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A parity code and a distance enhancing constrained code are often concatenated with a Reed–Solomon code to form a coding system for
magnetic recording. The tensor-product parity coding scheme helps to improve efficiency of the parity code while retaining the same level
of performance. In this paper, we present two methods for combining a tensor-product parity code with a distance-enhancing constrained
code. The first method incorporates a constrained code with unconstrained positions. The second method uses a new technique, which
we call word-set partitioning, to achieve a higher code rate relative to the first method. We simulate the performance of several coding
systems based upon the two combination methods on a perpendicular recording channel, and we compare their symbol error rates and
sector error rates with those of a system that uses only a Reed–Solomon code.

Index Terms—Constrained coding, parity code, perpendicular magnetic recording, tensor-product code.

I. INTRODUCTION

I N DIGITAL recording systems, it is essential that the
data are stored and retrieved reliably. This is achieved by

an error correction coding system, which often includes a
Reed–Solomon (RS) code. RS codes have excellent burst error
correction capabilities, which make them particularly well
suited to recording applications. However, magnetic recording
channels also induce short, randomly occurring errors, against
which some other classes of error correcting codes are known to
perform better than RS codes. Moreover, RS decoders typically
expect hard decisions at their input, and cannot take advantage
of the soft information from the channel. For these reasons,
several coding techniques have been devised to improve the
overall system performance beyond that provided by an RS
code alone.

One approach is to use graph-based codes and iterative de-
coding methods, such as low-density parity-check codes with
message-passing decoding. Empirically, these codes have been
found to offer better perfomance than an RS code, but they have
not seen wide use in practice. This is due, in part, to the rela-
tively high complexity and large memory requirements of the
iterative decoders. Moreover, the decoder behavior is not fully
understood, making it difficult to estimate the system perfor-
mance at high signal-to-noise ratio (SNR).

A more practical approach is to concatenate the RS code with
an inner code that reduces the error rate at the RS decoder input.
Several inner codes have been proposed including parity codes
[4] and distance enhancing codes [12]. A parity code can de-
tect and sometimes correct short error events, while a distance
enhancing code can eliminate some long error events. In this
paper, we will consider both types of inner codes.
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Choosing the block size of a parity code involves a tradeoff
between code rate and performance. A short parity code per-
forms better, as multiple error events within one block and mis-
corrections are less likely. However, the rate penalty of such a
code is often too severe to be practical. To overcome the rate
penalty, we propose the use of a “tensor-product parity code”
whose parity-check matrix is the tensor-product of the parity-
check matrices of a short parity code and a BCH code [3]. The
motivation for the tensor-product parity coding scheme is the
observation that usually only a few parity code blocks within a
sector contain errors. So, instead of recording the parity bits of
all blocks, we protect them with the BCH code; the redundancy
introduced is then equal to that of the BCH code alone. If the
BCH code is strong enough, the tensor-product parity code will
provide the same performance as the short parity code, but with
far less overhead.

A well-known class of distance enhancing codes is maximum
transition run (MTR) codes [12]. These widely used codes,
discussed in more detail in Section III, improve performance by
limiting the runlength of consecutive transitions in the recorded
sequence. However, combining a tensor-product parity code
with an MTR code and an RS code is not a trivial task, for
several reasons.

First, to take full advantage of the MTR code, we use a mod-
ified trellis that reflects the runlength constraints of the code as
well as the partial-response channel constraints. With this trellis,
the error rate after the Viterbi detector is greatly improved, but
the recorded sequence must never violate the MTR constraint.
Next, the recorded sequence must also satisfy the parity-check
condition of the tensor-product parity code, since that code is de-
coded first. Finally, the decoding steps prior to the RS decoder
must not propagate errors.

In this paper, we explore two methods for combining tensor-
product codes and MTR constrained codes that satisfy these re-
quirements. The first method is based on constrained systems
with unconstrained positions [2]. This method is simple, but it
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may suffer from an undesirable rate penalty. To reduce the rate
penalty, we propose a second method, which we call “word-set
partitioning.” Both methods are described in detail in Section IV.

