Abstract—Rate-compatible error-correcting codes (ECCs), which consist of a set of extended codes, are of practical interest in both wireless communications and data storage.

In this work, we first study the lower bounds for rate-compatible ECCs, thus proving the existence of good rate-compatible codes. Then, we propose a general framework for constructing rate-compatible ECCs based on cosets and syndromes of a set of nested linear codes. We evaluate our construction from two points of view. From a combinatorial perspective, we show that we can construct rate-compatible codes with increasing minimum distances, and we discuss decoding algorithms and correctable patterns of errors and erasures. From a probabilistic point of view, we prove that we are able to construct capacity-achieving rate-compatible codes, generalizing a recent construction of capacity-achieving rate-compatible polar codes. Applications of rate-compatible codes to data storage are considered. We design two-level rate-compatible codes based on Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes which are two popular codes widely used in the data storage industry, and then we evaluate the performance of these codes in multi-level cell (MLC) flash memories. We also examine code performance on binary and q-ary symmetric channels. Finally, we briefly discuss two variations of our main construction and their relative performance.

Index Terms—Rate-compatible codes, nested linear codes, capacity-achieving, polar codes, flash memory.

I. INTRODUCTION

Rate-compatible error-correcting codes (ECCs) consist of a set of codes with the same dimension but various code lengths, where all symbols of the higher rate code are part of the lower rate code. This allows to match the code rate of the sent data to the channel conditions by retransmitting incremental redundancy to the receiver. Such a scheme is known as hybrid automatic repeat request (HARQ) in wireless communications [7], [10], [19], [23], [24].

The idea of rate-compatible codes dates back to Davida and Reddy [8]. The most commonly used way to construct such codes is to use puncturing; that is, to start with a good low-rate code and then successively discard some of the coded symbols (parity-check symbols) to produce higher-rate codes. This approach has been used for algebraic codes [8], [38], convolutional codes [14], [20], turbo codes [25], [29], and low-density parity-check (LDPC) codes [10], [13]. The performance of punctured codes depends on the selected puncturing pattern. However, in general, determining good puncturing patterns is nontrivial, usually done with the aid of computer simulations.

The second approach is to use extending; that is, to start with a good high-rate code and then successively add more parity-check symbols to generate lower-rate codes. A two-level extending method called Construction X was introduced in [26], and later was generalized to Construction XX [1]. Both constructions were utilized to find new codes with good minimum distance. In [19], codes from the extending scheme were used for HARQ systems. Extension-based rate-compatible LDPC codes were designed in [6], [22], [37]. More recently, the extending approach was employed to construct capacity-achieving rate-compatible polar codes [15], [21], [27].

Besides their successful applications in wireless communications, rate-compatible ECCs are also potentially useful for emerging data storage, in particular, non-volatile solid-state memories, such as NAND flash memory. In fact, this particular application actually serves as a motivation of this research. NAND flash memory is a versatile non-volatile data storage medium, and has been widely used in consumer electronics as well as enterprise data centers [3], [4]. For flash memories, it is well known that the raw bit error rate (BER) increases with repeated program/erase (P/E) operations; see [5], [36], [40] for multi-level cell (MLC) flash memories and [39] for three-level cell (TLC) flash memories. Hence, at a higher P/E cycle count, a stronger ECC is needed to maintain the data integrity. Rate-compatible codes are a promising approach for satisfying this requirement, since they are capable of adapting different error-correcting capabilities to the corresponding bit error rates.

The goal of this paper is to provide a systematic approach for constructing rate-compatible codes with theoretically guaranteed properties. We use the extending approach and propose a new algebraic construction for rate-compatible codes;
the properties of the constructed codes are then analyzed from both combinatorial and probabilistic perspectives. Our contributions are as follows:

1) lower bounds for rate-compatible codes, which have not been fully explored before, are derived;

2) a simple and general construction of rate-compatible codes based on cosets and syndromes (Construction 1) is proposed, and some examples are given;

3) minimum distances of the constructed codes are determined, decoding algorithms are presented, and correctable error-erasure patterns are studied;

4) capacity-achieving rate-compatible codes are constructed, and a connection to recent capacity-achieving rate-compatible polar codes is made;

5) although the focus of this paper is on the theoretical aspect of rate-compatible codes, applications of the codes in MLC flash memories, binary symmetric channels, and q-ary symmetric channels are investigated;

6) finally, some variations of Construction 1 are briefly discussed.

Portions of this work were presented in [16], [17].

The remainder of the paper is organized as follows. In Section II, we give the formal definition of rate-compatible codes and introduce notation used in the paper. In Section III, we study lower bounds for rate-compatible codes. In Section IV, we present a general construction for M-level rate-compatible codes, whose minimum distances are studied. Correctable patterns of errors and erasures are also investigated. In Section V, we show our construction can generate capacity-achieving rate-compatible codes by choosing the component codes properly and establish the connection to recent constructions of capacity-achieving rate-compatible polar codes. In Section VI, we investigate an application of two-level rate-compatible codes to MLC flash memories, and also evaluate the performance of rate-compatible codes over binary and q-ary symmetric channels. In Section VII, we briefly discuss two variations of our construction of rate-compatible codes. We conclude the paper in Section VIII.

II. Definitions and Preliminaries

In this section, we give the basic definitions and preliminaries that will be used in the paper.

We use the notation $[n]$ to denote the set $\{1, \ldots, n\}$. Let \mathbb{F}_q denote the finite field of size q, where q is a prime power. For a length-n vector \mathbf{v} over \mathbb{F}_q and a set $\mathcal{I} \subseteq [n]$, the operation $\pi_{\mathcal{I}}(\mathbf{v})$ denotes the restriction of the vector \mathbf{v} to the coordinates in the set \mathcal{I}, and $w_q(\mathbf{v})$ represents the Hamming weight of the vector over \mathbb{F}_q. The transpose of a matrix H is written as H^T, and the inverse of H is denoted by H^{-1}. The kernel of a matrix H is written as $\ker(H)$ and the row space of H is the span of the row vectors of H, denoted by $\mathcal{R}(H)$. A linear code C over \mathbb{F}_q of length n, dimension k, and minimum distance d will be denoted by $C = \left[\begin{array}{c} n \\ k \\ d \end{array}\right]_q$ or by $[n, k, d]_q$ for simplicity; in some cases, we will use notation $[n, k, q]$ to indicate only length and dimension. For any integers $a > b$, the summation in the form of $\sum_{i=b}^{a} X_i$ is defined to be 0. A binomial coefficient $\binom{a}{b}$ is defined to be 0 if $a < b$. For a set C, $|C|$ represents its cardinality. The q-ary entropy function $H_q: [0, 1] \rightarrow [0, 1]$, is defined by $H_q(x) = -x \log_q x - (1-x) \log_q (1-x) + x \log_q (q-1)$.

Now, we present the definition of rate-compatible codes.

Definition 1. For $1 \leq i \leq M$, let C_i be an $[N_i, k, d_i]_q$ linear code, where $N_1 < N_2 < \cdots < N_M$. The encoder of C_i is denoted by $E_{C_i} : \mathbb{F}_q^k \rightarrow C_i$. These M linear codes are said to be M-level rate-compatible, if for each i, $1 \leq i \leq M - 1$, the following condition is satisfied for every possible input $u \in \mathbb{F}_q^k$,

$$E_{C_i}(u) = \pi_{[N_i]} \left(E_{C_{i+1}}(u) \right).$$

We denote this M-level rate-compatible relation among these codes by $C_1 \prec C_2 \prec \cdots \prec C_M$.

Remark 1. For $1 \leq i \leq M - 1$, the rates satisfy $R_i = \frac{k}{N_i} > R_{i+1} = \frac{k}{N_{i+1}}$, but the minimum distances obey $d_i \leq d_i+1$. For systematic codes, the condition in (1) indicates that the set of parity-check symbols of a higher-rate code is a subset of the parity-check symbols of a lower-rate code.

In this paper, we will consider q-ary memoryless symmetric (QMS) channels $W : \mathcal{X} \rightarrow \mathcal{Y}$, with input alphabet \mathcal{X}, output alphabet \mathcal{Y}, and transition probabilities $W(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$. The input alphabet \mathcal{X} will always be \mathbb{F}_q.

For a QMS channel W, it is known that its capacity $C(W)$ is attained by the uniform input distribution, i.e.,

$$C(W) = \max_{p(x)} I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{1}{q} W(y|x) \log_q \frac{W(y|x)}{\sum_{y' \in \mathcal{Y}} \frac{1}{q} W(y'|x')}.$$

Note that the base of the logarithm is q.

Of particular interest are the q-ary symmetric channel (QSC) and the q-ary erasure channel (QEC), defined as follows [28].

The QSC with crossover probability p has output alphabet \mathbb{F}_q, and for every pair of a sent symbol $x \in \mathbb{F}_q$ and a received symbol $y \in \mathbb{F}_q$, the conditional probability is:

$$W(y|x) = \begin{cases} 1-p & \text{if } y = x \\ p/(q-1) & \text{if } y \neq x. \end{cases}$$

The capacity of this channel is $C(W) = 1 - H_q(p)$ [28].

The QEC with erasure probability p has output alphabet $\mathbb{F}_q \cup \{?\}$, where $?$ represents an erasure symbol. For every pair of a sent symbol $x \in \mathbb{F}_q$ and a received symbol $y \in \mathbb{F}_q \cup \{?\}$, the transition probability $W(y|x)$ is:

$$W(y|x) = \begin{cases} 1-p & \text{if } y = x \\ p & \text{if } y = ? \\ 0 & \text{otherwise.} \end{cases}$$

Its capacity $C(W)$ is $1 - p$ [28].

III. LOWER BOUNDS FOR RATE-COMPATIBLE CODES

In this section, we derive lower bounds for rate-compatible codes.
A. A General Lower Bound for M-Level Rate-Compatible Codes

Based on the technique used in the derivation of the Gilbert-Varshamov (GV) bound, we derive a GV-like lower bound for M-level rate-compatible codes.

Theorem 2. There exist M-level rate-compatible codes $C_1 \prec C_2 \prec \cdots \prec C_M$, where $C_i = [N_i, k = R_i N_i, \delta_i N_i]_q$ for $1 \leq i \leq M$, if the following inequalities are satisfied for all $1 \leq i \leq M$,

$$d_i \geq \max \left\{ d : \sum_{m=0}^{d-2} \left(\sum_{j=1}^{i} n_j - 1 \right) \binom{m}{q} < \frac{q^{\sum_{j=1}^{i} n_j - k}}{M} \right\}.$$ \hspace{1cm} (2)

Proof: The proof is based on a combinatorial argument. See Appendix A.

The following corollary follows from Theorem 2, which shows that there exist good rate-compatible codes in the sense that each code can meet the corresponding asymptotic GV bound.

Corollary 3. There exist M-level rate-compatible codes $C_1 \prec C_2 \prec \cdots \prec C_M$, where $C_i = [N_i, k = R_i N_i, \delta_i N_i]_q$ for $1 \leq i \leq M$ and $0 \leq \delta_i \leq 1 - (1/q)$. As the code length N_i tends to infinity, the rate R_i meets the asymptotic GV bound:

$$R_i \geq 1 - H_q(\delta_i).$$

Proof: Let $V_q(n, t) = \sum_{r=0}^{\lfloor n/t \rfloor} \binom{n}{t} \binom{q-1}{r}$. From Theorem 2, there exist M-level rate-compatible codes $C_i = [N_i, k = R_i N_i, \delta_i N_i]_q$ for $1 \leq i \leq M$ such that

$$V_q(N_i - 1, \delta_i N_i - 1) \geq q^{N_i - k}.$$

Since $V_q(n, t) \leq q^{nh(t/n)}$ for $0 \leq t/n \leq 1 - (1/q)$ [28], we have

$q^{N_i H_q(\delta_i)} \geq V_q(N_i, \delta_i N_i) \geq V_q(N_i - 1, \delta_i N_i - 1) \geq q^{N_i - k} M$,

which gives $R_i \geq 1 - H_q(\delta_i) - \frac{\log M}{N_i}$. As N_i goes to infinity, we obtain the result.

Remark 2. The minimum distance d_i in (2) grows at least linearly in the code length N_i for a fixed rate k/N_i. From the proof of Corollary 3, we can see that there exist M-level rate-compatible codes $C_i = [N_i, k = d_i]_q$ for $1 \leq i \leq M$ and $d_i \leq 1 - (1/q)$ such that

$$H_q \left(\frac{d_i}{N_i} \right) \geq 1 - k \frac{\log M}{N_i} - \frac{\log M}{N_i}.$$

The function $H_q(x)$ is monotonically increasing for x in $[0, 1 - (1/q)]$. For this range of interest, let us define the corresponding inverse function $H_q^{-1} : [0, 1] \rightarrow [0, 1 - (1/q)]$ which is also a monotonically increasing function. Now, a lower bound on d_i can be expressed as

$$d_i \geq N_i H_q^{-1} \left(1 - k \frac{\log M}{N_i} \right).$$ \hspace{1cm} (3)

The lower bound (3) shows that the minimum distance d_i grows at least linearly in the code length N_i.

B. A Lower Bound for Two-Level Rate-Compatible Codes with Known Weight Enumerator

For two-level rate-compatible codes, if the weight enumerator of the higher-rate code is known, we have the following lower bound.

Theorem 4. Let C_1 be an $[n_1, k, d_1]_q$ code with weight enumerator $A(s) = \sum_{w=0}^{n_1} A_w s^w$, where A_w is the number of codewords of Hamming weight w. There exist two-level rate-compatible codes $C_1 \prec C_2 = [N_2, N_1 + n_2, k, d_2]_q$, if

$$d_2 \geq 1 - H_q(\delta_1) - \frac{\log M}{N_1},$$

where $B_w = \frac{1}{q^{n_1}} \sum_{m=1}^{w} A_m(w_2 - m)(q - 1)^{w - m}$, for $1 \leq w \leq N_2$.

Proof: The proof is based on a probabilistic argument. See Appendix B.

IV. A GENERAL CONSTRUCTION FOR M-LEVEL RATE-COMPATIBLE CODES

In this section, we present a general algebraic construction for M-level rate-compatible codes $C_1 \prec C_2 \prec \cdots \prec C_M$. We then derive their minimum distances. The decoding algorithm and correctable error-erasure patterns are studied. We focus on combinatorial properties here and will leave the discussion of the capacity-achieving property of our construction to the next section.

