatively similar results. This indicates that if we make sure the first

t data words are decoded correctly for large enough t, for example by combining shaping coding with

error correction coding, we can significantly reduce the likelihood of future error propagation. One possible

approach is the bootstrap scheme in [1], which essentially uses a reverse concatenation architecture that

combines systematic error correction codes and shaping codes, and has found application in optical data

transmission.

Remark 3. (ne(t), nd(t)) acts like a random walk in a (2m−1− 1)× (2m−1− 1) space. Thus Algorithm 2

can be used to numerically approximate a lower bound on PW . 2
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(a) Length-2 dictionary. (b) Length-4 dictionary. (c) Length-4 dictionary detail.

Fig. 13: Fraction of words for segments of The Count of Monte Cristo.

D. Recurrence behavior of The Count of Monte Cristo

Here we study the sequence generated by applying length-2 and length-4 direct shaping codes to TCMC.

The fractions of input words for segments of TCMC are shown in Fig. 13. As shown in Fig. 13b and 13c,

some words in the length-4 dictionary are not fully separated. This indicates that error propagation can

happen throughout the entire encoding process.

We now examine the decoding recurrence probability of the length-2 direct shaping code. As shown in

Fig. 13a, the last encoding recurrence of a length-2 direct shaping code happens between words 00 and 11

at γ = 40, 346 bits. We did the following simulation, which consists of repeating the following steps 2000

times.

• Encode the first 10,000 bytes of TCMC (80,000 bits, or 40,000 input words).

• Transmit the encoded sequence through a binary symmetric channel BSC(ρ) with transition probability

ρ.

• Decode the received noisy sequence while making sure the first t symbols are decoded correctly (noise

free).

• After the first t symbols having been decoded, if a recurrence occurs during the decoding process,

stop and declare a recurrence.

The probability of decoding recurrence Pd(t) with different ρ is shown in Fig. 14. As shown in the figure,

Pd(t) quickly converges to 0 when t > 40, 346 and the rate of convergence increases as ρ decreases.

V. PERFORMANCE OF DIRECT SHAPING CODES

The performance of rate-constrained shaping codes was studied in [11]. Given an i.i.d. source X =

X1, X2 . . . with entropy H and a variable-length mapping φ : X q → Y∗ used as a shaping code, the
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Fig. 14: Probability of decoding recurrence when segments of The Count of Monte Cristo are decoded
correctly.

relationship between the code expansion factor f , which is the ratio of the expected codeword length to

the input word length, and the average cost was analyzed. In particular, the minimum achievable average

cost associated with a fixed expansion factor was determined.

In [11, Remark 1], it was shown that direct shaping codes are shaping codes with parameters q = 1 and

f = 1, where both the input and output processes have alphabet size 2m. The cost process C = {Ct} of a

direct shaping code φ is

C1 = c(φ(X1)), C2 =
c(φ(X1, X2))

2
, . . . , Ct =

c(φ(X1, X2, . . . Xt))

t
, (31)

and the asymptotic expected average cost is defined as C∞ = limt→∞ E(Ct). In this section, we discuss

the performance of direct shaping codes under the assumption of no errors. The following theorem indicates

the asymptotic expected average cost achievable by a direct shaping code.

Theorem 6. Given the distribution P and cost vector C, the asymptotic expected average cost C∞ of a direct

shaping code is ∑i Pici/m.

Proof: We first assume that P1 > P2 > . . . > P2m . Consider a sequence of i.i.d. random variables

Xi j
1 , Xi j

2 , . . . with P(Xi j
1 = 1) = Pi, P(Xi j

1 = −1) = Pj and P(Xi j
1 = 0) = 1 − Pi − Pj. The random

variable Xi j
k corresponds to the change in distance between symbol i and j at time k. The expected value of

Xi j
1 is µi j = Pi − Pj. Define random variable Si j

t = ∑
t
k=1 Xi j

k and note that Si j
t > 0 means ni(t) > n j(t).
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By the strong law of large numbers,

Si j
t /t−µi j → 0 a.s.. (32)

For any ε > 0, {Si j
t /t}∞0 is within ε of µi j = Pi − Pj > 0 for all but finitely many t. This means for any

two symbols i > j, ni(t) > n j(t) for all but finitely many t. In other words for any ε, δ > 0, there exists

T1 such that the probability of event ni(t)− n j(t) > ε for any Pi > Pj and t > T1 is greater than 1− δ.

This indicates the dictionary is stable almost surely, i.e., after some time T, with probability greater than

1− δ, the dictionary is stable and a recurrence never occurs.

Here we define another i.i.d. process {c̃(Xt)} with c̃(X) = ci if X = wi. By the strong law of large

numbers, we know that

C̃t =
c̃(X1, X2, . . . , Xt)

t
=

∑i c̃(Xi)

t
→∑ Pici a.s. (33)

where we implicitly extend the definition of c̃ to vectors additively. If after symbols Xt−1
1 the dictionary is

stable, for the next input Xt we have

c̃(Xt) = c(φ(X1, X2, . . . Xt))− c(φ(X1, X2, . . . Xt−1)). (34)