In Section V, we present results of error rate simulations on a
perpendicular recording channel for coding systems based upon
these two methods. As a benchmark for comparison, we also
give results for a system incorporating an RS code without an
inner code. Finally, in Section VI, we offer some concluding
remarks.

II. TENSOR-PRODUCT PARITY CODES

The following description of the tensor-product parity code
is taken from [3].

A. Code Construction

Let be an parity code and let be an
binary linear code such that divides . We consider the
code with the following properties.

• is an binary linear code such that
and .
• Suppose we divide a codeword of into disjoint blocks of

length , and compute the parity bits for each block using .
The parity bits of all blocks must form a valid codeword of .

We construct a parity-check matrix for the code , as follows.
We assume that the parity-check matrix of has the systematic
form where is an matrix and
is the identity matrix of size . Let be a parity-check
matrix of . From the second property above, every codeword

must satisfy

. . .

The matrix can be divided into sub-blocks of size
. Then the

parity-check matrix of is given by

When is a single-parity code, the code is a special case
of a tensor-product code [15] and an error-location code [16],
[11]. In the general case, the code can be viewed as a gen-
eralized tensor-product code [6]. We therefore refer to as
a tensor-product parity code. The message length of is
called the block size of .

B. Encoding

For simplicity, we assume that is a single-parity code. The
following encoding method can be easily extended to the gen-
eral case. First, observe that if is in the systematic form,
columns of form the identity ma-
trix. Thus, we can use directly to compute the redundancy bits
and insert them at the corresponding positions. To be more effi-
cient, take information bits and divide them into blocks.
Compute the parity of each block and encode the parity using

Fig. 1. Graph presentation of MTR(3).

Fig. 2. Graph presentation of TMTR(3, 4).

. Take the rest of the information bits ( bits)
and divide them into blocks. Compute the parity of each
block. The redundancy bits of the tensor-product parity code are
the modulo-2 sum of these parity bits and the parity part of .

C. Decoding

Decoding of the tensor-product parity-coded system begins
with detection of the recorded bits using the Viterbi algorithm
matched to the channel only. Then, the parity bits are computed
using the encoder for , and the resulting word is decoded
using the decoder for . The corrected parity bits are provided
to a Viterbi detector reflecting channel states and parity code
states, which computes the decoder output.

III. CONSTRAINED CODES

A constrained code is an important ingredient in almost every
coding system for magnetic recording. It transforms the input
into a sequence satisfying some desirable constraint. The most
well-known constraint is the runlength-limited (RLL )
constraint, which limits the run-length of nontransitions to
be at least and at most . The constraints considered in
this paper are the maximum-transition-run (MTR) constraint
and the time-varying version of this constraint (TMTR). The
MTR constraint limits the run-length of transitions to be at
most . The TMTR constraint limits the run-length
of transitions to be at most and at odd and even time
indices, respectively.

A constraint is usually presented by a labeled directed graph
(or graph, for short) consisting of a set of states

, a set of edges , and an edge labeling .
Every sequence satisfying the constraint is the label of a path in
the graph, and vice versa. The graphs presenting MTR(3) and
TMTR(3, 4) constraints are shown in Figs. 1 and 2, respectively.

The MTR constraint has several desirable properties. It re-
duces the transition noise since it reduces the average number of
transitions. Together with an appropriate detector, MTR and
TMTR codes reduce the occurrences of error events
longer than . Thus, an MTR code can enhance the effective-
ness of a tensor-product parity code. With the TMTR(3, 4) code,
most error events have length one, two, or three, which can be
detected by a double-parity code.
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Fig. 3. Encoding diagram of the reverse concatenation scheme.