The heuristic idea underlying our rate-compatible code construction is based upon an elementary structural property of linear codes. It is known that a linear code C can be partitioned into cosets of a proper subcode C' of C. Each coset contains fewer codewords than C and hence has a potentially stronger error-correcting capability than the code C, and every codeword $c \in C$ belongs to a unique coset. If one knows the coset to which the codeword c belongs, then c can be decoded in that coset instead of in the entire code C; as a result, more errors can be corrected. This coset identifier can be represented conveniently by the syndrome of c with respect to some appropriate subcode parity-check matrix, thanks to the fact that all the codewords in the same coset have the same syndrome and disjoint cosets have distinct syndromes. In other words, the syndrome of the codeword c can be used to identify the coset that includes c, and can therefore help improve the overall error-correcting capability. Our rate-compatible code construction exploits this fact and includes the syndrome information among the extra
parities appended to the codeword \(c \). To protect the syndrome information, an auxiliary code is used. If the auxiliary code in turn contains a subcode, an auxiliary syndrome can be generated for the protected syndrome codeword. This idea can be generalized by using a set of nested subcodes at each level, and by progressively generating and encoding syndromes of component codes in a coupled manner across levels. For this reason, we refer to the resulting codes as syndrome-coupled rate-compatible codes. The precise details of the construction are presented in the following subsection.

A. Code Construction

Our construction of \(M \)-level rate-compatible codes requires several sets of nested component codes defined as follows.

1) For level 1, choose a set of nested codes \(C_1^M \subset C_1^{M-1} \subset \cdots \subset C_1^1 = C_1 = \{ n_1, k, d_1 \}_{q} \), where \(C_1^i = [n_1, n_1 - \lambda_m^i]_{q} \) for \(1 \leq i \leq M \). We have \(k = n_1 - v_1 \) and \(d_1 \leq d_2 \leq \cdots \leq d_M \). Define \(C_1^0 = \emptyset \) and for \(1 \leq \ell \leq i \), let \(H_{C_1^i}^{[\ell]} \) represent a \(v_{\ell} \times n_1 \) matrix over \(\mathbb{F}_q \) such that \(C_1^i \) has the following parity-check matrix:

\[
H_{C_1^i} = \begin{bmatrix}
H_{C_1^{i-1}}^{1}
& \vdots \\
& \ddots \\
& & H_{C_1^{i-1}}^{\ell-1}
& H_{C_1^i}^{[\ell]}
& \vdots \\
& & \ddots \\
& & & H_{C_1^{i-1}}^{[i]}
\end{bmatrix}.
\]

(4)

The encoder of the code \(C_1 \) is denoted by \(E_{C_1} : \mathbb{F}_q^k \rightarrow C_1 \). We also use \(E_{C_1}^{-1} \) as the inverse of the encoding mapping.

2) For level \(i, 2 \leq i \leq M \), consider an auxiliary set of nested codes \(A_i^M \subset A_i^{M-1} \subset \cdots \subset A_i^1 \subset A_i^0 \), where \(A_i^j = [n_i, v_i + \lambda_m^j - \lambda_m^{i-1}]_{q} \) for \(i \leq j \leq M \). Let \(H_{A_i}^{j} \) represent an \(n_i - v_i \times (\lambda_m^j - \lambda_m^{i-1}) \) matrix over \(\mathbb{F}_q \) and \(H_{A_i}^{j} | A_i^{j-1} \), \(1 \leq \ell \leq j \), represent a \(\lambda_m^j \times n_1 \) matrix over \(\mathbb{F}_q \), such that \(A_i^j \) has the following parity-check matrix:

\[
H_{A_i}^j = \begin{bmatrix}
H_{A_i}^{1}
& \vdots \\
& \ddots \\
& & H_{A_i}^{\ell-1}
& H_{A_i}^{[\ell]}
& \vdots \\
& & \ddots \\
& & & H_{A_i}^{[j]}
\end{bmatrix}.
\]

(5)

For each \(2 \leq i \leq M \), the encoder of the code \(A_i^j \) is denoted by \(E_{A_i} : \mathbb{F}_q^{v_i + \lambda_m^j - \lambda_m^{i-1}} \rightarrow A_i^j \). We also use \(E_{A_i}^{-1} \) as the inverse of the encoding mapping.

We also define \(C_1^{M+1} = \emptyset \) and \(A_i^{M+1} = \emptyset \) for \(2 \leq i \leq M \).

The general construction of \(M \)-level syndrome-coupled rate-compatible codes \(C_1 \prec C_2 \prec \cdots \prec C_M \), based upon the nested component codes introduced above, is given in Construction 1.

Construction 1: Encoding Procedure

Input: A length-\(k \) vector \(u \) of information symbols over \(\mathbb{F}_q \).

Output: A codeword \(c_i \in C_i \) over \(\mathbb{F}_q \), for \(i = 1, \ldots, M \).

1. \(c_1 = E_{C_1}(u) \)

2. \(c_i = c_1 H_{C_1}^T \) for \(i = 2, 3, \ldots, M \).

3. for \(i = 2, \ldots, M \) do

4. \(a_i^1 = E_{A_i^1}\left((s_i, \Lambda_i^2, \ldots, \Lambda_i^{i-1})\right) \). // For \(i = 2 \), we define \((s_i, \Lambda_i^2, \ldots, \Lambda_i^{i-1}) = s_2 \).

5. \(c_i = (c_i, a_i^2, \ldots, a_i^j) \).

6. for \(j = i+1, \ldots, M \) do

7. \(\Lambda_j^i = a_i^j H_{A_i}^{j-1} \).

8. end for

9. end for

Remark 3. As an example of Construction 1, we consider the case \(M = 3 \). Fig. 1 illustrates the extended structure of the systematic three-level rate-compatible codes produced by the construction. First, we encode \(u \) using \(C_1^1 \) to obtain \(c_1 = E_{C_1^1}(u) = (u, p_1) \), where \(p_1 \) represents the parity. With \(c_1 \), we generate syndromes \(s_2 \) and \(s_3 \). For the second level, we encode \(s_2 \) using \(A_2^2 \) to obtain \(a_2^2 = E_{A_2^2}(s_2) = (s_2, p_2) \), where \(p_2 \) represents the parity. The extended codeword \(c_2 \in C_2 \) thus has the form \(c_2 = \left(E_{C_1^1}(u), E_{A_2^2}(s_2) \right) \). The syndrome \(\Lambda_3^2 \) is calculated from \(a_2^2 \) with respect to \(A_2^3 \). For the third level, we encode \(s_3 \) and \(\Lambda_3^2 \) together using \(A_3^3 \) to obtain \(a_3^3 = E_{A_3^3}(s_3, \Lambda_3^2) = (s_3, \Lambda_3^2, p_3) \), where \(p_3 \) represents the parity. The extended codeword \(c_3 \in C_3 \) thus has the form \(c_3 = \left(E_{C_1^1}(u), E_{A_2^2}(s_2), E_{A_3^3}(s_3, \Lambda_3^2) \right) \).

We have the following theorem on the code parameters of the constructed rate-compatible codes \(C_1 \prec C_2 \prec \cdots \prec C_M \).

Theorem 5. From Construction 1, the code \(C_i, 1 \leq i \leq M \), has length \(N_i = \sum_{j=1}^{i} n_j \) and dimension \(K_i = k \). Moreover, assume that \(A_i^j, 2 \leq i \leq M, 1 \leq j \leq M, \) has minimum distance \(\delta_i^j \geq d_i - d_{i-1} \). Then \(C_i \) has minimum distance \(D_i = d_i \).

Proof: The code length and dimension are obvious. In the following, we prove the minimum distance. Since the proofs for all \(C_i, 1 \leq i \leq M \), are similar, we only give a proof for the code \(C_M \).

We first prove \(D_M \geq d_M \) by showing that any nonzero codeword \(c_M \in C_M \) has weight at least \(d_M \). To see this, for any nonzero codeword \(c_1 \in C_1 \), there exists an integer \(\gamma_1, \)
1 \leq \gamma_1 \leq M$, such that $c_1 \in C_1^{\gamma_1}$ and $c_1 \notin C_1^{\gamma_1+1}$. Let $c_M \in C_M$ be the codeword derived from c_1. Then, we have $w_q(c_M) \geq w_q(c_1) \geq d_{\gamma_1}$. If $\gamma_1 = M$, we are done; otherwise if $1 \leq \gamma_1 \leq M - 1$ we have $s_{\gamma_1+1} = 0$ and $A_{\gamma_1+1}^{\gamma_1+1} \neq 0$.

Now, for $a_{\gamma_1+1}^{\gamma_1+1}$, there exists an integer γ_2, $1 + \gamma_2 \leq M$, such that $a_{\gamma_1+1}^{\gamma_1+1} \in A_{\gamma_2}^{\gamma_2+1}$ and $a_{\gamma_1+1}^{\gamma_1+1} \notin A_{\gamma_2+1}^{\gamma_2+1}$. Then, we have $w_q(c_M) \geq w_q(c_1) + w_q(a_{\gamma_1+1}^{\gamma_1+1}) \geq d_{\gamma_1} + d_{\gamma_2} = d_{\gamma_2}$. If $\gamma_2 = M$, done; otherwise for $\gamma_1 + 1 \leq \gamma_2 \leq M - 1$, we have $A_{\gamma_2+1}^{\gamma_2+1} \neq 0$ and $a_{\gamma_2+1}^{\gamma_2+1} \neq 0$.

Using the same argument as above, it is clear that we can find a sequence of $\gamma_1 < \gamma_2 < \cdots < \gamma_i$, where i is a certain integer $1 \leq i \leq M$ and $\gamma_i = M$, such that $w_q(c_1) \geq d_{\gamma_1}$, $w_q(a_{\gamma_1+1}^{\gamma_1+1}) \geq d_{\gamma_2} - d_{\gamma_1}$, $w_q(a_{\gamma_2+1}^{\gamma_2+1}) \geq d_{\gamma_3} - d_{\gamma_2}$, \ldots, $w_q(a_{\gamma_i+1}^{\gamma_i+1}) \geq d_M - d_{\gamma_{i-1}}$. Then, we have $w_q(c_M) \geq w_q(c_1) + \sum_{j=1}^{i-1} w_q(c_{\gamma_j+1}) \geq d_M$. Thus, we have $D_M \geq d_M$.

There exists a codeword $c_1 \in C_1^M$ such that $w_q(c_1) = d_M$, so we have $w_q(c_M) = d_M$, implying $D_M \leq d_M$.

Next, we provide an example of three-level rate-compatible codes produced by Construction 1.

Example 1. Consider a set of nested binary BCH codes $C_3 = [15, 5, 7]_2 \subset C_2 = [15, 7, 5]_2 \subset C_1 = [15, 11, 3]_2$. Choose a set of auxiliary codes $A_2^1 = [5, 1, 4]_2 \subset A_3^1 = [5, 4, 2]_2$, and $A_3^2 = [6, 5, 2]_2$, where the code A_3^2 is obtained by shortening an $[8, 4, 2]$ extended Hamming code by three information bits.

Then, from Construction 1 and Theorem 5, we obtain three-level rate-compatible codes $C_1 = [15, 11, 3]_2 \subset C_2 = [20, 11, 5]_2 \subset C_3 = [26, 11, 7]_2$. Note that C_1 and C_2 are optimal, achieving the maximum possible dimensions with the given code length and minimum distance. The dimension of C_3 is close to the upper bound 13 according to the online Table [33].

The following example demonstrates some optimal two-level rate-compatible codes from Construction 1.

Example 2. Consider two nested maximum distance separable (MDS) codes $C_2^1 = [n_1, k - 2, d_1 + 2]_q \subset C_1^1 = [n_1, k, d_1]_q$. Choose an auxiliary code $A_2^1 = [3, 2, 2]_q$. Then, from Construction 1 and Theorem 5, we obtain the code $C_2 = [n_1 + 3, k, d_1 + 2]_q$, which is an almost MDS (AMDS) code [9, 28]. Let $L_q(k)$ denote the largest length of any linear MDS code of dimension k over \mathbb{F}_q, e.g., $L_q(2) = q + 1$ [28]. If $L_q(k) < n_1 + 3$, then C_2 is optimal with respect to the minimum distance for the given code length and dimension. Thus, we have optimal rate-compatible codes $C_1 = [n_1, k, d_1]_q \subset C_2 = [n_1 + 3, k, d_1 + 2]_q$.

Now, consider two nested binary Reed-Muller (RM) codes $C_2^1 = RM(0, m) = [2^m, 1, 2^m]_2 \subset C_1^1 = RM(1, m) = [2^m, m + 1, 2^m - 1]_2$. We choose the auxiliary code $A_2^2 = [2^m - 1, m, 2^m - 1]_2$ to be a simplex code. From Construction 1 and Theorem 5, we obtain the code $C_2 = [2^m + 1 - m, m + 1, 2^m]_2$, which is also a simplex code, so it is optimal. Therefore, we have optimal rate-compatible codes $C_1 = [2^m, m + 1, 2^m - 1]_2 \subset C_2 = [2^m + 1 - m, m + 1, 2^m]_2$.

B. Decoding Algorithm and Correctable Error-Erasure Patterns

In the following, we study decoding algorithms and correctable patterns of errors and erasures for rate-compatible codes obtained from Construction 1. For simple notation and concise analysis, we focus on the code C_M. Any results obtained for C_M can be easily modified for other codes C_i, $1 \leq i \leq M - 1$, so details are omitted.

Assume a codeword $c_M \in C_M$, $c_M = (c_1, a_2^M, \ldots, a_{M-1}^M)$, is transmitted. Let the corresponding received word be $y = (y_1, y_2, \ldots, y_M)$ with errors and erasures, i.e., $y \in (\mathbb{F}_q \cup \{?\})^N_M$, where the symbol $? \in \{\}$ represents an erasure. For $1 \leq i \leq M$, let t_i and e_i denote the number of errors and erasures in the sub-block y_i of the received word y.

The code C_M can correct any combined error and erasure pattern that satisfies the following condition:

\begin{align}
2t_1 + \tau_1 &\leq d_M - 1, \\
2t_i + \tau_i &\leq d_M - 1, \quad \forall 2 \leq i \leq M.
\end{align}

To see this, we present a decoding algorithm, referred to as Algorithm 1, for C_M. It uses the following component error-erasure decoders:

a) The error-erasure decoder D_{C_i} for the coset of the code C_i, for $1 \leq i \leq M$, is defined by

$$D_{C_i} : (\mathbb{F}_q \cup \{?\})^{n_i} \times (\mathbb{F}_q \cup \{?\})^{\ell_i - 1} \rightarrow C_i + e \cup \{\text{"e"}\}.$$

The decoder D_{C_i} either produces a codeword in the coset $C_i + e$ or a decoding failure “e”. For our purpose, we require that D_{C_i} have the following error-erasure correcting capability. For a sent codeword e in the coset $C_i + e$, where the vector e is a coset leader, if the inputs of D_{C_i} are a length-n_i received word y having t errors and τ erasures, where $2t + \tau \leq d_i - 1$, and a correct length-$\sum_{j=1}^{\ell_i - 1} v_j$ syndrome vector s, $s = eH^T_{C_i}$, then D_{C_i} can correct all these errors and erasures. It is well known that such a decoder exists [28].

b) The error-erasure decoder D_{A_i} for the coset of the code A_i, for $2 \leq i \leq M$, and $i \leq j \leq M$, is defined by

$$D_{A_i} : (\mathbb{F}_q \cup \{?\})^{n_i} \times (\mathbb{F}_q \cup \{?\})^{\ell_i - 1 - \sum_{j=1}^{\ell_i - 1} v_j} \rightarrow A_i + e \cup \{\text{"e"}\}.$$

The decoder D_{A_i} either produces a codeword in the coset $A_i + e$ or a decoding failure “e”. Similar to D_{C_i}, we assume that D_{A_i} has the following error-erasure correcting capability. For a sent codeword e in the coset $A_i + e$, where e is a coset leader, if the inputs of D_{A_i} are a length-n_i received word y having t errors and τ erasures, where $2t + \tau \leq d_i - 1$, and a correct
Algorithm 1: Decoding algorithm for C_M

Input: Received word $y = (y_1, y_2, \ldots, y_M)$.
Output: A length-k vector u of information symbols over \mathbb{F}_q or a decoding failure “e”.

