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Abstract—We consider the source coding problem of a binary
discrete memoryless source with correlated side information
available only at the receiver whose conditional distribution
given the source is unknown to the encoder. We propose two
methods based on polar codes to attain the achievable rates
under this setting. The first method incorporates a staircase
scheme, which has been used for universal polar coding for
a compound channel. The second method is based on the
technique of universalization using bit-channel combining. We
also give a list of pros and cons for the two proposed methods.

I. INTRODUCTION

A. Background
Arikan [1] constructed capacity-achieving codes for

binary-input symmetric channels. Korada and Urbanke [7]
constructed a Slepian-Wolf polar coding scheme for two
correlated sources under some assumptions. Arikan [2] pro-
posed a polar coding method for an arbitrary discrete mem-
oryless source with correlated side-information available at
the receiver. From there, he also derived a Slepian-Wolf
polar coding strategy for any two binary correlated random
variables. Arikan [3] proposed a monotone chain rule to
achieve all the rates of the Slepian-Wolf region without the
use of a time-sharing policy.

A capacity-achieving coding scheme based on source and
channel polarization for binary-input asymmetric channels
was proposed by Honda and Yamamoto [6]. Hassani and
Urbanke [4], [5] presented universal coding schemes to
achieve rates close to the compound capacity of binary-input
symmetric discrete-memoryless channels (DMCs) that are
based on polar codes. The authors [8] proposed a universal
polar coding scheme for the asymmetric setting that elim-
inates the need to store high complexity boolean functions.
The scheme uses the elements of coding strategies in [4], [6].
Wang and Kim [11] discussed the linear code duality between
channel coding and source coding when the correlated side
information is available at the receiver. In this paper, we
consider the variant of the Slepian-Wolf coding problem
which involves a binary memoryless source and correlated
side information available at the receiver, as usual, but where
the conditional distribution of the side information given the
source is unknown to the encoder.

B. Problem definition
Let X be the binary alphabet and Y be some arbitrary

finite alphabet. A binary discrete memoryless source Xi is

distributed as PX(x) with side information Yi available at the
receiver. The (Xi, Yi)

∞
i=1 sequence is an iid random process

whose joint distribution is PX(x)p(y|x). The conditional
distribution p(y|x) is unknown to the encoder, but available
to the decoder only. We also assume that p(y|x) is known to
come from a class C of conditional distributions of a random
variable over the alphabet Y given a correlated random
variable over X . The class C is available to the encoder.
A (2k, n) code for the defined problem consists of

• an encoder g : Xn → {1 : 2k}, and
• a decoder h : {1 : 2k} × Yn → Xn

where n is the block length and k
n is called the rate of the

code. Let P (n)
e = P (Xn 6= h(g(Xn), Y n)) be the probability

of error. If there is a sequence of (2nR, n) codes for which the
corresponding sequence of P (n)

e goes to zero, then the rate
R is achieved. Note that classical Slepian-Wolf coding is the
case when p(y|x) is known to both the encoder and decoder.
In that case, we know that the rate R is achieved if and only if
R > H(X|Y ). Therefore the achievable rates of the proposed
problem should be greater than maxp(y|x)∈C H(X|Y ) where
(X,Y ) is distributed as PX(x)p(y|x).

C. Contribution

We derive two coding strategies for the proposed set-
ting based on the universal polar coding schemes for a
compound channel [5], [8]. This will establish the duality
between the coding strategies for these source and channel
coding settings. Our first method can achieve all rates greater
than maxp(y|x)∈C H(X|Y ) for a uniformly distributed source
when the class C contains only conditional distributions with
properties of a symmetric channel. The second method can
achieve all rates greater than maxp(y|x)∈C H(X|Y ) when C
is a finite set for any arbitrary source.

In Section II, we introduce some definitions and notation
which will be used throughout the paper. In Section III,
we describe the Slepian-Wolf polar coding with correlated
side information available at the receiver. In Section IV, we
describe our first method that uses the idea of the staircase
scheme for a uniform source. We also give the coding strategy
for a non-uniformly distributed source. In Section V, we
explain the second method which is based on the technique
of universalization using bit-channel combining.
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II. PRELIMINARIES

Definition 1. A binary-input discrete memoryless channel
with output alphabet Y with transition probabilities p(y|x)
for each (x, y) ∈ {0, 1} ×Y is said to be symmetric if there
exists a permutation π1 : Y → Y such that π1 = π−11 and
p(y|x) = p(πa(y)|x + a) for each (x, a, y) ∈ {0, 1}2 × Y ,
where πo : Y → Y is the identity permutation.