IV. COMBINING A TENSOR-PRODUCT PARITY CODE

WITH A CONSTRAINED CODE

Traditionally, an error-correction code is combined with
a constrained code in a standard concatenation architecture,
with the error-correction code being the outer code and the
constrained code being the inner code. This ensures that the
recorded sequence satisfies the desired constraint. The draw-
back of this concatenation scheme is that the constrained code is
decoded first, and it may cause error propagation that degrades
the performance of the outer error-correction code. To combat
this problem, a new concatenation scheme was proposed to
bring the error-correction code “closer” to the channel [1], [9],
[7], [5]. This so-called reverse concatenation encodes the user
information using a constrained encoder first. The constrained
sequence is then encoded by a systematic error-correction
encoder. Finally, the parities generated by the error-correction
encoder are encoded by a second constrained encoder, which
usually has lower rate and reduced decoder error propagation.
(The two constrained encoders are usually designed for the
same constraint, and this is true for every coding system in this
paper with multiple constrained codes.) The encoding process
for this concatenation scheme is illustrated in Fig. 3. In the
decoding process, the decoder for the second constrained code
is applied first, followed by the error correction decoder, and
finally the decoder for the first constrained code.

Our objective is to find a method for combining a tensor-
product parity code and a constrained code that satisfies the fol-
lowing requirements: 1) The recorded sequence must be a code-
word of both codes. This is essential since the tensor-product
parity code will be decoded first. Moreover, to take full advan-
tage of the constrained code, the constraint is incorporated into
the trellis of our Viterbi detector, and hence the sequence must
also satisfy the constraint. 2) The combined code must have a
decoding algorithm that does not cause excessive error propa-
gation. This is required because the output of the decoder will
typically be processed by an RS decoder.

Unfortunately, direct application of the reverse concatenation
scheme does not satisfy these requirements. Hence, we must
seek alternative methods for combining the codes.

A. Constrained Systems With Unconstrained Positions

The first method that we use to combine a tensor-product
parity code and a constrained code is based on the idea of con-
strained systems with unconstrained positions [14], [2], [13].

Fig. 4. Example of the unconstrained position scheme.

TABLE I
CAPACITIES AND THE HIGHEST CODE RATES OF THE SYSTEMS WITH

UNCONSTRAINED POSITION AT EVERY TENTH BIT POSITION

FOR VARIOUS MTR CONSTRAINTS.

This method requires two constrained codes. The first code re-
serves some predetermined locations in the coded sequence,
e.g., every tenth bit position, to be unconstrained. These po-
sitions can take on the value of 0 or 1 independently without
violating the constraint. They will be replaced by the redun-
dancy bits of the tensor-product parity code. The second code is
a standard constrained code. The encoder for the first code is fed
enough of the user information bits to ensure sufficiently many
unconstrained positions for the redundancy bits of the tensor-
product parity code. Then the encoder for the second code pro-
cesses the rest of the user information bits. The tensor-product
parity encoder will compute the redundancy bits and insert them
into the unconstrained positions. The diagram in Fig. 4 shows
the encoding process. The constraint assumed in the figure is
MTR(2). The unconstrained positions are represented by the
square symbol. Note that, unlike Figs. 1 and 2, this figure as-
sumes that bits are in NRZ format.

The disadvantage of this method is that the overall rate is low.
To see this, consider the examples in Table I. The second column
of the table shows the capacities of the constraints, representing
upper bounds on the code rates achievable when there are no
unconstrained positions. The third and fourth columns show the
highest achievable code rates if we insert an unconstrained bit
in every tenth bit position, for NRZI and NRZ formats, respec-
tively. As a specific example, consider the TMTR(2, 3) con-
straint, whose capacity is 0.9163. Since the unconstrained po-
sitions, which hold the redundancy bits of the tensor-product
parity code, constitute only one-tenth of the coded sequence,
the highest overall rate for a standard concatenation scheme
is 0.8163. This is significantly higher than the maximum rates
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Fig. 5. Graph G for S = RLL(0; 1) and ` = 4.