1. for $i = M, M-1, \ldots, 2$ do
 2. Let the syndrome $\Lambda_i = 0$.
 3. $\hat{a}_i^j = D_{\Lambda_i^M} \left(y_i, (\Lambda_{i_+}^j, \Lambda_{i_+}^{j+1}, \ldots, \Lambda_{i_+}^M) \right)$.
 4. $(s_i, \Lambda_{i_+}^j, \ldots, \Lambda_{i_+}^{j-1}) = E_{\Lambda_i^M}^{-1} (\hat{a}_i^j)$. // For $i = 2$, define $(s_i, \Lambda_{i_+}^j, \ldots, \Lambda_{i_+}^{j-1}) = s_2$. //
 5. end for
7. Let the syndrome $s_1 = 0$.
8. $c_1 = D_{\Lambda_1^M} (y_1, (s_1, s_2, \ldots, s_M))$.
9. Output $u = E_{\Lambda_1^M}^{-1} (c_1)$ if all above steps are successful; otherwise, return “e”.

Theorem 6. The code C_M can correct any pattern of errors and erasures satisfying the conditions in (6) when decoded using Algorithm 1.

Proof: The proof follows from Algorithm 1 that decodes the last sub-block y_M to the first sub-block y_1 progressively. First, since the code $A_{\Lambda_1^M}^M$ has minimum distance $\delta_{\Lambda_1^M}^M$, it can correct y_M under the condition $2t_M + \tau_M \leq \delta_{\Lambda_1^M}^M - 1$. Thus, we correct the syndromes $s_M, \Lambda_{M-1}^M, \ldots, \Lambda_{M-1}^M$.

Next, with the correct syndrome Λ_{M-1}^M, the coset decoder $D_{\Lambda_{M-1}^M}^M$ can correct y_{M-1} under the condition $2t_{M-1} + \tau_{M-1} \leq \delta_{\Lambda_{M-1}^M}^M - 1$. Thus, we correct the syndromes $s_{M-1}, \Lambda_{M-2}^M, \ldots, \Lambda_{M-2}^M$.

We now conduct the above decoding procedure progressively. For any $i, 2 \leq i \leq M-2$, using the correct syndromes $\Lambda_{i-1}^M, \ldots, \Lambda_{i-1}^M$ for coset decoding, the sub-block y_i can be corrected under the condition $2t_i + \tau_i \leq \delta_{\Lambda_{i-1}^M}^M - 1$.

At the last step, we have obtained correct syndromes s_2, \ldots, s_M. Therefore, the sub-block y_1 is corrected.

Using the constructed codes as component codes, Construction 1 can generate an optimal code C_M with respect to the capability of correcting certain error-erasure patterns. For simplicity, we start with the case of $M = 3$ as an example.

Example 3. Consider a set of nested MDS codes, e.g., Reed-Solomon codes, $C_3^1 = [n_1, n_1 - d_1 + 1, d_2]_q \subset C_3^2 = [n_1, n_1 - d_2 + 1, d_2]_q \subset C_3^1 = [n_1, n_1 - d_1 + 1, d_1]_q$. Choose a set of auxiliary MDS codes $A_3^1 = [2(d_2 - d_1) - 1, 2d_2 - d_1 - d_1]_q \subset A_3^2 = [2(d_2 - d_1) - 1, 2d_2 - d_1 - d_1]_q$, and $A_3^2 = [3(d_3 - d_2) - 1, 2(d_3 - d_2), d_3 - d_2]_q$.

Then, from Construction 1 and Theorem 5, we obtain three-level rate-compatible codes $C_1 = [n_1, n_1 - d_1 + 1, d_1]_q \prec C_2 = [n_1 + 2(d_2 - d_1) - 1, n_1 - d_1 + 1, d_2]_q \prec C_3 = [n_1 + 2(d_2 - d_1) + 3(d_3 - d_2) - 2, n_1 - d_1 + 1, d_3]_q$.

From the condition in (6) and Theorem 6, the code C_3 can correct any pattern of errors and erasures satisfying

$$2t_i + \tau_i \leq d_M - d_{i-1} - 1, \quad 1 \leq i \leq M,$$
where d_0 is defined to be 0.

Lemma 8. Let C_M be a code of length $n_1 + \sum_{i=2}^{M} (i(d_i - d_{i-1}) - 1)$ and dimension k_M over \mathbb{F}_q. Each codeword $c_M \in C_M$ has M sub-blocks (c_1, a_2^M). Each codeword $c_M \in C_M$ has M sub-blocks (c_1, a_2^M): 1) c_1 of length n_1, and 2) a_i of length $(i(d_i - d_{i-1}) - 1)$. $2 \leq i \leq M$. Assume that each sub-block of C_M can correct all error and erasure patterns satisfying the condition in (8). Then, we must have $k_M \leq n_1 - d_1 + 1$; that is, the code C_M constructed in Example 4 is optimal. \hfill \Box

Proof: The proof follows the same argument as that of Lemma 7, so it is omitted.

C. Decoding Error Probability Analysis

For a linear code $C = [n, k, d_q]$ over a QSC, let $P_e^n(x)$ denote the conditional block probability of error, assuming that x was sent, $x \in C$. Let $P_e^n(C)$ denote the average probability of error of this code. Due to symmetry, assuming equiprobable codewords, it is clear that

$$P_e^n(C) = \frac{1}{|C|} \sum_{x \in C} P_e^n(x) = P_e^n(x).$$

In Algorithm 1, the code C_M is decoded by M steps, so the decoding will be successful if each decoding step is correct. Therefore, the probability of successful decoding $P_s^{(N_M)}(C_M)$ of C_M can be bounded as

$$P_s^{(N_M)}(C_M) \geq (1 - P_e^{(n_1)}(A_1^M)) \prod_{i=2}^{M} (1 - P_e^{(n_i)}(A_i^M)).$$

Correspondingly, we can bound the decoding error probability $P_e^{(N_M)}(C_M)$ of C_M by the decoding error probability of each step as

$$P_e^{(N_M)}(C_M) = 1 - P_s^{(N_M)}(C_M) \leq 1 - (1 - P_e^{(n_1)}(A_1^M)) \prod_{i=2}^{M} (1 - P_e^{(n_i)}(A_i^M)),$$

which provides a fast way to predict the performance of C_M. In particular, if each component code is a (shortened) BCH code, then $P_e^{(N_M)}(C_M)$ can be easily bounded, as illustrated in the following example.

Example 5. Consider two nested binary BCH codes $C_2^1 = [8191, 7411]_2 \subset C_1^1 = [8191, 7671]_2$. The codes C_1^1 and C_2^1 can correct 40 and 60 errors, respectively. Choose an auxiliary shortened BCH code $A_2^2 = [359, 260]_2$, which can correct 11 errors. Then, from Construction 1, we obtain two-level rate-compatible codes $C_1 = [8191, 7671]_2 \subset C_2 = [8550, 7671]_2$. Now, send C_2 over a binary symmetric channel (BSC) with crossover probability p. The error probability of C_2 satisfies

$$P_e^n(C_2) \leq 1 - \left(1 - P_e^{(n_1)}(C_1^1)\right) \left(1 - P_e^{(n_2)}(A_2^2)\right) \leq 1 - \left(\sum_{i=0}^{n_1} \binom{n_1}{i} p^i (1-p)^{n_1-i}\right) \left(\sum_{i=0}^{n_2} \binom{n_2}{i} p^i (1-p)^{n_2-i}\right),$$

where $N_2 = 8550$, $n_1 = 8191$, $n_2 = 359$, $t_1 = 60$, and $t_2 = 11$. For instance, for $p = 0.0035$, we compute $P_e^n(C_2) \leq 1.049 \times 10^{-7}$; for $p = 0.004$, we have $P_e^n(C_2) \leq 6.374 \times 10^{-6}$. For $p \geq 0.0035$, the performance of C_2 (rate 0.8972) is comparable to, although still worse than, that of a [8553, 7671]_2 shortened BCH code C_2' which has rate 0.8969 and can correct 63 errors. For instance, for $p = 0.0035$ and 0.004, C_2' has error probabilities 4.035×10^{-8} and 3.315×10^{-6}.

Remark 4. The discussion above is readily extended to the QEC.

V. CAPACITY-ACHIEVING RATE-COMPATIBLE CODES

In this section, we show that if we choose component codes properly, Construction 1 can generate capacity-achieving rate-compatible codes for a set of QMS channels with decreasing channel capacities. This implies the optimality of our construction from a probabilistic point of view.

A. Capacity-Achieving Rate-Compatible Codes for QMS Channels

Given a family of M QMS channels W_1, W_2, \ldots, W_M with capacities $C(W_1) > C(W_2) > \cdots > C(W_M)$. For any rates $R_1 > R_2 > \cdots > R_M$ such that $R_i < C(W_i)$ for all $1 \leq i \leq M$, our goal is to construct capacity-achieving rate-compatible codes $C_1 \subset C_2 \subset \cdots \subset C_M$ where $C_i = [N_i, R_i; N_i; q]$ such that the decoding error probability of C_i over the QMS channel W_i satisfies $P_e^{(n_i)}(C_i) \rightarrow 0$, as N_i goes to infinity.

An example of such a family is a set of M degraded QSCs $W_1 > W_2 > \cdots > W_M$ with crossover probabilities $p_1 < p_2 < \cdots < p_M$ respectively, where $p_1 > 0$ and $p_M < 1 - (1/q)$. Let $C(W_i)$ denote the capacity of the QSC W_i i.e., $C(W_i) = 1 - H_q(p_i)$. It is clear that $C(W_1) > C(W_2) > \cdots > C(W_M)$.

We first present the following proposition showing the existence of nested capacity-achieving linear codes over a set of QMS channels with decreasing channel capacities.

Proposition 9. Consider a family of M QMS channels W_1, W_2, \ldots, W_M with capacities $C(W_1) > C(W_2) > \cdots > C(W_M)$. For any rates $R_1 > R_2 > \cdots > R_M$ such that $R_i < C(W_i)$, there exists a sequence of nested linear codes $C_i = [n, k_M = R_M; q] \subset C_{i-1} = [n, k_{M-1} = R_{M-1}; q] \subset \cdots \subset C_1 = [n, k_1 = R_1; q]$ such that the decoding error probability of each C_i over the QMS channel W_i, under maximum-likelihood decoding, satisfies $P_e^{(n)}(C_i) \rightarrow 0$, as n goes to infinity.

To prove the proposition, we use the following result, which is a direct consequence of Theorem 6.2.1 of Gallager [11, p. 206].

Lemma 10. For a QMS channel W, let n and nR be integers such that $R < C(W)$. Let $P_e^{(n)}(C)$ denote the average of $P_e^{(n)}(C)$ over
all linear $[n,nR]_q$ codes C under maximum-likelihood decoding. Then,
\[
P_e^{(n)}(C) \leq q^{-nE_W(R)},
\]
where $E_W(R)$ is called Gallager’s random coding error exponent and $E_W(R) > 0$ for all R satisfying $0 \leq R < C(W)$.

The following lemma is a direct consequence of Lemma 10.

Lemma 11. For every $\rho \in (0,1)$, at least a fraction $1 - \rho$ (i.e., $\geq 1 - \rho$) of all linear $[n,nR]_q$ codes C satisfy
\[
P_e^{(n)}(C) \leq (1/\rho)q^{-nE_W(R)}.
\]

Proof: Consider the set S of codes C for which $P_e^{(n)}(C) > (1/\rho)q^{-nE_W(R)}$. Assume to the contrary that S forms more than a fraction ρ of all linear $[n,nR]_q$ codes C. Then,
\[
P_e^{(n)}(C) > \frac{\rho}{|S|} \sum_{C \in S} P_e^{(n)}(C) > q^{-nE_W(R)},
\]
contradicting Lemma 10. Therefore, S only forms at most a fraction ρ of all linear $[n,nR]_q$ codes C. \hfill \blacksquare

Using Lemmas 10 and 11, we now prove Proposition 9.

Proof: Consider an ensemble G_1 of all $k_1 \times n$ full rank matrices over \mathbb{F}_q. The size of G_1 is $|G_1| = (q^n - 1)(q^n - q) \cdots (q^n - q^{k_1-1})$. Now, for each matrix $G_1^i \in G_1, 1 \leq i \leq |G_1|$, take the lowest k_2 rows to form a new matrix G_2^i. All these new matrices form a new ensemble G_2, including possible repetitions. It is clear that $|G_2| = |G_1|$ and in G_2, each $k_2 \times n$ full rank matrix over \mathbb{F}_q appears $(q^n - q^{k_2})(q^n - q^{k_2+1}) \cdots (q^n - q^{k_1-1})$ times. Similarly, for each matrix $G_1^j \in G_1, 1 \leq j \leq |G_1|$, take the lowest k_3, $3 \leq j \leq M$, rows to form a new matrix G_3^j. All these new matrices form a new ensemble G_j. It is clear that $|G_j| = |G_1|$ and in G_j, each $k_j \times n$ full rank matrix over \mathbb{F}_q appears $(q^n - q^{k_j})(q^n - q^{k_j+1}) \cdots (q^n - q^{k_1-1})$ times.

Note that the number of generator matrices of a linear $[n,k]_q$ code is the same for all such codes. Therefore, from Lemma 11, in each ensemble G_j^i for $1 \leq j \leq M$, at least a fraction x of all matrices in this ensemble will generate linear codes C such that the error probability $P_e^{(n)}(C) \leq (1/\sqrt{x})q^{-nE_W(R)}$.