We denote the row vector (πs1(y1), πs2(y2), ..., πsN (yN ))
as s1:N .y1:N for any y1:N ∈ YN and s1:N ∈ {0, 1}N , where
π0 : Y → Y is the identity permutation and π1 : Y → Y is
the permutation corresponding to a symmetric channel.

Let GN be the conventional polar transform, represented
by a binary matrix of dimension N×N . If U1:N = X1:NGN ,
then we denote P (U1:N = u1:N ) by PU1:N (u1:N ) and
similarly we denote P (Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N )
by PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N ). We denote the subvector
of U1:N corresponding to the bit-channel set A ⊂ {1 : N}
as UA.

Let C = {p1(y|x), p2(y|x), ..., ps(y|x)}, s ∈ N. Let
(Xi, Yi)

N
i=1 be iid random tuples distributed according to

PX(x)pl(y|x), where l ∈ {1 : s} and N = 2n. For the
random variable pair (X,Y ) distributed as PX(x)pl(y|x),
the Bhattacharyya parameter is defined as

Z(X|Y ) = 2
∑
y

PY (y)
√
PX|Y (1|y)PX|Y (0|y).

We define the following bit-channel subsets as follows,
where β < 0.5.

HX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≥ 1− 2−N
β

}.

LX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≤ 2−N
β

}.

HX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N ) ≥ 1− 2−N
β

}.

LX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N ) ≤ 2−N
β

}.

Note that LX ⊆ LX|Yl , for each l ∈ {1 : s}. We have the
following results from Theorem 1 in [6].

lim
N→∞

1

N
|HX | = H(X).

lim
N→∞

1

N
|LX | = 1−H(X).

lim
N→∞

1

N
|HX|Yl | = H(X|Y ).

lim
N→∞

1

N
|LX|Yl | = 1−H(X|Y ).

We remove the subscript l for denoting the bit-channel
sets LX|Yl and HX|Yl whenever (X,Y ) is distributed as
PX(x)p(y|x) and denote them as LX|Y and HX|Y , respec-
tively.

Let the p(y|x)s for each (x, y) ∈ X × Y be the transition
probabilities of a symmetric channel. Let (Xi, Yi)

N
i=1 be iid

random variable pairs distributed according to PX(x)p(y|x)
where PX(x) is distributed as Bern( 12 ). Let U1:N =

X1:NGN . Then the MAP (ML) decision rule for the bit-
channel i ∈ {1 : N} in this setting will be the function
Φi : {0, 1}i−1 × YN → {0, 1} defined as follows.

Φi(u
1:i−1, y1:N ) = 1{PU1:i−1,Y 1:N |Ui(û

1:i−1, y1:N |1)

≥ PU1:i−1,Y 1:N |Ui(û
1:i−1, y1:N |0)}.

Φi is precisely the decision rule used in the successive cancel-
lation (SC) decoding for the bit-channel i ∈ LX|Y in the po-
lar code construction for symmetric channels. Let us denote
the Bhattacharyya parameter corresponding to the bit-channel
i ∈ {1 : N} as Zi. Therefore Zi = Z(Ui|U1:i−1Y 1:N ) in
this setting.

III. SOURCE CODING WITH SIDE-INFORMATION
(SLEPIAN-WOLF POLAR CODING)

We revisit the polar coding scheme proposed by
Arikan [2] for the Slepian-Wolf setting that has the
binary discrete memoryless source Xi distributed as
PX(x) with correlated side information Yi available
at the receiver, i ∈ {1 : N}. (Xi, Yi)

N
i=1 is an iid

process whose joint distribution is PX(x)p(y|x). Here
we assume that p(y|x) is known to both the encoder
and decoder. The encoding algorithm is presented below.

Encoding
Input: X1:N source sequence.
Output: Compressed bit stream corresponding to the source
sequence.
• Compute U1:N = X1:NGN .
• Transmit UL

c
X|Y .

The decoding method is as follows.

Decoding
Input: Correlated side information Y 1:N and UL

c
X|Y .