Fig. 6. Graph H and the reduced graph obtained from H .

achievable with this coding approach, namely 0.8 and 0.7762
for the NRZI and NRZ schemes, respectively.

B. Word-Set Partitioning

We now propose another combined coding method that can
reduce the rate loss incurred by the unconstrained position
method. We call this the word-set partitioning method. The
description of this method requires some background on con-
strained coding, for which the reader is referred to [10].

Let be a constraint. Suppose that the tensor-product parity
code consists of the single parity code with block size . Let

be an irreducible component of the th power of
a deterministic presentation of . (We usually choose to have
the largest capacity among the irreducible components.)

Let be the set of labels of . Let and be or-
dered subsets of such that 1) , and
2) every word in has even parity and every word in
has odd parity. Write as and as

. Let . We define to be the
set of initial states of the edges with label . Assuming that

has memory one (which is true when is an RLL ,
MTR or TMTR constraint with , define

to be the terminal state of an edge with label . This state
is unique under the memory assumption. We define a graph

as follows. First, let be the set of
nonempty subsets of . Next, for each , let

and . Finally,
assign an edge from every nonempty subset of to labeled
by .

Example 1: Let be the RLL(0,1) constraint and .
Fig. 5 shows the graph .

A possible choice for and is the following:
and .

From the above and and the graph , we compute
and , which are shown in Table II. The graph is given in
Fig. 6. We remark that by definition, the graph is large since it
has an exponential number of states. But we will only consider
the constraint presented by . Thus, it is sufficient to consider
the reduced graph, which presents the same constraint but is
typically much smaller.

TABLE II
CHOICE OF W AND W AND THE CORRESPONDING I AND T FOR

RLL(0,1) AND ` = 4

Fig. 7. Encoding algorithm for the word-set partitioning scheme.

Let and . It is easy
to see that there is a bijective mapping from to

. More precisely, letting and
, the following mapping is bijective:

(For the example above, the mapping is given in Table II.)
Let be the constraint presented by , and consider

and . Using the mapping above, we claim that
if satisfies , then satisfies . To see this, suppose that

has a path from a state to a state passing through
with label . Then must have edges with labels
and terminating at some states in . In graph , every
state in has outgoing edges with labels and . Thus,
all words , and
satisfy .

The encoding diagram for the word-set partitioning scheme
is shown in Fig. 7. The algorithm requires a conventional con-
strained encoder for the original constraint , an encoder for

, and a table look-up that implements the bijective mapping.
First, the encoder for takes part of the user information and
produces a sequence . Then the encoder for takes the rest
of the user information and produces a constrained sequence .
The parity of the inner code is computed from . Finally,
the table look-up maps and to a sequence . The sequence

satisfies , as explained above. It also satisfies the parity con-
dition by the properties of and . The recorded sequence
is . (Special care may be needed to guarantee that the con-
straint is satisfied at the boundary of and . If the encoders are
properly designed, no extra bits are needed between and .)

In the word-set partitioning scheme, the set of words is di-
vided into two partitions, and , corresponding to odd
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Fig. 8. Encoding diagram of the entire coding system.

parity and even parity. The approach can be easily generalized
to four partitions, which will be equivalent to a double-parity
code. In the most general setting, partitioning can be arbitrary.
The partitions should be chosen so that an error usually corrupts
a word from one partition to a word in another.

C. Incorporating the Reed–Solomon Code

The entire encoder including the RS code can be described by
Fig. 8. For the unconstrained position scheme, constrained en-
coders 1 and 2 correspond to the respective encoders in Fig. 4.
The outputs of these encoders are denoted by and . For the
word-set partitioning scheme, constrained encoders 1 and 2 cor-
respond to the encoder for and the constrained encoder in
Fig. 7, respectively. In this scheme, is the sequence . The
RS code then encodes and produces its parity, which will
be encoded by constrained encoder 3. This encoder has a low
rate and does not allow error propagation since its output will
be decoded before the RS code. Finally the whole sequence

will be encoded by the tensor-product parity encoder. For
the unconstrained position scheme, this step is the final step in
Fig. 4, where and correspond to and , respectively. For
the word-set partitioning scheme, and correspond to and

. The tensor-product parity encoder computes from and
then uses the table look-up to find from and .