Now, choose x to be a certain value satisfying $\frac{1}{2} < x < 1$. Let S_1 be the subset of the ensemble G_1 such that $\frac{|S_1|}{|G_1|} \geq x$ and each matrix in S_1 generates a linear code C_1^i with the error probability $P_e^{(n)}(C_1^i) \leq \left(\frac{1}{\sqrt{x}}\right)q^{-nE_W(R_1)}$. Let S_2 be the subset of the ensemble G_1 such that $\frac{|S_2|}{|G_1|} \geq \frac{1}{2}$ and for each matrix in S_2, its lowest k_2 rows generate a linear code C_2^j with the error probability $P_e^{(n)}(C_2^j) \leq \left(\frac{1}{\sqrt{x}}\right)q^{-nE_W(R_2)}$. Then, with the basic property on set operations, we have
\[
\frac{|S_1 \cap S_2|}{|G_1|} = \frac{|S_1|}{|G_1|} + \frac{|S_2|}{|G_1|} - \frac{|S_1 \cup S_2|}{|G_1|} \geq \frac{|S_1|}{|G_1|} + \frac{|S_2|}{|G_1|} - 1 \\
\geq 2x - 1 > 0.
\]
Thus, we find a non-empty subset $S_{12} = S_1 \cap S_2$ in the ensemble G_1 such that: 1) S_{12} has at least a fraction $2x - 1 > 0$ of all the matrices in G_1, and 2) for each matrix in S_{12}, it generates a linear code C_1^i with the error probability $P_e^{(n)}(C_1^i) \leq \left(\frac{1}{\sqrt{x}}\right)q^{-nE_W(R_1)}$ and its lowest k_2 rows generate a linear code C_2^j with the error probability $P_e^{(n)}(C_2^j) \leq \left(\frac{1}{\sqrt{x}}\right)q^{-nE_W(R_2)}$.

Similarly, following from the above argument, it is not hard to see that for any x satisfying $\frac{1}{2} < x < 1$, in the ensemble G_1, we can find a non-empty subset $S_1 \subseteq G_1$ such that: 1) S_1 has at least a fraction $Mx - (M - 1) > 0$ of all the matrices in G_1, and 2) for each matrix $G_1^i \in S_1$, for each $j, 1 \leq j \leq M$, the lowest k_j rows of G_1^i will generate a linear code C_j^i with the error probability $P_e^{(n)}(C_j^i) \leq \left(\frac{1}{\sqrt{x}}\right)q^{-nE_W(R_j)}$.

Thus, there exists a sequence of nested linear codes $C_M = [n,k_M = R_M]_q \subseteq C_{M-1} = [n,k_{M-1} = R_{M-1}]_q \subseteq \cdots \subseteq C_1 = [n,k_1 = R_1]_q$ such that for all $1 \leq i \leq M$, the error probability $P_e^{(n)}(C_j^i) \to 0$, as n goes to infinity.

Now, we are ready to construct capacity-achieving rate-compatible codes from Construction 1. To do so, we choose a set of nested capacity-achieving codes, whose existence is guaranteed by Proposition 9, to be the component codes, as follows.

1) Choose a set of nested capacity-achieving codes $C_1^M \subset C_{M-1} \subset \cdots \subset C_1^1 = [n_1,k_1]_q$, where $C_1^1 = [n_1, n_1 - \Sigma_{m=1}^1 v_m]_q$ for $1 \leq i \leq M$. Let C_1^1 have the required rate $R_1 < C(W_1)$, such that the decoding error probability for C_1^1 over the QMS channel W_1 satisfies $P_e^{(n)}(C_1^1) \to 0$, as n_1 goes to infinity.

2) For ith level, $2 \leq i \leq M$, choose a set of auxiliary nested capacity-achieving codes $A_1^i \subset A_2^i \subset \cdots \subset A_{i+1}^i \subset A_i^i$, where $A_i^i = [n_i, v_1 + \Sigma_{m=2}^{i-1} \lambda_m^i - \Sigma_{m=i+1}^M \lambda_m^i]_q$ for $i \leq j \leq M$. Let A_i^i have the required rate $R_i < C(W_j)$, such that the decoding error probability for A_i^i over the QMS channel W_j satisfies $P_e^{(n)}(A_i^i) \to 0$, as n_i goes to infinity.

Note that, in contrast to Section IV, here we care about the rate and capacity-achieving properties, rather than the minimum distance properties, of the component codes.

Theorem 12. With the above component codes, from Construction 1, we obtain a sequence of capacity-achieving rate-compatible codes $C_1 < C_2 < \cdots < C_M$, where C_i, $1 \leq i \leq M$, has length $N_i = \Sigma_{j=1}^i n_j$, dimension $K_i = k$, and rate R_i. Moreover, for C_i over the QMS channel W_i, the error probability $P_e^{(n_i)}(C_i) \to 0$, as N_i goes to infinity.

Proof: The code length and dimension of C_i are obvious. We iteratively show that the rate of C_i is given by $R_i = \frac{k}{N_i}$. For $i = 1$, the result is trivial, since the rate of C_1^1 is R_1. For $i = 2$, observe that the rate of C_2^1 is $R_2 = \frac{k}{n_2}$ and the rate of A_2^2 is $R_2 = \frac{n_2}{n_2}$, so we have $(n_1 + n_2)R_2 = k$, or $R_2 = \frac{k}{n_2}$. Similarly, for $3 \leq i \leq M$, we use the rates of the
codes $C_1^i, A_2^j, \ldots, A_l^j$ to show that $(n_1 + n_2 + \cdots + n_l)R_i = k$, or $R_i = \frac{k}{N_1} = \frac{k}{\sum_{j=1}^{n_j} n_j}$, as desired.

We now confirm that the error probabilities go to zero. We prove the result for C_M; the same proof will work for any C_i, $1 \leq i < M - 1$.

For code C_M over the channel W_M, we use Algorithm 1 for decoding, where each component decoder is chosen to be a maximum-likelihood decoder. The decoding for C_M consists of M steps, so it will succeed if each step is successful. Thus, we can bound the decoding error probability $P_{e}^{(N_M)}(C_M)$ by the decoding error probability of each step as

$$P_{e}^{(N_M)}(C_M) \leq 1 - \left(1 - P_{e}^{(n_1)}(C_{M1})\right) \left(1 - P_{e}^{(n_2)}(A_{M1})\right) \cdots \left(1 - P_{e}^{(n_1)}(A_{Ml})\right)$$

where the constants $\phi_1 = \frac{R_{M1}}{R_{n1}}$ and $\phi_i = \frac{(R_{ni-1} + R_{M1})}{R_{ni-1}}$ for $2 \leq i \leq M$. From the chosen capacity-achieving component codes, we already have $P_{e}^{(n_1)}(C_{M1}) \to 0$ and $P_{e}^{(n_1)}(A_{M1}) \to 0$ as N_M goes to infinity, so in (9), $P_{e}^{(n_1)}(C_{Ml}) \to 0$ as N_M goes to infinity. Thus, we conclude that C_M can achieve the capacity of the channel W_M.

Remark 5. In the proof of Theorem 12, when the channels are QSCs, we can use a nearest-codeword decoder, defined as follows.

1) The nearest-codeword decoder $D_{C_1^i}$ for a coset of the code C_1^i, for $1 \leq i \leq M$, is defined by

$$D_{C_1^i} : F_q^{n_1} \times F_q^{\sum_{j=1}^{i-1} v_j} \to C_1^i + e$$

according to the following decoding rules: for a length-n_1 input vector y, and a length-$\sum_{j=1}^{i-1} v_j$ syndrome vector s, if c is a closest codeword to y in the coset $C_1^i + e$, where the vector c is a coset leader determined by both the code C_1^i and the syndrome vector s, i.e., $s = eH_{C_1^i}^T$, then $D_{C_1^i}(y, s) = c$.

2) The nearest-codeword decoder $D_{A_2^j}$ for a coset of the code A_2^j, for $2 \leq i, j \leq M$, is defined by

$$D_{A_2^j} : F_q^{n_1-n_2+v_2-v_3} \times F_q^{\sum_{j=1}^{i-1} \lambda_m^j + \sum_{j=i+1}^{l} \lambda^j} \to A_2^j + e$$

according to the following decoding rules: for a length-n_1 input vector y, and a length-$(n_1-v_1-\sum_{m=1}^{i-2} \lambda_m^j + \sum_{j=i+1}^{l} \lambda^j)$ syndrome vector s, if c is a closest codeword to y in the coset $A_2^j + e$, where the vector c is a coset leader determined by both the code A_2^j and the syndrome vector s, i.e., $s = eH_{A_2^j}^T$, then $D_{A_2^j}(y, s) = c$.

Remark 6. Polar codes are a family of linear codes that provably achieve the capacity of memoryless symmetric channels using low-complexity encoding and decoding algorithms [2], [31], [32]. Moreover, binary polar codes were proved to have the nested capacity-achieving property for a set of degraded binary memoryless symmetric (BMS) channels [18, Lemma 4.7]. Thus, they can be used as the component codes in Construction 1 to construct capacity-achieving rate-compatible codes for a set of degraded BSCs. This can be extended to a set of BMS channels with ordered capacities, and more generally to such a set of QMS channels using results and remarks in [27].

B. Equivalence to HHM Construction of Polar Codes

There are several recent independent works on capacity-achieving rateless and rate-compatible codes based on polar codes [15], [21], [27]. An analysis of the construction in [15], which we refer to as the HHM construction, shows that it is equivalent to our syndrome-coupled code construction with polar codes as component codes through a mapping of the syndrome in our construction to the information bits in that construction. In the following, we show this equivalence for the case of three-level rate-compatible codes. Extension to the M-level case is similar, so the details are omitted.

We first introduce the HHM construction [15] for generating three-level rate-compatible codes, based on Arikan’s construction of polar codes [2]. It has the following three steps:

Step 1: Begin with three nested binary polar codes $C_1^3 \subset C_2^2 \subset C_1$, where $C_1^i = [n_1, n_1 - \sum_{m=1}^{i-1} v_m]_2$ for $1 \leq i \leq 3$.

The set of information bit indices of C_1^i is denoted by I_1^i, for $1 \leq i \leq 3$. The nested property of polar codes gives $I_1^2 \subset I_1^3$ [18]. Let $N_{1}^2 = I_1^2 \setminus I_1^1$ and $N_{1}^3 = I_1^3 \setminus I_1^2$, and it is clear that $|N_{1}^2| = v_2$ and $|N_{1}^3| = v_3$.

Let a length-n_1 vector u_1 have $k = n_1 - v_1$ information bits u on the coordinates in I_1^1 and value 0 on the coordinates in $[n_1]\setminus I_1^1$. A codeword $c_1 \in C_1$ is obtained by $c_1 = u_1G_{n_1}$, here, we assume that the code length n_1 is 2^m and the matrix G_{n_1} is $G_{n_1} = B_{n_1}G_{2^m}^\otimes m_1$, where $G_{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and B_{n_1} is a bit-reversal permutation matrix defined in [2]. It is known that $G_{n_1} = G_{n_1}^{-1}$, i.e., $G_{n_1}G_{n_1} = I$ [12].

Step 2: Now take two nested binary polar codes $A_2^3 = [n_2, v_2 - \lambda_1^2]_2 \subset A_2^2 = [n_2, v_2]_2$.

The set of information bit indices of A_2^i is denoted by I_2^i, $i = 2, 3$. The sets I_2^2 and I_2^3 satisfy $I_2^2 \subset I_2^3$. Let the index set $N_{2}^2 = I_2^2 \setminus I_2^1$ and we have $|N_{2}^2| = \lambda_2^2$.

Let a length-n_2 vector u_2 have $\pi_{A_2^1}(u_1)$ on the coordinates in I_2^2 and value 0 on the coordinates in $[n_2]\setminus I_2^2$. A codeword $a_2^2 \in A_2^2$ is obtained by $a_2^2 = u_2G_{n_2}$. Here, we assume that the code length n_2 is 2^m and the matrix G_{n_2} is $G_{n_2} = B_{n_2}G_{2^m}^\otimes m_2$, where B_{n_2} is a bit-reversal permutation matrix defined in [2] and it is known that $G_{n_2}G_{n_2} = I$ [12].

Step 3: Use a binary polar code $A_3^3 = [n_3, v_3 + \lambda_3^2]_2$ to encode $\pi_{A_2^3}(u_1)$ and $\pi_{A_3^2}(u_2)$. We denote the set of information bit indices of A_3^3 by N_{3}^3. Let a length-n_3 vector
\(\bar{u}_3 \) have \(\pi_{N_3^1}(\bar{u}_1) \) and \(\pi_{N_3^2}(\bar{u}_2) \) on the coordinates in \(I_3^2 \) and value 0 on the coordinates in \([n_3]\setminus I_3^3 \). A codeword \(a_3^3 \in A_3^3 \) is obtained by \(a_3^3 = \bar{u}_3 G_{n_3} \), where \(G_{n_3} = B_{n_3} G_{2}^\otimes m_3 \) and \(B_{n_3} \) is a bit-reversal permutation matrix.

In summary, the preceding encoding procedure of the HHM construction generates

\[
\left(c_1, a_2^2, a_3^3 \right) = \left(E_{C_1^1}(u), E_{A_2^2}(\pi_{N_3^1}(\bar{u}_1)), E_{A_3^3}(\pi_{N_3^2}(\bar{u}_1), \pi_{N_3^2}(\bar{u}_2)) \right),
\]

where \(E_{C_1^1}, E_{A_2^2}, \) and \(E_{A_3^3} \) denote the encoders of \(C_1^1, A_2^2, \) and \(A_3^3 \), respectively.

Now, consider our syndrome-coupled construction, i.e., Construction 1. We use the same component polar codes as those in the HHM construction. According to Lemma 1 in [12], the rows of the canonical parity-check matrix of a polar code are the columns of its generator matrix corresponding to the frozen indices. Therefore, for the nested binary polar codes \(C_1^3 \subset C_2^3 \subset C_1^1 \), the canonical parity-check matrices are in the form of (4), where the matrix \(H_{C_1^1} \) is formed by the columns of \(G_{n_3} \) with indices in \([n_1]\setminus I_1^1 \), the matrix \(H_{C_1^1|C_1^2} \) is formed by the columns of \(G_{n_3} \) with indices in \(N_2^1 \), and the matrix \(H_{C_1^1|C_1^2} \) is formed by the columns of \(G_{n_3} \) with indices in \(N_2^1 \). Similarly, for the nested binary polar codes \(A_3^3 \subset A_3^3 \), the canonical parity-check matrices are in the form of (5), where the matrix \(H_{A_3^3|C_1^2} \) is formed by the columns of \(G_{n_2} \) with indices in \([n_2]\setminus I_2^3 \), and the matrix \(H_{A_3^3|A_3^2} \) is formed by the columns of \(G_{n_2} \) with indices in \(N_3^2 \).

Using the polar codes \(C_1^3 \subset C_2^3 \subset C_1^1 \), \(A_3^3 \subset A_3^3 \), and \(A_3^3 \), according to Construction 1, our syndrome-coupled construction produces:

\[
\left(c_1, a_2^2, a_3^3 \right) = \left(E_{C_1^1}(u), E_{A_2^2}(s_2), E_{A_3^3}(s_3, A_3^2) \right),
\]

where \(s_2 = \bar{u}_1 G_{n_1} H_{C_1^1|C_1^2}^T \), \(s_3 = \bar{u}_1 G_{n_1} H_{C_1^1|C_1^2}^T \), and \(A_3^2 = \bar{u}_2 G_{n_2} H_{A_3^3|A_3^2}^T \).

By comparing (10) and (11), we have the following equivalence result on the information bits of the HHM construction and the syndrome of our construction.

Theorem 13. The HHM construction is equivalent to our syndrome-coupled construction (i.e., Construction 1); that is, we have \(\pi_{N_2^1}(\bar{u}_1) = s_2 \), \(\pi_{N_3^1}(\bar{u}_1) = s_3 \), and \(\pi_{N_3^2}(\bar{u}_2) = A_3^2 \).