Output: Source estimate X̂1:N .
for i = 1 : N
1. If i ∈ Lc

X|Y , set Ûi = Ui.
2. If i ∈ LX|Y , set
Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1, Y 1:N ) ≥

PUi|U1:i−1,Y 1:N (0|Û1:i−1, Y 1:N )}.
end
Decode X̂1:N as Û1:NGN .

Note that the conditional distribution PUi|U1:i−1,Y 1:N (.|.)
used above in the decoding algorithm is derived under
the setting where X1:N = U1:NGN and (Xi, Yi)

N
i=1 is

iid distributed as PX(x)p(y|x). Arikan [2] proved that the
probability of error for this scheme is O(2N

−β
) where

β < 0.5. In our setup, however, the actual conditional
distribution p(y|x) is unknown to the encoder. The encoder
only knows that the conditional distribution is selected from
the class C. If the encoder transmits U (∩i∈CLX|Y )c , then the

133



Fig. 1. Staircase with k=3, N=6 and q=2

decoder can reliably decode the bits corresponding to bit-
channels (∩i∈CLX|Y ). However, the fraction of bit-channels
(∩i∈CLX|Y )c with respect to the block length may not be
going to maxp(y|x)∈C H(X|Y ) as block length grows and
the fraction may always be larger than maxp(y|x)∈C H(X|Y )
by at least some positive constant. The following sections
provide the source coding methods that can guarantee any
rate greater than maxp(y|x)∈C H(X|Y ).

IV. STAIRCASE SCHEME

In this section, we assume that the source is a binary sym-
metric source (uniform) and all the condition distributions in
C are of symmetric channel type.

A. Code construction

To construct the staircase, we consider polar blocks of size
N , where N is sufficiently large for polarization so that we
get the H(X|Y ) fraction of bad bit-channels (HX|Y ) and
1−H(X|Y ) fraction of good bit-channels (LX|Y ) for each
p(y|x) ∈ C. We need an MDS code in the code construction.
We use a Reed-Solomon code of block length 2q − 1 over
a field GF(2q) as an MDS code where q is log2(N). We
consider the RS code that has L = minp(y|x)∈C |LX|Y | − 1
information bits. Let M be the set of codewords of such an
RS code.

We arrange N polar blocks of size N one above the other
like a staircase which will be of height N . We extend the
staircase by placing k ∈ N such staircases side-by-side. Now
place q such extended staircases, one above the other. So
the total number of polar blocks would be Nqk. This is
illustrated in Fig. 1 for the case N = 6, k = 3, and q = 2.

A staircase scheme designed for a compound channel with
the class C of symmetric channels [4] is a binary linear code
after all. A naive Slepian-Wolf code derived using the method
[11] requires the computation of high dimensional systematic
parity-check matrix (q[(N − L)(1 + N(k − 1)) + N(N −
1)] × N2qk) for the universal channel code. We avoid the
computation of such a high dimensional parity-check matrix
and its use in our staircase code construction. We can also
get a delay saving by continuous, sequential encoding and

decoding of substaircases in our staircase implementation,
similar to universal channel coding [9].

While encoding, we do the compression for all the polar
blocks column-by-column from left to right in the staircase
structure, and we follow the same order for decoding. So,
we deal with the bit-channels of different polar blocks
in parallel while encoding/decoding a column. The total
number of columns is (k + 1)N − 1, and we label them
with indices 1 : (k + 1)N − 1 from left to right. Now
we describe the encoding algorithm for the compression.

Encoding
Input: X1:N source sequence corresponding to each polar
block in all q staircases.
Output: Compressed bit stream for all the columns.
• Compute U1:N = X1:NGN for each polar block in all

the q staircases.
• Now we start encoding the non-full-height columns on

the left.
– The Uis of the non-full-height columns on the

left side are transmitted as is without any further
compression for all q staircases. Note that this will
not affect the rate as the fraction of these columns
is diminishing as k approaches infinity.

• Next we start encoding the full-height columns t = N ≤
i ≤ kN .

– In the full-height column t, there is a polar block
corresponding to each index i ∈ {1 : N} in all q
staircases.

– In the column t, for each i ∈ {1 : N}, the Uis of
corresponding polar blocks for all q staircases will
be read. Those q bits corresponding to the index
i ∈ {1 : N} will be the binary representation of
a field element in GF(2q). Hence we can read N
finite field elements in the column. Let us call this
vector V 1:N in GF(2q).