Since the dictionary is stable almost surely, for any δ,ε > 0, there exists T1 such that with probability

greater than 1− δ/2, the dictionary is stable for any t > T1 and there exists T2 such that with probability

greater than 1− δ/2, |C̃t − ∑ Pici| < ε
2 for all t > T2. Therefore with probability greater than 1− δ, for

any t > T′ = max{T1, T2}, we have

Ct =
c(φ(X1, X2, . . . Xt))

t

=
c(φ(X1, X2, . . . XT′)) + c(φ(X1, X2, . . . Xt))− c(φ(X1, X2, . . . XT′))

t

=
c(φ(X1, X2, . . . XT′)) + c̃(XT′+1 . . . Xt)

t

=
c(φ(X1, X2, . . . XT′))− c̃(X1, X2, . . . XT′) + c̃(X1, X2, . . . Xt)

t
,

(35)

and

| c̃(X1, X2, . . . Xt)

t
−∑ Pici| <

ε

2
. (36)
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Since the cost is bounded by c1 and c2m , for the first T′ steps we have

|c(φ(X1, X2, . . . XT′))− c̃(X1, X2, . . . XT′)| 6 T′(c1 − c2m). (37)

Combining equations (35), (36) and (37), we have

|Ct −∑ Pici| 6 |Ct − C̃t|+ |C̃t −∑ Pici|

<
|c(X1, X2, . . . XT′)− c̃(X1, X2, . . . XT′)|

t
+

ε

2

6 (c1 − c2m)
T′

t
+

ε

2
.

(38)

Let T = max{T1, T2, 2
ε (c1 − c2m)T′}, then with probability greater than 1− δ, |Ct − ∑ Pici| < ε for any

t > T. This indicates that

Ct →∑ Pici a.s.. (39)

Since Ct is bounded by c1 and c2m , by the dominated convergence theorem we have

C∞ = lim
t→∞ E(Ct) = ∑ Pici. (40)

When there exists some i such that Pi = Pi+1, equation (32) becomes

Sii+1
t /t− 0→ 0 a.s.. (41)

This means that the almost sure stability condition is not satisfied. However, this doesn’t affect the

conclusion, because almost surely the input words wi and wi+1 are mapped to yi and yi+1 and P(yi) =

P(yi+1) = Pi. This implies that the expected value of average cost satisfies C∞ = limt→∞ E(Ct) = ∑ Pici.

This completes the proof.

It was proved in [11] that the minimum average cost of a rate-1 shaping code for costly channels with

cost vector C and an i.i.d. source with entropy H is ∑i P̂ici, where

P̂i =
2−µci

∑ j 2−µc j
, µ > 0 and −∑

i
P̂i log2 P̂i = H. (42)

This indicates that direct shaping codes are in general suboptimal. We have the following corollary.

Corollary 7 For an i.i.d. source with entropy H, SLC direct shaping codes are optimal with respect to average
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wear cost if and only if

Pi =
2−µci

∑ j 2−µc j
, µ > 0 and −∑

i
Pi log2 Pi = H. (43)

VI. CONCLUSION

In this paper, we studied shaping codes to reduce programming wear when writing structured data to flash

memory. We first reviewed so-called direct shaping codes for SLC flash memory. Using a page-oriented,

programming cost model, we then extended this technique to MLC flash memory. The performance of

these shaping codes was empirically evaluated on English and Chinese language text. Then we examined

the error propagation behavior of direct shaping codes. We showed that by making sure the first t data

words are decoded correctly for large enough t, we can significantly reduce the likelihood of future error

propagation. Finally, we derived the asymptotic average cost of a direct shaping code. The results indicate

that direct shaping codes are in general suboptimal and can only achieve the minimum average cost for

rate-1 codes if the source distribution satisfies a specific condition.
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APPENDIX A

PROOF OF LEMMA 4

Proof: From the union bound, we have

PW = Pr
{2m−1−1⋃

i=1

{i, i + 1}e

 ∪
2m−1−1⋃

i=1

{i, i + 1}d

} 6 Pr
{ 2m−1−1⋃

i=1

{i, i + 1}e
}
+ Pr

{ 2m−1−1⋃
i=1

{i, i + 1}d
}

. (44)

Using the fact that {i, i + 1}e and {i + 2, i + 3}e are independent, we have

Pr
{ 2m−1⋃

i=1

{i, i + 1}e
}

= Pr
{2m−1⋃

i=1

{2i− 1, 2i}e

⋃2m−1−1⋃
i=1

{2i, 2i + 1}e

}

6 Pr
{ 2m−1⋃

i=1

{2i− 1, 2i}e
}
+ Pr

{ 2m−1−1⋃
i=1

{2i, 2i + 1}e
}

= 2− Pr
{
(

2m−1⋃
i=1

{2i− 1, 2i}e)C
}
− Pr

{
(

2m−1−1⋃
i=1

{2i, 2i + 1}e)C
}

= 2− Pr
{
(

2m−1⋂
i=1

{2i− 1, 2i}e)

}
− Pr

{
(

2m−1−1⋂
i=1

{2i, 2i + 1}e)

}

= 2−
2m−1

∏
i=1

(
1− P2i

P2i−1

N2i−1(t)
)
−

2m−1−1

∏
i=1

(
1− P2i+1

P2i

N2i(t)
)

.

(45)
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Similarly, for the decoding process we have

Pr
{ 2m−1⋃

i=1

{i, i + 1}d
}
6 2−

2m−1

∏
i=1

1−
Pd

2i

Pd
2i−1

N2i−1(t)
− 2m−1−1

∏
i=1

1−
Pd

2i+1

Pd
2i

N2i(t)
 . (46)

Combining equations (44), (45), and (46) completes the proof.
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