Proof: We prove \(\pi_{N_2^1}(\bar{u}_1) = s_2 \) and \(\pi_{N_3^1}(\bar{u}_1) = s_3 \). A similar proof shows that \(\pi_{N_3^2}(\bar{u}_2) = A_3^2 \), so details are omitted.

First, we have the following equations,

\[
\begin{align*}
\mathbf{s}_2 &= c_1 H_{C_1^1|C_1^2}^T \mathbf{c}_1 \\
&= \bar{u}_1 G_{n_1} H_{C_1^1|C_1^2}^T \\
&= \pi_{N_2^1}(\bar{u}_1),
\end{align*}
\]

where step (a) follows from the fact that: 1) the matrix \(H_{C_1^1|C_1^2} \) is formed by the columns of \(G_{n_1} \) with indices in \(N_2^1 \), and 2) \(G_{n_1} G_{n_1} = I \) [12].

Second, we have the following equations,

\[
\begin{align*}
\mathbf{s}_3 &= c_1 H_{C_1^1|C_1^2}^T \\
&= \bar{u}_1 G_{n_1} H_{C_1^1|C_1^2}^T \\
&= \pi_{N_3^1}(\bar{u}_1),
\end{align*}
\]

where step (a) follows from the fact that: 1) the matrix \(H_{C_1^1|C_1^2} \) is formed by the columns of \(G_{n_1} \) with indices in \(N_2^1 \), and 2) \(G_{n_1} G_{n_1} = I \) [12].

Since the HHM construction [15] is based on the generator matrix, our construction can be seen as another interpretation of the HHM construction from a parity-check matrix perspective.

C. Equivalence between Syndrome and Information Symbols of Linear Codes

Note that in the preceding proof of Theorem 13, we use the special relation between the generator matrix and the canonical parity-check matrix of polar codes [12]. In [15], the authors also used nested punctured polar codes as component codes in the HHM construction to relax the constraint that the code lengths be a power of two. However, for a punctured polar code, a simple description of a canonical parity-check matrix in terms of the generator matrix is not known. Therefore, to prove the equivalence between the HHM construction and our syndrome-coupled construction using punctured polar codes, we prove the more general result that for a set of nested linear codes (including nested punctured polar codes) with given generator matrices, we can always find a set of parity-check matrices such that the information symbols are identical to the corresponding syndrome. To describe this relationship more precisely, we first introduce some notation.

Consider \(M \)-level nested codes \(C_M \subset C_{M-1} \subset \cdots \subset C_1 \), where \(C_i = [n, n - \sum_{m=1}^i v_m]_q \) for \(1 \leq i \leq M \). Assume that \(C_i \) has the following generator matrix:

\[
G(C_i) = \begin{bmatrix} G_i \\ G_{i+1} \\ \vdots \\ G_M \end{bmatrix},
\]

where for \(i \leq \ell \leq M - 1 \), the submatrix \(G_{\ell} \) is a \(v_{\ell+1} \times n \) matrix over \(\mathbb{F}_q \) and \(G_M \) is an \((n - \sum_{m=1}^M v_m) \times n \) matrix.
over \mathbb{F}_q. The corresponding parity-check matrix of C_i has the following form:

$$H(C_i) = \begin{bmatrix} H_1 & & \\ H_2 & & \\ & \vdots & \\ & & H_i \end{bmatrix},$$

(13)

where for $1 \leq \ell \leq i$, the submatrix H_{ℓ} is a $v_{\ell} \times n$ matrix over \mathbb{F}_q.

Let u be an information vector of length $n - v_1$ over \mathbb{F}_d. Let the index set $N_2 = \{1, 2, \ldots, v_2\}$ and for $3 \leq i \leq M$, $N_i = \{v_{i-1} + 1, \ldots, v_{i-1} + v_i\}$. The following theorem relates the information symbols to corresponding syndromes.

Theorem 14. For a set of M-level nested codes $C_M \subset C_{M-1} \subset \cdots \subset C_1$ with given nested generator matrices in (12), there exist nested parity-check matrices in the form of (13) such that for all $2 \leq i \leq M$, $\pi_{N_i}(u) = s_i$, where the syndrome $s_i = uG(C_1)H_i^T$. Note that the M matrices G_1, G_2, \ldots, G_M define all the generator matrices of $C_M \subset C_{M-1} \subset \cdots \subset C_1$. Correspondingly, the M matrices H_1, H_2, \ldots, H_M define all the parity-check matrices of these codes.

For a given set of G_1, G_2, \ldots, G_M, there exist many choices on H_1, H_2, \ldots, H_M such that the duality between $G(C_i)$ in (12) and $H(C_i)$ in (13) is satisfied, for $1 \leq i \leq M$. However, not all of them can also satisfy the constraint $\pi_{N_i}(u) = s_i$, for $2 \leq i \leq M$.

To prove Theorem 14, we make use of the following algorithm, referred to as Algorithm 2, whose inputs are a set of matrices G_1, G_2, \ldots, G_M and a set of matrices H_1, H_2, \ldots, H_M that satisfy the duality between $G(C_i)$ in (12) and $H(C_i)$ in (13), for $1 \leq i \leq M$. Algorithm 2 transforms the matrices H_1, H_2, \ldots, H_M into a new set of matrices H'_1, H'_2, \ldots, H'_M.

Algorithm 2: Parity-Check Matrix Transform

Input: 1) G_1, G_2, \ldots, G_M; 2) H_1, H_2, \ldots, H_M.

Output: H'_1, H'_2, \ldots, H'_M.

1: for $i = 1, 2, \ldots, M$ do
2: Let $H_i(1) = H_i$.
3: end for
4: for $i = 2, 3, \ldots, M$ do
5: Let $B_i = \left(H_i(1)G_{i-1}^T \right)^{-1}$.
6: Let $H_i(2) = B_iH_i(1)$.
7: end for
8: for $i = 3, 4, \ldots, M$ do
9: $H_i(i) = H_i(2)$.
10: for $j = 2, 3, \ldots, i - 1$ do
11: Let $T_{ij} = -H_i(2)G_{i-j-1}^T$.
12: Let $H_i(i) = H_i(i) + T_{ij}H_j(j)$.
13: end for
14: end for
15: for $i = 1, 2, \ldots, M$ do
16: Let $H_i' = H_i(i)$.
17: end for

The proof of Theorem 14 relies on the following sequence of lemmas. Their proofs, consisting of linear algebraic derivations, are given in Appendix C.

Lemma 15. In Algorithm 2, for $2 \leq i \leq M$, the matrix $G_{i-1}H_i^T$ is a $v_i \times v_i$ full rank matrix; that is, the matrix B_i exists and is also a full rank matrix.

Proof: See Appendix C. \blacksquare

Now, using the outputs H'_1, H'_2, \ldots, H'_M from Algorithm 2, let $H'(C_i)$, $1 \leq i \leq M$, have the following form,

$$H'(C_i) = \begin{bmatrix} H'_1 \\ H'_2 \\ \vdots \\ H'_i \end{bmatrix}.$$

(14)

Using Lemma 15, the next lemma confirms that the matrix $H'(C_i)$ is indeed a parity-check matrix for the code C_i.

Lemma 16. For $1 \leq i \leq M$, using the matrices H'_1, H'_2, \ldots, H'_M from Algorithm 2, the matrix $H'(C_i)$ in (14) is a parity-check matrix of C_i.

Proof: See Appendix C. \blacksquare

The next lemma establishes the relationship between information symbols and syndromes.

Lemma 17. For $2 \leq i \leq M$, we have $\pi_{N_i}(u) = s_i = uG(C_1)H_i^T$.

Proof: See Appendix C. \blacksquare

We now have the ingredients for the proof of Theorem 14.

Proof of Theorem 14: Theorem 14 follows immediately from the combination of Lemma 16 and Lemma 17. \blacksquare

VI. Application and Performance of Rate-Compatible Codes

In this section, we investigate an application of rate-compatible codes to flash memories. Specifically, we first construct two-level rate-compatible codes based on BCH and LDPC codes, respectively, and then evaluate the performance of these codes on MLC flash memories. We also study the performance of rate-compatible codes with various code rates over binary and q-ary symmetric channels.
A. Flash Memory and Adaptive Error Mitigation

We begin with a brief review of the structure of NAND flash memories [3], [4]. The basic storage unit in a flash memory is a floating-gate transistor referred to as a cell. The voltage levels of a cell can be adjusted by a program operation and are used to represent the stored data. The cells typically have 2, 4, and 8 voltage levels (1, 2, and 3 bits/cell, respectively) and are referred to as single-level cell (SLC), multi-level cell (MLC), and three-level cell (TLC), respectively. Cells are organized into a rectangular array, interconnected by horizontal wordlines and vertical bitlines, that constitute a block. A flash memory chip comprises a collection of such blocks.

During program (i.e., write) operations, the voltage level of a cell cannot be decreased. In order to do so, the entire containing block must be erased and reprogrammed. Repeated program/erase (P/E) operations induce wear on the cells, with a detrimental effect on the lifetime of the flash memory. It has been observed that the raw bit error rate increases as the P/E cycle count grows [5], [36], [39], [40]; as a result, at the stage where the P/E cycle count is higher, the capability to tolerate more errors is needed. It was suggested in [4] to use several distinct ECCs with decreasing code rates throughout the lifetime of the flash memory. Here, we take a different approach and explore the use of syndrome-coupled rate-compatible ECCs.

Although we do not address here system implementation and performance issues arising from the use of rate-compatible codes in solid-state drives, some potential advantages can be seen by contrasting a two-level rate-compatible code with a pair of distinct codes. First, if one uses a pair of separately optimized codes, their encoders (and decoders) usually require distinct implementations. In contrast, in the rate-compatible case, the first code is embedded as a part of the second code, so the encoder and decoder implementations of the second code can incorporate those of the first code, resulting in reduced overall complexity. Second, the use of two distinct codes with different rates and block lengths may require a change in the layout of codewords in a page. With a rate-compatible code, when the second level is invoked, the same number of first-level codewords can be stored in a page, while the second-level parities can be stored in a special reserved area, to be read only when needed. Such an ECC architecture was recently proposed in [34], [35] in the context of 3D NAND flash subject to errors induced by fast-drift.

In our experiments, we focus on MLC flash memories, where a block has 128 wordlines, each of which consists of upper and lower pages. Each page has a size of 17KB. ECCs are employed in the page to protect data. Two typical ECCs that have been widely used in flash memory industry are BCH and LDPC codes. In the following, we consider both of them, and will construct two-level rate-compatible codes based on BCH and LDPC codes, respectively. The two code rates of practical interest lie in the ranges: 0.93 – 0.94 and 0.89 – 0.90. We will show the lifetime improvement of the MLC flash memory by utilizing the second level redundancy in rate-compatible codes.

B. Application of Rate-Compatible Codes on MLC Flash Memories

1) Rate-Compatible Codes Based on BCH Codes: We first construct two-level rate-compatible codes based on binary BCH codes. We choose two nested binary BCH codes $C_1^2 = [8191, 7398]_2 \subset C_1^1 = [8191, 7697]_2$ as our component codes; the codes C_1^1 and C_1^2 can correct 38 and 61 errors, respectively. We also choose an auxiliary shortened BCH code $A_2^2 = [398, 299]_2$, which can correct 11 errors. Then, from Construction 1, we obtain two-level rate-compatible codes $C_1 = [8191, 7697]_2 \prec C_2 = [8589, 7697]_2$, whose code rates are 0.9397 and 0.8961, respectively. We apply C_1 and C_2 to an MLC flash memory and evaluate their performance. In addition, we evaluate a shortened BCH code $C'_2 = [8593, 7697]_2$ with rate 0.8957, whose code length and rate are similar to those of the code C_2. The code C'_2 can correct 64 errors.

For the performance evaluation of BCH-based two-level rate-compatible codes for an MLC flash memory, we assume that the all-zero codeword is stored and that the memory introduces errors in the locations indicated by our empirical measurements. For the BCH decoder, we assume that if the BCH code (or its coset) could correct t errors, then it would correct any error vector with at most t errors. If the number of errors exceeds t, we assume that the BCH decoder would fail. The constructed rate-compatible codes $C_1 \prec C_2$ are evaluated over a total of 20 blocks, i.e., 40960 codewords.

The frame error rate (FER) performance of the constructed codes C_1 and C_2 for the lower page and upper page of an MLC flash memory is shown in Fig. 2(a) and Fig. 2(b), respectively. Compared to C_1, the code C_2 extends the lifetime around 3500 program/erase (P/E) cycles for the lower page and around 2000 P/E cycles for the upper page.

In addition, we evaluate the shortened BCH code C'_2. The FER performance results for the lower page and upper page are shown in Fig. 2(a) and Fig. 2(b), respectively. It can be seen that the FER of C'_2 is comparable to that of C'_2, which indicates the effectiveness of our construction.

2) Rate-Compatible Codes Based on LDPC Codes: We next construct two-level rate-compatible codes based on binary LDPC codes. We use a Reed-Solomon (RS) codes based construction for regular LDPC codes, since this construction provides a nested and 4-cycle free structure [30]. We can obtain two nested binary LDPC codes $C_1^2 \subset C_1^1$, where C_1^1 is a $(4, 64)$-regular [8192, 7697]_2 LDPC code with rate 0.9396 and C_1^2 is a $(7, 64)$-regular [8192, 7400]_2 LDPC code with rate 0.9033. We also choose an auxiliary $(4, 15)$-regular [405, 300]_2 LDPC code A_2^2. Then, in the second step of Construction 1, we obtain the syndrome s_2 of length 297. We add three zeros to the end of s_2 to form a new vector which is encoded by A_2^2 to generate the vector a_2^2. Thus, from Construction 1, we obtain two-level rate-compatible codes $C_1 = [8192, 7697]_2 \prec C_2 = [8597, 7697]_2$, whose code rates are 0.9396 and 0.8953, respectively.

For the performance evaluation of LDPC-based two-level rate-compatible codes for an MLC flash memory, we assume that the all-zero codeword is stored and that the memory...
introduces errors in the locations indicated by our empirical measurements. We treat the channel as a binary symmetric channel with crossover error probability p equal to the average probability of error reflected in the measured error data. The decoder is based upon belief-propagation (BP) decoding, implemented in software as the floating-point sum-product algorithm (SPA). The maximum number of iterations is set to 100 and early termination is used. The constructed rate-compatible codes $C_1 \prec C_2$ are evaluated over a total of 20 blocks, i.e., 40960 codewords.

The FER performance of the constructed codes C_1 and C_2 for the lower page and upper page of an MLC flash memory is shown in Fig. 2(a) and Fig. 2(b), respectively. Compared to C_1, the code C_2 extends the lifetime around 4000 P/E cycles for the lower page and around 3000 P/E cycles for the upper page.