– V 1:N−1 will be decomposed as an RS codeword
and the error vector in a unique way using a
systematic encoding method for the RS code.

– We designate the positions 1 : L for information
symbols. So, we generate the codeword in M
corresponding to data V 1:L by systematic encoding.
The parity symbols in the systematic encoding
method for the RS code can be computed by
determining a remainder of a polynomial. This can
be implemented using a shift register circuit with
multipliers and adders [10].

– Let the encoded codeword be V ′1:N−1. Now the
error vector will be E1:N−1 = V 1:N−1 - V ′1:N−1.
Note that E1:L will be zero always. We set the N th
position of the error vector E1:N , EN = VN .

– We transmit EL+1:N in the binary representation.
– The error vector E1:N can also be generated by

computing the syndrome of V 1:N using the system-
atic parity-check matrix. This is shown in Lemma 1.
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However we propose to use the shift register circuit
implementation to get the systematic RS codeword
[10] without explicitly computing the systematic
generator or parity-check matrix.

– This decomposition is also equivalent to standard
array decoding with coset leaders of the form
[01:L, xL+1:N−1] where xL+1:N−1 is a vector in
GF(2q).

• Now we start encoding the non-full-height columns on
the right.

– The Uis of the non-full-height columns on the
right side are transmitted as is without any further
compression for all q staircases. Note that this will
not affect the rate as these columns are diminishing
in fraction as k approaches ∞.

Lemma 1. Let V 1:N−1 be any N − 1 dimensional vector
in GF(2q). Let V ′1:N−1 be the Reed-Solomon codeword in
M corresponding to the data symbol stream V 1:L in the
systematic representation. Let E1:N−1 be the error V 1:N−1−
V ′1:N−1. The syndrome of the word V 1:N−1 when computed
with the systematic parity-check matrix becomes EL+1:N−1.

Proof: Let the systematic parity-check matrix be

Hsys =
[
A I

]
where A is a N − 1− L× L dimensional matrix in GF(2q)
and I is the N − 1 − L × N − 1 − L dimensional identity
matrix. Then,

Hsys(V
1:N−1)T = Hsys((V

′1:N−1)T + (E1:N−1)T )

(a)
= Hsys(E

1:N−1)T

=
[
A I

]
(E1:N−1)T

(b)
= (EL+1:N )T .

We get the identity (a) because V ′1:N−1 is a codeword in
M. So its multiplication with systematic parity check matrix
should be zero. Identity (b) follows because E1:L is a zero
vector.

Before turning to the decoding algorithm, let us define

U ′1:N := U1:N − E′1:N

for each polar block in all q staircases, where E′1:N is the
horizontal error vector computed for each polar block in all
q staircases by transforming the vertical error vector E1:N

corresponding to each full-height column. So we have,

U1:NGN = U ′1:NGN + E′1:NGN .

That implies,

X1:N = U ′1:NGN + S1:N .

where S1:N = E′1:NGN for each polar block in all q stair-
cases. Note that we are transmitting N−L bits for each full-
height column. The rate for each full-height column is N−L

N ,

which can be made arbitrarily close to maxp(y|x)∈C H(X|Y )
for sufficiently large N . We did not compress the bit-stream
corresponding to the non-full-height columns, but their effect
on the overall rate can be made arbitrarily small for a
sufficiently large k because as k goes to ∞, the fraction
of the number of bits in the non-full-height columns with
respect to total block length goes to zero.

Lemma 2. Let u′1:N and s1:N be any two binary vectors.
The conditional distribution of permuted side information
s1:N .Y 1:N given X1:N = u′1:NGN + s1:N will be the same
as the conditional distribution of the received vector given
the word u′1:NGN is transmitted over the symmetric channel
p(y|x).

Proof:

P (s1:N .Y 1:N = y1:N |X1:N = u′1:NGN + s1:N )

= P (Y 1:N = s1:N .y1:N |X1:N = u′1:NGN + s1:N )

= Πi∈1:Np(si.yi|(u′1:NGN )i + si)

= Πi∈1:Np(si.yi|(u′1:NGN )i + si)

(a)
= Πi∈1:Np(si.si.yi|(u′1:NGN )i)

= Πi∈1:Np(yi|(u′1:NGN )i).

The identity (a) follows from the symmetric channel property.
The term Πi∈1:Np(yi|(u′1:NGN )i) is precisely the condi-
tional probability of getting the received vector y1:N given
the word u′1:NGN is transmitted over the symmetric channel
p(y|x). This concludes the proof.