V. SIMULATION RESULTS

Our codes are tested in the perpendicular recording
channel model shown in Fig. 9. The transition response is

where . The dibit re-
sponse is given by . The jitter noise is
modeled as , where is normally distributed with
mean zero and variance if there is a transition and zero oth-
erwise; is the derivative of . The additive noise is normally
distributed with mean zero and variance . The total noise
power is defined as , and the ratio of the
jitter noise to the total noise, , is set to 0.9. The read
signal is equalized to a DC-full target, .

We test six coding systems, denoted by RS-only, reverse,
uncon1, uncon2, partition1, and partition2. These systems
have approximately the same block length (4800 bits) and rate
(0.854). The RS-only system consists of an RS code only. The
reverse system consists of an RS code and a TMTR(3, 4) code,
combined using reverse concatenation. The last four systems
consist of an RS code, a TMTR(3, 4) code, and a tensor-product
parity code. The parity code of the tensor-product parity code
has a block size of 10 bits. The two uncon systems use the un-
constrained position scheme to combine the codes. The parity
codes of uncon1 and uncon2 are single- and double-parity
codes, respectively. The two partition systems use the word-set

Fig. 9. Perpendicular recording channel model.

TABLE III
PARAMETERS OF THE SIX CODING SYSTEMS.

partitioning scheme to combine the codes. The word sets of
partition1 and partition2 are divided into two and four parti-
tions, respectively. The parameters of the component codes
are shown in Table III, where denotes the correction power.
Every RS code is over the field GF(1024). The BCH codes with
lengths 480 and 960 are binary codes with underlying fields
GF(512) and GF(1024), respectively. Not shown in the table is
the constrained encoder 3 of the last four systems (see Fig. 8).
This encoder is a block encoder with rate .

The symbol error rates at the input to the RS decoders are
plotted in Fig. 10. The symbol error rate of the RS-only system
represents the uncoded error rate, while the symbol error rate
of the reverse system represents the error rate when the TMTR
constraint is imposed. The symbol error rates of the uncon1 and
uncon2 systems correspond to the use of a TMTR code with
single- and double-parity codes, respectively. At low SNR, the
symbol error rates of the tensor-product parity codes suffer from
the failure of the BCH codes. At extremely low SNR, the BCH
codes almost always fail to recover the correct parity, and hence
the symbol error rates are comparable to that of the TMTR code.

Fig. 11 shows sector error rates estimated by the block
multinomial method [8]. For this channel, which is dominated
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Fig. 10. Symbol error rate at the input to the RS decoder of each system.

Fig. 11. Sector error rate of each coding system.

by jitter noise, the system benefits greatly from the use of
the TMTR code, as can be seen by the 0.25 dB gain of the
reverse system over the RS-only system. As much as 0.25 dB
additional gain can be achieved by the tensor-product parity
code. Since the word-set partitioning scheme is more efficient
than the unconstrained position scheme, we can afford stronger
BCH codes. Although there is little difference in the symbol
error rates (Fig. 10), we can see some improvement in sector
error rate with the word-set partitioning scheme.

Since the RS code in a tensor-product parity system is weaker,
the system is more vulnerable to channel impairments that give
burst errors. Hence, the actual gain may be smaller.

VI. CONCLUSION

The tensor-product parity code scheme helps to implement
a parity code with less redundancy. We described two different
methods to combine a tensor-product parity code with a con-
strained code and a Reed–Solomon code, and we simulated the
performance of several combined coding systems on a perpen-
dicular recording channel with jitter noise. The simulation re-

sults demonstrate that combined coding can provide some im-
provement over a system consisting of only a Reed–Solomon
code.
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