From Fig. 2(a) and Fig. 2(b), it is shown that at a higher rate, i.e., around 0.94, the $[8191, 7697]_2$ BCH code outperforms the $[8192, 7697]_2$ LDPC code. However, at a lower rate of around 0.90, the $[8597, 7697]_2$ LDPC-based code is better than the $[8589, 7697]_2$ BCH-based code.

C. Performance of Rate-Compatible Codes over Binary and Q-ary Symmetric Channels

In this subsection, we provide several additional examples of rate-compatible codes obtained from Construction 1. In particular, we consider binary two-level rate-compatible codes based on BCH and LDPC codes with rates in the range $0.6 - 0.8$ and in the range $0.3 - 0.55$. We present results of computer simulations that demonstrate their FER performance on the BSC. We also describe a binary BCH-based three-level rate-compatible code and show its FER performance on the BSC. Finally, we consider a non-binary two-level rate-compatible code based on Reed-Solomon codes over \mathbb{F}_{64} and examine its FER performance on the 64-ary symmetric channel.

The rate-compatible codes constructed for MLC flash memories in the previous subsection have relatively high rates, i.e., in the range $0.85 - 0.95$. With the similar steps, in the next two examples, we construct two-level rate-compatible binary codes with lower code rates and also present their performances over the BSC by simulations.

Example 6. In this example, we construct two-level rate-compatible binary codes with code rates in the range $0.6 - 0.8$.

We first construct two-level rate-compatible codes based on binary BCH codes. Consider two nested binary BCH codes $C_2^1 = [255, 171]_2 \subset C_1^1 = [255, 199]_2$ that can correct 11 and 7 errors, respectively. Choose an auxiliary shortened BCH code $A_2^2 = [61, 28]_2$ which corrects 6 errors. From Construction 1, we obtain two-level rate-compatible codes $C_1 = [255, 199]_2 \prec C_2 = [316, 199]_2$ whose code rates are 0.7804 and 0.6298, respectively. In addition, we evaluate a shortened BCH code $C_2^1 = [316, 199]_2$ with 13 errors. The code lengths and dimensions of C_2 and C_2^1 are identical.

We next construct two-level rate-compatible codes based on binary LDPC codes. Using a Reed-Solomon codes based construction for regular LDPC codes [30, Ch. 11.9], we obtain two nested binary LDPC codes $C_2^1 = [256, 171]_2 \subset C_1^1 = [256, 203]_2$ which can correct 11 and 7 errors. From Construction 1, we obtain two-level rate-compatible codes $C_1 = [256, 203]_2 \prec C_2 = [316, 203]_2$ whose code rates are 0.793 and 0.6404, respectively.

The FER performances of these codes over the BSC are shown in Fig. 3. The $[255, 199]_2$ BCH code outperforms the
FER codes based on binary BCH codes. Consider two nested binary codes with code rates in the range 0.6.

Fig. 3. FER performance of two-level rate-compatible codes with code rates
in the range 0.6 – 0.8 over the BSC.

The FER performances of these codes over the BSC are plotted in Fig. 4. For the crossover probability p of the BSC below 0.04, the [255, 131]2 BCH code surpasses the [256, 135]2 LDPC code, while for the crossover probability p above 0.04, the opposite result holds. For the second level, in general, the [379, 135]2 LDPC-based code performs much better than the [377, 131]2 BCH-based code which is comparable to the [374, 131]2 shortened BCH code. For the crossover probability p around 0.03, the LDPC-based code C2 only slightly outperforms C′ 2. At FER around 10⁻⁶, for the constructed rate-compatible codes, no error floor occurs.

The following example demonstrates three-level rate-compatible binary codes based on BCH codes.

Example 8. Consider a set of nested binary BCH codes C3 = [511, 241]2 ⊂ C2 = [511, 304]2 ⊂ C1 = [511, 376]2 that can correct 36, 25, and 15 errors, respectively. Choose two auxiliary shortened BCH codes A3 = [172, 48]2 ⊂ A2 = [172, 72]2 that can correct 18 and 13 errors, respectively, and also choose A′ 3 = [227, 87]2 which corrects 21 errors. Then, from Construction 1, we obtain three-level rate-compatible codes C1 = [511, 376]2 ⊂ C2 = [683, 376]2 ⊂ C3 = [910, 376]2. Their simulation results over the BSC are shown in Fig. 5.

Moreover, for comparison, we evaluate two shortened BCH codes C′ 2 = [681, 376]2 and C′ 3 = [906, 376]2 that can correct 31 and 59 errors, respectively. Fig. 5 illustrates that for the second level, the code C2 performs very close to C′ 2. For the third level, the gap between C2 and C′ 2 becomes more evident. At a high FER around 10⁻⁴, C3 performs slightly better than C′ 3, while at a low FER around 10⁻⁵, C3 is worse than C′ 3. Note that at FER around 10⁻⁵, the gap between C3 and C′ 3 is larger.

Example 7. In this example, we present two-level rate-compatible binary codes with code rates in the range 0.3 – 0.55.

We again begin by constructing two-level rate-compatible codes based on binary BCH codes. Consider two nested binary BCH codes C1 = [255, 107]2 ⊂ C1 = [255, 131]2 that can correct 22 and 18 errors, respectively. Choose an auxiliary shortened BCH code A2 = [122, 24]2 which corrects 21 errors. From Construction 1, we obtain two-level rate-compatible codes C1 = [255, 131]2 ⊂ C2 = [377, 131]2 whose code rates are 0.5137 and 0.3475, respectively. Moreover, we evaluate a shortened BCH code C′ 2 = [374, 131]2 which can correct 29 errors. The codes C2 and C′ 2 have the similar code length and the same dimension.

We also construct two-level rate-compatible codes based on binary LDPC codes. Using a Reed-Solomon codes based construction for regular LDPC codes [30, Ch. 11.9], we obtain two nested binary LDPC codes C1 ⊂ C1, where C1 is a (5, 8)-regular [256, 135]2 LDPC code and C1 is an (8, 8)-regular [256, 110]2 LDPC code. We also choose an auxiliary shortened BCH code A2 = [123, 25]2 which corrects 21 errors. From Construction 1, we obtain two-level rate-compatible codes C1 = [256, 135]2 ⊂ C2 = [379, 135]2, whose code rates are 0.5273 and 0.3562, respectively.

Fig. 4. FER performance of two-level rate-compatible codes with code rates
in the range 0.3 – 0.55 over the BSC.
Crossover Probability p

\[\begin{align*}
10^{-6} & \quad 10^{-5} & \quad 10^{-4} & \quad 10^{-3} & \quad 10^{-2} & \quad 10^{-1} & \quad 10^{0}
\end{align*} \]

FER

Fig. 5. FER performance of three-level rate-compatible codes based on BCH codes over the BSC.

Fig. 6. FER performance of two-level rate-compatible non-binary codes based on Reed-Solomon codes over the 64-ary symmetric channel.

than the one between C_2 and C'_2, which implies that at finite lengths the performance degrades with the growing number of levels.

The examples above are all binary codes. Here we provide an example of rate-compatible non-binary codes based on Reed-Solomon codes.

Example 9. We construct two-level rate-compatible non-binary codes over \mathbb{F}_{64}. Consider two nested Reed-Solomon codes $C^2 = [63, 47]_{64} \subset C^1 = [63, 53]_{64}$. Choose a shortened Reed-Solomon code as the auxiliary code $A^2 = [16, 6]_{64}$.

From Construction 1, we obtain two-level rate-compatible non-binary codes $C_1 = [63, 53]_{64} \prec C_2 = [79, 53]_{64}$. Since there does not exist a Reed-Solomon code (or a shortened one) of length 79 and dimension 53 over \mathbb{F}_{64}, for simplicity, we use a code $C'_2 = [79, 53]_{64}$ formed by concatenating two shortened Reed-Solomon codes $[41, 27]_{64}$ and $[38, 26]_{64}$ for comparison. The simulation results of these codes over the 64-ary symmetric channel are presented in Fig. 6, which shows that C_2 is comparable to C'_2. At FER around 2×10^{-6}, C_2 is slightly better than C'_2, and no error floor is observed.

We conclude this section by commenting on some of the performance and implementation considerations associated with designing rate-compatible codes, including the proposed syndrome-coupled codes. As mentioned in Section I, there is a substantial literature in which the rate-compatible codes are obtained by puncturing a low-rate base code, as well as a large body of work in which the code is obtained by extending a high-rate base code, as in our syndrome-coupled construction. In fact, a number of papers, e.g., [10], [22], [41], describe constructions that make use of both puncturing and extending of LDPC codes in order to exploit the benefits and avoid the drawbacks inherent in the two approaches.

Puncturing is attractive in its use of a single underlying code structure, with higher rate codes obtained by not using all parity bits. However, it may require generation of all of the parity bits corresponding to the low-rate base code, whether or not they will ultimately be used. Moreover, the decoder effectively operates on the full length of the base code, with untransmitted parities treated as erasures. In the case of LDPC codes, this means that the decoding algorithm will operate on a Tanner graph whose size is dictated by the lowest-rate (base) code [10], [22], [37]. Moreover, it has been found that puncturing a low-rate code to a very high rate leads to performance degradation relative to an optimized code.

Extension, on the other hand, can begin with an optimized high-rate code. However, the extending to produce lower rate codes tends to introduce complexity in the code design in one form or another to generate the additional parities. The potential advantage is that additional parities are generated only when needed. On the other hand, the decoder must be able to decode each of the lower-rate codes produced by extending. For example, for M-level syndrome-coupled rate-compatible codes, the decoding for the lowest-rate code (i.e., M-level code) requires M decoders. However, each of these additional decoders is only used to decode an auxiliary code which will often be of smaller length and hence have relatively lower complexity. Moreover, if channel conditions are such that the decoder only invokes a small number of code levels to succeed, the actual decoding complexity is proportionately reduced by requiring only a corresponding small number of decoders.

There are two additional features of the proposed syndrome-coupled rate-compatible coding scheme that may offer further practical benefits. First, it is a universal design method, in
the sense that it can be easily applied to a wide range of codes, including BCH, RS, LDPC and polar codes. Thus, it is compatible with systems in which there may be a preference for one of these classes of codes. Second, the construction provides flexibility in choosing the class of each individual component code. For example, in constructing two-level codes, one can use LDPC component codes for both levels, or an LDPC code for the first level and a BCH code for the second level. Under certain channel conditions and constraints on code lengths and rates, the latter choice of code classes may be preferable. Of course, there are many engineering considerations that enter into the design of a practical and effective rate-compatible coding scheme, and our aim here has been simply to highlight some of them.

VII. VARIATIONS OF CONSTRUCTION 1

In this section, we briefly discuss two possible variations of our main construction, i.e., Construction 1. The following two constructions are similar to Construction 1, so some proofs are omitted. In contrast to Construction 1, one distinct feature of these two constructions is that they do not require the auxiliary codes have the nested structure.

A. Construction 2

In this construction for M-level rate-compatible codes, we use a set of component codes described below.

1) Choose a set of nested codes $C_1^M \subset C_1^{M-1} \subset \cdots \subset C_1^1 = C_1 = [n_1, k_1, d_1^1]_q$, where $C_1^i = [n_1, n_1 - \sum_{m=1}^i v_m, d_i^1]_q$ for $1 \leq i \leq M$. The encoder of C_i is denoted by $E_{C_i} : \mathbb{F}_q^k \rightarrow C_i$. These nested codes are the same as those used in Construction 1.

2) Choose a set of $[n_i, \sum_{j=2}^i v_j, \delta_i]_q$ auxiliary codes A_i, $2 \leq i \leq M$. The corresponding encoder is denoted by $E_{A_i} : \mathbb{F}_q^{\sum_{j=2}^i v_j} \rightarrow A_i$.

Construction 2: Encoding Procedure

Input: A length-k vector u of information symbols over \mathbb{F}_q.

Output: A codeword $c_i \in C_i$ over \mathbb{F}_q, for $i = 1, \ldots, M$.

1. $c_1 = E_{C_1}(u)$.
2. $s_i = c_1 H_{C_1}[c_1]^{i-1}$ for $i = 2, 3, \ldots, M$.
3. for $i = 2, \ldots, M$ do
4. $a_i = E_{A_i}((s_2, s_3, \ldots, s_i))$.
5. $c_i = (c_1, a_2, \ldots, a_i)$.
6. end for

The following theorem describes the code parameters of C_i obtained from Construction 2.

Theorem 18. From Construction 2, the code C_i, $1 \leq i \leq M$, has length $N_i = \sum_{j=1}^i n_j$, dimension $K_i = k$, and minimum distance $D_i \geq \min\{d_1 + \sum_{j=2}^i \delta_j, d_2 + \sum_{j=3}^i \delta_j, \ldots, d_{i-1} + \delta_i, d_i\}$.

Proof: The code length and dimension are obvious. In the following, we prove the minimum distance D_i.

From the construction, any nonzero codeword $c_i \in C_i$ is associated with a certain nonzero codeword c_1.

If $c_1 \in C_1^1$ and $c_1 \notin C_1^2$, we have $w_q(c_1) \geq d_1$ and $w_q(a_j) \geq \delta_j$ for $2 \leq j \leq i$. Thus, $w_q(c_i) \geq d_1 + \sum_{j=2}^i \delta_j$.

Similarly, if $c_1 \in C_1^i$ and $c_1 \notin C_1^{i+1}$ for some ℓ, $2 \leq \ell \leq i-1$, we have $w_q(c_1) \geq d_\ell$ and $w_q(c_j) \geq \delta_j$ for $\ell + 1 \leq j \leq i$. Thus, $w_q(c_i) \geq d_\ell + \sum_{j=\ell+1}^i \delta_j$.

If $c_1 \in C_1^i$, we have $w_q(c_1) \geq d_i$, so $w_q(c_i) \geq d_i$.

From Theorem 18, we have the following corollary on the minimum distance.

Corollary 19. Let A_i, $2 \leq i \leq M$, have minimum distance $\delta_i \geq d_i - d_{i-1}$. From Construction 2, the code C_i, $1 \leq i \leq M$, has minimum distance $D_i = \delta_i$.

Proof: First, from Theorem 18, we have $D_i \geq \min\{d_1 + \sum_{j=2}^{i} \delta_j, d_2 + \sum_{j=3}^{i} \delta_j, \ldots, d_{i-1} + \delta_i, d_i\} = d_i$. On the other hand, since there exists a codeword $c_1 \in C_1^i$ such that $w_q(c_1) = d_i$ and $w_q(c_i) = d_i$, we have $D_i \leq d_i$.

The following example gives three-level rate-compatible codes from Construction 2.

Example 10. Consider a set of nested binary BCH codes $C_1^3 = [15, 5, 7]_2 \subset C_2^3 = [15, 7, 5]_2 \subset C_3^3 = [15, 11, 3]_2$. Choose a set of auxiliary codes $A_2 = [5, 4, 2]_2$ and $A_3 = [7, 6, 2]_2$.

Then, from Construction 2 and Corollary 19, we obtain three-level rate-compatible codes $C_1 = [15, 11, 3]_2 < C_2 = [20, 11, 5]_2 \subset C_3 = [27, 11, 7]_2$.