Fact 1. Let u′1:N be any binary vector. The conditional
probability of error of all the bit-channels in LX|Y is upper
bounded by 2−N

β

given that u′1:NGN is transmitted over
the symmetric channel p(y|x) for any β < 0.5.

The above fact follows from Arikan’s capacity-achieving
polar coding construction for symmetric channels [1] where
it was proved that the conditional probability of error of a
bit-channel given that any particular word is transmitted over
the channel is always the same irrespective of the word that is
transmitted. Now we start describing the decoding algorithm.

Decoding
Input: Side information Y 1:N for each block and EL+1:N

for each full-height column.
Output: Estimates of X1:N corresponding to all polar
blocks.
• Using error vectors EL+1:N corresponding to all full-

height columns, the decoder computes the horizontal
error vectors E′1:N corresponding to all polar blocks
in all q staircases.

• Now the decoder estimates U ′is of each column that
corresponds to different polar blocks from left to right.
Then the estimation of U ′1:N leads to estimate U1:N by
adding E′1:N for all polar blocks in all q staircases . Let
the estimates be denoted as Û ′1:N , Û1:N and X̂1:N .
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• Decoding the non-full-height columns on the left side.

– The Uis corresponding to these columns are trans-
mitted as is by the encoder.

– Hence Û ′i = Ui−E′i = Ui for all these columns in
all q staircases.

• To decode full-height columns from t = N ≤ i ≤ kN :

– The decoder has knowledge of the exact
p(y|x) ∈ C. For the blocks corresponding to
bit-channels i ∈ LX|Y , we use the following
decision rule to decode U ′is. The idea follows from
Lemma 2 and Fact 1.

Û ′i = Φi(Û
′1:i−1, S1:N .Y 1:N ).

– Decode Û ′i as 0 for the block corresponding to the
component VN of vector V 1:N in q staircases.

– Now we have at least L positions of the MDS code-
word that are recovered. Now the erasure decoding
of the MDS code recovers all N − 1 positions of
the codeword.

– Hence all Û ′is corresponding to all polar blocks in
the column are estimated in all q staircases. This
enables the continuation of SC decoding for the
polar blocks to estimate Û ′is corresponding to the
next column.

• Decoding non-full-height columns on the right side.

– The Uis corresponding to these columns are trans-
mitted as is by the encoder.

– Hence Û ′i = Ui−E′i = Ui for all these columns in
all q staircases.

• Now Û1:N = Û ′1:N + E′1:N for each polar block.
• X̂1:N = Û1:NGN for each block.

Theorem 1.
The probability of error for the above staircase scheme is
O(Nqk2−N

β

) for β < 0.5.

Proof:
We decode U ′1:N corresponding to all the polar blocks.

The error occurs if and only if there is an error in decoding
some good-bit-channel (LX|Y ) of any polar block. If Uis
for good bit-channels are recovered properly, then other Uis
are recovered either by MDS erasure decoding in a full-
height column or by the knowledge of Uis at the receiver
corresponding to the non-full-height columns. Let the error
event be E .

Let Eg be the error event with a genie aided decoder which
has the accurate values of the past U ′1:i−1 when decoding any
bit-channel i ∈ LX|Y for all polar blocks. Let all the polar
blocks in all of the q staircases be indexed as b = 1, 2..., Nqk.
Let Eib be the error event corresponding to an error in the ith
bit-channel of block b. If bit-channel i ∈ LX|Y of the polar

block b lies in a full-height column, then the error event Eib
becomes as follows.

Eib = {(U ′1:N , Y 1:N , S1:N ) of block b :

Φi(U
′1:i−1, S1:N .Y 1:N ) 6= U ′i}.

Note that Eib will be the null event, if the block b has bit-
channel i that lies in a non-full-height column. Clearly, Eg =
∪b∈{1:Nqk} ∪i∈{1:N} Eib. Note that error event E will imply
at least one of the Eibs. So we should have the following.

E ⊂ Eg.

Now the probability of error P (E) is upper bounded as
follows.

P (E) ≤ P (Eg) = P (∪b∈{1:Nqk} ∪i∈{1:N} Eib)
(a)

≤
∑

b∈{1:Nqk}

∑
i∈LX|Y

P (Eib).