We present correctable error-erasure patterns for C_i, $1 \leq i \leq M$. For $1 \leq j \leq i \leq M$, let t_j and τ_j denote the number of errors and erasures in the sub-block y_j of the received word $y \in (\mathbb{F}_q \cup \{?\})^N$, which corresponds to a transmitted codeword $c_i \in C_i$.

Lemma 20. The code C_i obtained from Construction 2 can correct any combined error and erasure pattern that satisfies the following condition:

$$2t_j + \tau_j \leq d_j - 1, \quad 2t_j + \tau_j \leq \delta_j - 1.$$

Proof: The proof is similar to that of Theorem 6, so it is omitted.

B. Construction 3

In this construction for M-level rate-compatible codes, we use a set of the following component codes.

1) Choose a set of nested codes $C_1^M \subset C_1^{M-1} \subset \cdots \subset C_1^1 = C_1 = [n_1, k_1, d_1^1]_q$, where $C_1^i = [n_1, n_1 - \sum_{m=1}^i v_m, d_i^1]_q$ for $1 \leq i \leq M$. The encoder of C_i is denoted by $E_{C_i} : \mathbb{F}_q^k \rightarrow C_i$.

These nested codes are the same as those used in Construction 1 and Construction 2.

2) Choose a set of $[n_i, v_i, \delta_i]_q$ auxiliary codes A_i, $2 \leq i \leq M$. The corresponding encoder is denoted by $E_{A_i} : \mathbb{F}_q^{v_i} \rightarrow A_i$.

$$
\begin{align*}
E_{C_1} & : \mathbb{F}_q^k \rightarrow C_2 \\
E_{A_2} & : \mathbb{F}_q^{v_2} \rightarrow A_2 \\
E_{C_2} & : \mathbb{F}_q^k \rightarrow C_3 \\
E_{A_3} & : \mathbb{F}_q^{v_3} \rightarrow A_3 \\
E_{C_3} & : \mathbb{F}_q^k \rightarrow C_4 \\
E_{A_4} & : \mathbb{F}_q^{v_4} \rightarrow A_4 \\
\end{align*}
$$
Construction 3: Encoding Procedure

Input: A length-k vector \mathbf{u} of information symbols over \(\mathbb{F}_q \).

Output: A codeword $\mathbf{c}_i \in C_i$ over \(\mathbb{F}_q \), for $i = 1, \ldots, M$.

1. $c_1 = E_{C_1}(\mathbf{u})$.
2. $s_i = c_i H^T_{C_i} \mathbf{w}_{i-1}$ for $i = 2, 3, \ldots, M$.
3. for $i = 2, \ldots, M$ do
4. \(a_i = E_{A_i}(s_i) \).
5. \(c_i = (c_1, a_2, \ldots, a_i) \).
6. end for

The code parameters of C_i from Construction 3 are given by the following Theorem.

Theorem 21. From Construction 3, the code $C_i, 1 \leq i \leq M$, has code length $N_i = \sum_{j=1}^{i} n_j$, dimension $K_i = k$, and minimum distance $D_i \geq \min\{d_1 + \delta_2, d_2 + \delta_3, \ldots, d_{i-1} + \delta_i, d_i\}$.

Proof: The code length and dimension are clear. In the following, we prove the minimum distance D_i.

From the construction, any nonzero codeword $c_i \in C_i$ is associated with a certain nonzero codeword c_1.

If $c_1 \in C_1^i$ and $c_i \notin C_i^i$, we have $w_q(c_1) \geq d_1$ and $w_q(a_2) \geq \delta_2$. Thus, $w_q(c_i) \geq d_1 + \delta_2$.

Similarly, if $c_1 \in C_1^i$ and $c_i \notin C_i^{i+1}$ for some ℓ, $2 \leq \ell < i - 1$, we have $w_q(c_1) \geq d_\ell$ and $w_q(a_{\ell+1}) \geq \delta_{\ell+1}$. Thus, $w_q(c_i) \geq d_\ell + \delta_{\ell+1}$.

If $c_1 \in C_1^i$, we have $w_q(c_1) \geq d_1$, so $w_q(c_i) \geq d_i$.

The following corollary from Theorem 21 shows that the minimum distances of the constructed rate-compatible codes can be determined exactly under some condition.

Corollary 22. Let $A_i, 2 \leq i \leq M$, have minimum distance $\delta_i \geq d_M - d_{i-1}$. From Construction 3, the code $C_i, 1 \leq i \leq M$, has minimum distance $D_i = d_i$.

Proof: First, from Theorem 21, we have $D_i \geq \min\{d_1 + \delta_2, d_2 + \delta_3, \ldots, d_{i-1} + \delta_i, d_i\} = d_i$. On the other hand, since there exists a codeword $c_1 \in C_1^i$ such that $w_q(c_1) = d_1$ and $w_q(c_i) = d_i$, we have $D_i \leq d_i$.

We provide an example of three-level rate-compatible codes from Construction 3.

Example 11. Consider a set of nested binary BCH codes $C_3^1 = [15,5,7]_2 \subset C_3^2 = [15,7,5]_2 \subset C_3^3 = [15,11,3]_2$. Choose a set of auxiliary codes $A_2 = [8,4,2]_2$ and $A_3 = [3,2,2]_2$.

Then, from Construction 3 and Corollary 22, we obtain three-level rate-compatible codes $C_1 = [15,11,3]_2 \subset C_2 = [23,11,5]_2 \subset C_3 = [26,11,7]_2$.

Finally, we give correctable error-erasure patterns for $C_i, 1 \leq i \leq M$. For $1 \leq j \leq i \leq M$, let t_j and τ_j denote the number of errors and erasures in the sub-block y_j of the received word $y \in (\mathbb{F}_q \cup \{?\})^N$, corresponding to a transmitted codeword $c_i \in C_i$.

Lemma 23. The code C_i obtained from Construction 3 can correct any combined error and erasure pattern that satisfies the following condition:

$$2t_1 + \tau_1 \leq d_1 - 1,$$

$$2t_j + \tau_j \leq \delta_j - 1, \forall 2 \leq j \leq i.$$

Proof: The proof is similar to that of Theorem 6, so it is omitted.

Remark 7. Compared to Construction 1, Construction 2 and Construction 3 do not use nested auxiliary codes. Thus, they possess relatively lower encoding and decoding complexities, which is an attractive feature for practical applications.

Using the same nested binary BCH codes $C_1^3 = [15,5,7]_2 \subset C_1^2 = [15,7,5]_2 \subset C_1^1 = [15,11,3]_2$ as component codes, in Example 1, Example 10, and Example 11, we construct three-level rate-compatible codes $C_1 \subset C_2 \subset C_3$ from Construction 1, Construction 2, and Construction 3, respectively. It is shown that the code $C_3 = [26,11,7]_2$ from Example 1 has a higher rate than that of the code $C_3 = [27,11,7]_2$ from Example 10, and the code $C_2 = [20,11,5]_2$ from Example 10 has a higher rate than that of the code $C_2 = [23,11,5]_2$ from Example 11. Therefore, for this specific three-level case, merely from the perspective of code rates, Construction 1 is better than Construction 2 and Construction 3. However, these three constructions provide distinct correctable error and erasure patterns.

For the two-level case, Construction 1, Construction 2, and Construction 3 are all the same and in fact can be seen as the linear realization of Construction X [26]. For the case of multiple levels, in contrast to Construction 1, it seems that Construction 2 and Construction 3 cannot be used to construct capacity-achieving rate-compatible codes.

The following example shows three-level rate-compatible codes generated by Construction 1, Construction 2, and Construction 3, respectively. Although they have similar code parameters, in terms of the performance over the BSC, Construction 1 gives the best results.

Example 12. Consider a set of nested binary BCH codes $C_3^3 = [511,193]_2 \subset C_3^2 = [511,259]_2 \subset C_3^1 = [511,340]_2$ that can correct 43, 30, and 20 errors, respectively. Choose two auxiliary shortened BCH codes $A_3^2 = [205,49]_2 \subset A_3^3 = [205,81]_2$ that can correct 23 and 18 errors, respectively, and also choose $A_3^3 = [368,98]_2$ which corrects 36 errors. Then, from Construction 1, we obtain three-level rate-compatible codes $C_1 = [511,340]_2 \subset C_2 = [716,340]_2 \subset C_3 = [1084,340]_2$.

Construction 2: Consider a set of nested binary BCH codes $C_3^3 = [511,229]_2 \subset C_3^2 = [511,259]_2 \subset C_3^1 = [511,340]_2$ that can correct 38, 30, and 20 errors, respectively. Choose an auxiliary code $A_2 = [205,81]_2$ which corrects 18 errors, and also choose $A_3 = [372,111]_2$ which corrects 31 errors. Then, from Construction 2, we obtain three-level rate-compatible...
codes $C_1 = [511, 340]_2 \prec C_2 = [716, 340]_2 \prec C_3 = [1088, 340]_2$.

Construction 3: Consider a set of nested binary BCH codes $C_1^3 = [511, 193]_2 \subset C_2^3 = [511, 295]_2 \subset C_1^1 = [511, 340]_2$ that can correct 43, 26, and 20 errors, respectively. Choose an auxiliary code $A_2 = [201, 45]_2$ which corrects 23 errors, and also choose $A_3 = [372, 102]_2$ which corrects 36 errors. Then, from Construction 3, we obtain three-level rate-compatible codes $C_1 = [511, 340]_2 \prec C_2 = [712, 340]_2 \prec C_3 = [1084, 340]_2$.

The rate-compatible codes $C_1 \prec C_2 \prec C_3$ obtained from Construction 1, Construction 2, and Construction 3 have almost the same code parameters, but their performances over the BSC are different and are plotted in Fig. 7. It is obvious that Construction 1, Construction 2, and Construction 3 all start with the same code C_1. For C_2, Construction 1 and Construction 2 give the same performance, and both of them are better than Construction 3; for C_3, Construction 1 is comparable to Construction 3, but outperforms Construction 2.

VIII. Conclusion

We presented a new algebraic construction for rate-compatible codes with increasing minimum distances. We also proved that our construction can generate capacity-achieving rate-compatible codes by using proper component codes, validating the optimality of the construction. With polar codes as component codes, we established the equivalence between our construction and the construction of capacity-achieving rate-compatible polar codes in [15].

Our parity-check matrix based approach enables us to conveniently obtain the combinatorial properties (e.g., minimum distance) of the constructed rate-compatible codes, as well as the correction capability of algebraic decoders. Our construction is also very general. Many linear codes, e.g., BCH, RS, and LDPC codes, can be used as component codes, and several examples illustrating their use were given.

We considered several applications of the codes. We evaluated the performance of high-rate, two-level rate-compatible codes based on BCH codes and LDPC codes on MLC flash memories. The results suggest that the constructed rate-compatible codes can effectively prolong the lifetime of the memories. We also evaluated the performance of two-level and three-level rate-compatible binary codes on BSCs over a range of code rates, and we gave an example of a two-level rate-compatible code over \mathbb{F}_64 used on a 64-ary symmetric channel.

Finally, two variations of Construction 1 were proposed and compared to the original construction.

Appendix A

Proof of Theorem 2

Theorem 2. There exist M-level rate-compatible codes $C_1 < C_2 < \cdots < C_M$, where $C_i = [N_i = \sum_{j=1}^{i} n_j, k_i \geq d_{i|q}^i]$ for $1 \leq i \leq M$, if the following inequalities are satisfied for all $1 \leq i \leq M$,

$$d_i = \max \left\{ d : \sum_{m=0}^{d-2} \left(\sum_{j=1}^{i} n_j - 1 \right)(q-1)^m < \frac{d_{i-1}^{i-1} n_i - k_i}{M} \right\}.$$

Proof: We first define an $(N_M - k) \times N_M$ matrix Φ_M over \mathbb{F}_q in the following block lower triangular form,

$$\Phi_M = \begin{bmatrix}
H_{1,1} & 0 & \cdots & 0 & 0 \\
H_{2,1} & H_{2,2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
H_{M-1,1} & H_{M-1,2} & \cdots & H_{M-1,M-1} & 0 \\
H_{M,1} & H_{M,2} & \cdots & H_{M,M-1} & H_{M,M}
\end{bmatrix},$$

where $H_{i,j}$ is an $(n_i - k) \times n_j$ matrix. For $2 \leq i \leq M$, the matrix $H_{i,1}$ has size $n_i \times n_1$. For $2 \leq i \leq M$ and $2 \leq j < i$, the matrix $H_{i,j}$ has size $n_i \times n_j$.

For $1 \leq i \leq M$, we assign the upper left $(N_i - k) \times N_i$ submatrix of Φ_M, denoted by Φ_i, to be a parity-check matrix of C_i. For example, the matrices $H_{1,1}$ and Φ_M are parity-check matrices of C_1 and C_M, respectively.

Now, we show how to construct $H_{i,j}$, $1 \leq i < M$ and $1 \leq j < i$, such that each code C_i has its desired code parameters.

First, for $2 \leq i \leq M$, we choose $H_{i,i}$ to be the $n_i \times n_i$ identity matrix. For $3 \leq i \leq M$ and $2 \leq j < i - 1$, we choose $H_{i,j}$ to be an arbitrary matrix in $\mathbb{F}_q^{n_i \times n_j}$. Next, we construct columns of $H_{i,1}$, $1 \leq i < M$, iteratively, as the technique used in the proof of the GV bound. We use $h_{\ell}(i)$, $1 \leq \ell \leq n_i$ and $1 \leq i < M$, to denote the ℓth column of the matrix Φ_i which is a parity-check matrix of C_i. Assume that we have already added the leftmost $\ell - 1$ columns of the matrix Φ_M. In order to show that in $\mathbb{F}_q^{N_M-k}$ there is a vector that can be used as the ℓth column $h_{\ell}(M)$ of the matrix Φ_M, we only need to show
that the total number of bad vectors is less than q^{NM-k}. We count the number of bad vectors as follows.

For the code C_1, it requires that every $d_1 - 1$ columns in Φ_1 are linearly independent. A bad vector for the ith column $h_i(1)$ in Φ_1 is a vector that can be expressed as a linear combination of $d_i - 2$ columns in the preceding $\ell - 1$ columns. There are at most a total of $\sum_{m=0}^{d_i-2} \binom{\ell-1}{m}(q-1)^m$ such bad vectors, so we exclude at most $T_i(\ell) = \sum_{m=0}^{d_i-2} \binom{\ell-1}{m}(q-1)^m \times q^{\sum_{j=2}^{\ell} n_j}$ bad vectors for the column $h_i(M)$.

Similarly, for the code C_i, $2 \leq i \leq M$, it requires that every $d_i - 1$ columns in Φ_i are linearly independent. A bad vector for the ith column $h_j(i)$ in Φ_i is a vector that can be expressed as a linear combination of $d_i - 2$ columns in the preceding $\ell - 1 + \sum_{j=2}^{i} n_j$ selected columns, so we have at most a total of $\sum_{m=0}^{d_i-2} \binom{\ell-1+\sum_{j=2}^{i} n_j}{m}(q-1)^m$ such bad vectors. Then, we exclude at most $T_i(\ell) = \sum_{m=0}^{d_i-2} \binom{\ell-1+\sum_{j=2}^{i} n_j}{m}(q-1)^m \times q^{\sum_{j=i+1}^{M} n_j}$ bad vectors for the column $h_i(M)$.