The identity (a) follows from the union bound. So, we need
to bound P (Eib) for i ∈ LX|Y for all polar blocks.

Now we evaluate the conditional probability of error of
bit-channel i ∈ LX|Y for the block b given the random
vectors (U ′1:N , Y 1:N , S1:N ) corresponding to the block b.

P (Eib|U ′1:N = u′1:N , S1:N = s1:N )

= P (Φi(U
′1:i−1, S1:N .Y 1:N ) 6= U ′i |

U ′1:N = u′1:N , S1:N = s1:N )

= P (Φi(u
′1:i−1, s1:N .Y 1:N ) 6= u′i|

U ′1:N = u′1:N , S1:N = s1:N )

(a)
=
∑
y1:N

Πi∈[1:N ]p(yi|(u′1:NGN )i)

1(Φi(u
′1:i−1, y1:N ) 6= u′i)

(b)

≤ Zi

= 2−N
β

.

(1)

The identity (a) follows from Lemma 2. Identity (b) fol-
lows from Arikan’s [1] symmetric channel polar coding
construction where it was proved that the conditional prob-
ability of error of a bit-channel given that any particular
word is transmitted over the channel is always the same
irrespective of the word that is transmitted. Also, all of
those conditional probabilities of errors are upper bounded
by the Bhattacharyya parameter of the bit-channel. This is
essentially stated as Fact 1. Now the actual probability of
error of bit-channel i for the block b satisfies

P (Eib) =
∑

u′1:N ,s1:N

P (U ′1:N = u′1:N , S1:N = s1:N )

P (Eib|U ′1:N = u′1:N , S1:N = s1:N )

≤
∑

u′1:N ,s1:N

P (U ′1:N = u′1:N , S1:N = s1:N )2−N
β

= 2−N
β

.
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Therefore,

P (E) ≤
∑

b∈{1:Nqk}

∑
i∈LX|Y

P (Eib)

≤ O(Nqk2−N
β′

).

Hence the proof of Theorem 1.

B. Coding with non-uniform source

If the conditional distributions in C are of symmetric type,
then any rate greater than maxp(y|x)∈C H(X̃|Y ) can still
be achieved using the staircase method irrespective of the
source distribution PX(x). Here the random variable pair
(X̃, Y ) is distributed as PX̃(x)p(y|x) and PX̃(x) = 0.5.
The subtle idea is to implement the same code construction
as if the source is uniformly distributed. We use the bit-
channels LX̃|Y in the code construction irrespective of the
source distribution. The conditional probability of error of the
bit-channel i ∈ LX̃|Y is the same given any source sequence
due to the symmetric channel property of the conditional
distribution p(y|x). Hence the average probability of error
for the bit-channel i ∈ LX̃|Y does not depend on the source
distribution. This can be noticed from equation (1) in the
proof of Theorem 1. Therefore the probability of error will
still be O(Nkq2−N

β

) for β < 0.5.

C. Encoding and Decoding Complexity

The encoding complexity consists of decomposing the
vector of length N − 1 in GF(2q) into a RS codeword
and the corresponding error vector. We proposed to use the
shift register circuit with adders and multipliers to get a
systematic RS codeword for executing the decomposition.
This takes O(L(N − L)) = O(N2) multiplications and
additions in GF(2q). Addition and multiplication over this
field take q and qlog2 3 binary operations, respectively. Hence
the bit operations sum upto O(N2qlog2 3) for each full-height
column. Applying polar transform for each polar block takes
O(N log2N) bit-operations.

Decoding complexity consists of applying the polar trans-
form (S1:N = E′1:NGN ) for all polar blocks, SC decoding
of all the polar blocks and also the erasure decoding of
the RS codes of length N − 1 over GF(2q) for each full-
height column. Applying polar transform for each polar block
takes O(N log2N) bit-operations. The SC decoding of a
polar block takes O(N log2N) real operations. The erasure
decoding of the RS codes can be done in O(N(log2(N))2)
symbol operations [4]. Addition and multiplication over this
field take q and qlog2 3 binary operations respectively. Hence
the bit operations sum to O(N(log2(N))2qlog2 3) for each
full-height column.