Since we assume that the inequalities (2) are satisfied, we have $T_i(\ell) < \frac{q^{NM-k}}{M}$ for $1 \leq i \leq M$ and $1 \leq \ell \leq n_1$. Thus, we have $\sum_{i=1}^{M} T_i(\ell) < q^{NM-k}$, which indicates that a good column $h_i(M)$ can be found.

Appendix B

Proof of Theorem 4

Theorem 4. Let C_1 be an $[n_1, k, d_1]_q$ code with weight enumerator $A(s) = \sum_{w=0}^{n_1} A_w s^w$, where A_w is the number of codewords of Hamming weight w. There exist two-level rate-compatible codes $C_1 < C_2 = [N_2 = n_1 + n_2, k, d_2]_q$ if

$$\sum_{w=1}^{d_2-1} B_w < q^{n_2},$$

where $B_w = \frac{1}{q^{n_2}} \sum_{m=1}^{N_2} A_m(n_2-w)(q-1)^{w-m}$, for $1 \leq w \leq N_2$.

Proof: Let an $(n_1-k) \times n_1$ matrix H_1 represent a parity-check matrix of C_1. Assume that C_2 has a parity-check matrix H_2 in the form

$$H_2 = \begin{bmatrix} H_1 & 0 \\ H & I \end{bmatrix},$$

where H is an $n_2 \times n_1$ matrix and the matrix I represents the $n_2 \times n_2$ identity matrix. Construct an ensemble of $(N_2 - k) \times N_2$ matrices $\{H_2\}$ by using all $n_2 \times n_1$ matrices H over \mathbb{F}_q. We then assume a uniform distribution over the ensemble $\{H_2\}$.

We say a matrix H_2 is bad, if there exists a vector $x \in \mathbb{F}_q^{N_2}$ such that $x H_2^T = 0$ and $0 < w_q(x) < d_2$. Thus, we only need to prove the probability $\Pr\{H_2 \text{ is bad}\} < 1$, i.e., not all H_2 are bad.

Define sets $B' = \{x \in \mathbb{F}_q^{N_2} : x H_1, 0 \}^T = 0\}$, $B'' = \{x \in B' : w_q(x) > 0\}$, and the leading nonzero entry of x is $1\}$, and $B = \{x \in B'' : w_q(\pi_{n_1}(x)) > 0\}$. We also define $B_w = \{x \in B : w_q(x) = w\}$. It is clear that $B_w = \frac{1}{q^{n_2}} \sum_{m=1}^{n_2} A_m(n_2-w)(q-1)^{w-m}$, for $1 \leq w \leq N_2$. Now, we have

$$\Pr\{H_2 \text{ is bad}\} = \Pr\{\text{For some } x \in B', 0 < w_q(x) < d_2, x H_1, 0 \}^T = 0\} = \Pr\{\text{For some } x \in B'', 0 < w_q(x) < d_2, x H_1, 0 \}^T = 0\} = \Pr\{\text{For some } x \in B, 0 < w_q(x) < d_2, x H_1, 0 \}^T = 0\} \leq \sum_{x \in B} \Pr\{x H_1, 0 \}^T = 0\} = \sum_{w=1}^{N_2-1} B_w q^{n_2},$$

where step (a) follows from the union bound.

Appendix C

Proofs of Lemmas 15, 16, 17

Lemma 15. In Algorithm 2, for $2 \leq i \leq M$, the matrix $G_{i-1}H_i^T$ is a $v_i \times v_i$ full rank matrix; that is, the matrix $B_i \exists$ and is also a full rank matrix.

Proof: The proof is based on contradiction. We assume that $G_{i-1}H_i^T$ is not a full rank matrix. Then, there must exist a full rank matrix U such that the first row of $UG_{i-1}H_i^T$ is all zero. Denote the first row of UG_{i-1} by a vector g. We have $gH_i^T = 0$. We also have $gH_i^T = 0$, for all $1 \leq j \leq i$, due to the duality between the two matrices $G(C_{i-1})$ and $H(C_{i-1})$. Therefore, we get $g \in \ker(H(C_{i-1}))$.

On the other hand, due to the duality between the two matrices $G(C_{i})$ and $H(C_{i})$, $\ker(H(C_{i}))$ is the row space of $G(C_{i})$, i.e., $\ker(H(C_{i})) = R(G(C_{i}))$. However, the vector g does not lie in the row space of $G(C_{i})$, i.e., $g \notin R(G(C_{i}))$, so we get a contradiction.

Thus, our assumption is violated.

Lemma 16. For $1 \leq i \leq M$, using the matrices H_1, H_2, \ldots, H_i from Algorithm 2, the matrix $H'(C_{i})$ in (14) is a parity-check matrix of C_{i}.

Proof: We need to show the row space of $H'(C_{i})$ is equal to the row space of $H(C_{i})$, i.e., $R(H'(C_{i})) = R(H(C_{i}))$. The proof is based on mathematical induction.

First, observe that $H'(C_{1}) = H(C_{1}) = H_1$, so $H'(C_{1})$ is a parity-check matrix of C_{1}.

Second, we have $H'(C_{2}) = \begin{bmatrix} H'(C_{1}) \\ B_2H_2 \end{bmatrix}$ and $H(C_{2}) = \begin{bmatrix} H(C_{1}) \\ H_2 \end{bmatrix}$. Since B_2 is a full rank matrix according to Lemma 15 and $R\left(H'(C_{1})\right) = R\left(H(C_{1})\right)$ from the previous step, we have $R\left(H'(C_{2})\right) = R\left(H(C_{2})\right)$. Thus, $H'(C_{2})$ is a parity-check matrix of C_{2}.
Now, for i, $2 \leq i \leq M - 1$, assume that $\mathcal{R}(H'(C'_i)) = \mathcal{R}(H(C'_i))$, we show $\mathcal{R}(H'(C'_{i+1})) = \mathcal{R}(H(C'_{i+1}))$. To see this, the matrix $H'(C'_{i+1})$ has the following form

$$
H'(C'_{i+1}) = \begin{bmatrix}
H'(C'_i) \\
H'_{i+1}
\end{bmatrix} = \begin{bmatrix}
H'(C'_i) \\
B_{i+1}H_{i+1} + F_{i+1}
\end{bmatrix},
$$

where the matrix $F_{i+1} = \sum_{j=2}^i T_{j+1}H'_{i+1}$ from Algorithm 2, so it is easy to see $\mathcal{R}(F_{i+1}) \subseteq \mathcal{R}(H'(C'_i))$. Compare $H'(C'_{i+1})$ to $H(C'_{i+1})$ which is in the form

$$
H(C'_{i+1}) = \begin{bmatrix}
H(C'_i) \\
H_{i+1}
\end{bmatrix}.
$$

Since B_{i+1} is a full rank matrix according to Lemma 15, and $\mathcal{R}(H'(C'_i)) = \mathcal{R}(H(C'_i))$ from our assumption, we conclude that $\mathcal{R}(H'(C'_{i+1})) = \mathcal{R}(H(C'_{i+1}))$.

Lemma 17. For $2 \leq i \leq M$, we have $\pi_N(u) = s_i = uG(C'_i)H'_i$.

Proof: For $2 \leq i \leq M$, we have

$$
s_i = uG(C'_i)H'_i = u \begin{bmatrix}
G_1H'_1T \\
G_2H'_2T \\
\vdots \\
G_MH'_MT
\end{bmatrix}.
$$

Thus, to prove $s_i = \pi_N(u)$, we need to show $G_{i-1}H'_i = I$ and $G_jH'_j = 0$ for $1 \leq j \leq M$ and $j \neq i - 1$. From Lemma 16, we have $G_jH'_j = 0$ for $j \geq i$. Therefore, we only need to show $G_{i-1}H'_i = I$ and $G_jH'_j = 0$ for $j < i - 1$. The proof is based on mathematical induction.

For $i = 2$, we prove $G_1H'_2 = I$.

Since $H'_2 = B_2H_2$, we directly have

$$
G_1H'_2 = G_1H_2T = G_1H_2T(G_1H_2T)^{-1} = I.
$$

For $i = 3$, we prove $G_2H'_3 = I$ and $G_1H'_3 = 0$.

The matrix H'_3 has the following form,

$$
H'_3 = H_3(2) + T_{2,3}H_2(2) = B_3H_3 + T_{2,3}H_2.
$$

Thus, we have

$$
G_2H'_3 = G_2H_3B_2^T + G_2H_2^T T_{2,3} + (a) = 0,
$$

where step (a) follows from $B_3 = (H_3G_2T)^{-1}$ and $G_2H'_2 = 0$ according to Lemma 16. We also have

$$
G_1H'_3 = G_1H_3B_2^T + G_1H_2^T T_{2,3} + (a) = 0,
$$

where step (a) is due to $G_1H'_2 = I$ from the previous step and step (b) follows from $T_{2,3} = -H_3(2)G_1T = -B_3H_3G_1T$.

Now, for $n = 2,3,\ldots,i$, assume that $G_{n-1}H_n^T = I$ and $G_jH_n^T = 0$ for $1 \leq j < n - 1$. In the following, we will show that $G_iH_{i+1}^T = I$ and $G_jH_{j+1}^T = 0$ for $1 \leq j < i$.

The matrix H'_{i+1} has the following form,

$$
H'_{i+1} = H_i(2) + \sum_{k=2}^i T_{k,i+1}H_k(k) = B_{i+1}H_i + \sum_{k=2}^i T_{k,i+1}H_k^T(i)
$$

First, we have

$$
G_iH_{i+1}^T = G_iH_i^T B_{i+1}^T + \sum_{k=2}^i G_iH_k^T T_{k,i+1} = 1,
$$

where step (a) follows from $B_{i+1} = (H_{i+1}G_i^T)^{-1}$ and $G_iH_k = 0$ for $2 \leq k \leq i$ according to Lemma 16.

Second, for $1 \leq j < i$, we have

$$
G_jH_{i+1}^T = G_jH_i^T B_{i+1}^T + \sum_{k=2}^j H_k^T T_{k,i+1}^T = 0,
$$

where step (a) is due to

1) $G_j \sum_{k=2}^j H_k^T T_{k,i+1}^T = 0$ according to Lemma 16.
2) $G_j \sum_{k=2}^j H_k^T T_{k,i+1}^T$ according to our assumption.

Step (b) follows from $G_jH_{i+1}^T = I$ based on our assumption.

Step (c) follows from $T_{j+1,i+1} = -B_{i+1}H_{i+1}G_j^T$.

Pengfei Huang (S’13–M’20) received the B.E. degree in electrical engineering from Zhejiang University, Hangzhou, China, in 2010, the M.S. degree in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 2013, and the Ph.D. degree in electrical engineering from the University of California San Diego, CA, USA, in 2018. From 2014 to 2018, he was associated with the Center for Memory and Recording Research. Since 2018, he has been with Western Digital Corporation, where he is engaged in research and development on enterprise solid-state drives. His current research interests are coding for distributed storage systems and non-volatile memories.

Yi Liu (S’16) received the B.S. degree in physics from Peking University, Beijing, China, in 2014. He is currently working toward the Ph.D. degree with the Department of Electrical and Computer Engineering, University of California, San Diego, where he is associated with the Center for Memory and Recording Research. His current research interests are coding for costly channel and non-volatile memories.

Xiaojie Zhang (S’05–M’13) received the B.S. degree in Electrical Engineering from Shanghai Jiao Tong University, Shanghai, China, in 2004, the M.S. degree in Electrical Engineering from Seoul National University, Seoul, Korea, in 2006, and the Ph.D. degree in Electrical Engineering from the University of California in San Diego, La Jolla, in 2012. From 2006 to 2008, he was a system engineer in Samsung Electronics, Suwon, Korea. In 2013, He worked for Samsung Research American on research and development of 5G system. From 2013 to 2018, he worked on data integrity of non-volatile memory storage, including error detection, error correction, and error handling in start-up companies. Since 2019, he has been with Uber Advanced Technologies Group working on autonomous vehicle system design and development. His research interests include cross-layer wireless communication system design, error correction coding theory and its applications, artificial intelligence and self-driving
vehicle.

Paul H. Siegel (M'82–SM'90–F'97–LF'19) received the S.B. and Ph.D. degrees in mathematics from Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 1975 and 1979, respectively. He held a Chaim Weizmann Postdoctoral Fellowship with the Courant Institute, New York University, New York, NY, USA. He was with the IBM Research Division, San Jose, CA, USA, from 1980 to 1995. He joined the faculty of the University of California, San Diego, CA, USA, in July 1995, where he is currently a Distinguished Professor of Electrical and Computer Engineering in the Jacobs School of Engineering. He is affiliated with the Center for Memory and Recording Research where he holds an Endowed Chair and served as Director from 2000 to 2011. His research interests include information theory and communications, particularly coding and modulation techniques, with applications to digital data storage and transmission. He was a Member of the Board of Governors of the IEEE Information Theory Society from 1991 to 1996 and again from 2009 to 2014. He served as Co-Guest Editor of the May 1991 Special Issue on “Coding for Storage Devices” of the IEEE Transactions on Information Theory. He served the same Transactions as Associate Editor for Coding Techniques from 1992 to 1995, and as Editor-in-Chief from July 2001 to July 2004. He was also Co-Guest Editor of the May/September 2001 two-part issue on “The Turbo Principle: From Theory to Practice” and the February 2016 issue on “Recent Advances in Capacity Approaching Codes” of the IEEE Journal on Selected Areas in Communications. He is a member of the National Academy of Engineering. He was the 2015 Padovani Lecturer of the IEEE Information Theory Society. He was the coreipient of the 2007 Best Paper Award in Signal Processing and Coding for Data Storage from the Data Storage Technical Committee of the IEEE Communications Society. He was the coreipient of the 1992 IEEE Information Theory Society Paper Award and the 1993 IEEE Communications Society Leonard G. Abraham Prize Paper Award.

Erich F. Haratsch is Managing Technologist at Seagate Technology, where he leads a team that develops new hardware architectures and firmware algorithms for solid state disks. His research interests include signal processing, error correction, compression, media management, flash translation layer, performance, power and quality of service optimizations for data storage. Earlier in his career, he developed signal processing and error correction technologies for hard disk drive controllers at LSI Corporation and Agere Systems, which shipped in millions of devices. He started his engineering career at Bell Labs Research, where he invented new chip architectures for Gigabit Ethernet over copper and optical communications. He is a frequent speaker at leading industry events, is the author of over 40 peer-reviewed journal and conference papers and holds more than 100 U.S. patents. He received the Outstanding Patents award from Seagate Technology in 2015. He has been on the Program Executive Council of the Flash Memory Summit since 2018. He earned his M.S. and Ph.D. degrees in electrical engineering from the Technical University of Munich (Germany).