D. Pros and Cons

Pros:
The upside of the scheme is that it can be designed for a class
C with infinite cardinality as well. In particular, the block
length does not increase with cardinality of the class C. On

the other hand, a code designed with rate R supports any
arbitrary source with any side information whose conditional
distribution given source p(y|x) is of symmetric channel type
whenever R > H(X̃|Y ). Here the random variable pair
(X̃, Y ) is distributed as PX̃(x)p(y|x) and PX̃(x) = 0.5.

Cons:
The downside is that the class C has to contain only
conditional distributions of symmetric channel type. Also,
for the non-uniform source with distribution PX(x), the
staircase construction does not support all the rates greater
than maxp(y|x)∈C H(X|Y ) where the random variable pair
(X,Y ) is distributed as PX(x)p(y|x).

V. SCHEME BASED ON COMBINING BIT-CHANNELS

In this scheme, we assume the class C contains a finite
number of elements. Let |C| be s. The bit-channel sets LX|Y
and HX|Y will not be the same for each p(y|x) ∈ C. The
obvious approach is to share U (∩i∈CLX|Y )c , so that decoder
can reliably decode the other bits corresponding to bit-
channels in (∩i∈CLX|Y ) by SC decoding. The scheme based
on bit-channel combining is a recursive procedure of com-
bining polar blocks that increases the fraction of bit-channels
∩p(y|x)∈CLX|Y with respect to the updated polar block
length. The fraction of bit-channels ∩p(y|x)∈CLX|Y with
respect to the updated polar block length in the recursive pro-
cedure can get arbitrarily close to 1−maxp(y|x)∈C H(X|Y )
when N is sufficiently large. Hence, this gives the com-
pression algorithm that can achieve any rate greater than
maxp(y|x)∈C H(X|Y ). Hassani and Uranke [4] essentially
did this for a symmetric source in the context of universal
channel coding. We need to validate that such a recursive
method can be used for a non-uniform memoryless source
setting as well. So, this method is straightforward to use in
this source coding setting in view of the original scheme [4]
proposed in the context of universal channel coding.

We need Proposition 1 to validate this method for an
arbitrary discrete memoryless source (which may be non-
uniform) with the arbitrary class C (which may contain non-
symmetric p(y|x)) of finite cardinality.

Lemma 3. Let P j
X,Y (x, y) be a joint distribution on (X,Y )

supported on X ×Y for each j ∈ J . Let Q(j) be the distri-
bution on J . Define PX,Y (x, y) =

∑
j∈J Q(j)P j

X,Y (x, y).
Then Z(X|Y ) ≥

∑
j∈J Q(j)Zj(X|Y ) where Zj(X|Y ) =

2
∑

y∈Y

√
P j
X,Y (0, y)P j

X,Y (1, y).

Proof: Refer to the Appendix.
The Lemma 3 is used in the proof of the following

proposition.

Proposition 1. Let (X1, Y1) and (X2, Y2) be independent
random variable pairs which may not be identically dis-
tributed. X1 and X2 are defined over X = {0, 1}, while
Y1 and Y2 are distributed over alphabets Y1 and Y2. Let
U1 = X1 +X2 and U2 = X2. Then
1. Z(U1|Y1Y2) ≥ max{Z(X1|Y1), Z(X2|Y2)}.
2. Z(U2|U1Y1Y2) = Z(X1|Y1)Z(X2|Y2).
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Proof: Refer to the Appendix.

We now validate the method with an arbitrary memoryless
source while recalling the idea of this method proposed in
[4]. Let C = {p1(y|x), p2(y|x), ...., ps(y|x)}. The first step is
to increase the fraction of bit-channels LX|Y1

∩ LX|Y2
with

respect to the updated block length. To do this, first consider
the two independent polar blocks U1:N = X1:NGN and
U ′1:N = X ′1:NGN , where Y 1:N and Y ′1:N are the correlated
side information vectors corresponding to the two blocks,
respectively. Then combine the bit-channels LX|Y1

∩HX|Y2

of the first block with bit-channels LX|Y2
∩ HX|Y1

in the
order. Suppose the bit-channel i ∈ LX|Y1

∩ HX|Y2
with

input Ui and output U1:i−1Y 1:N from the first polar block is
combined with bit-channel j ∈ LX|Y2

∩HX|Y1
with input U ′j

and output U ′1:j−1Y ′1:N from the second polar block. One
of the two new bit-channels produced by this combining has
the input Ui + U ′j and the output U1:i−1U ′1:j−1Y 1:NY ′1:N ;
the other bit-channel produced has the input U ′j and the
output Ui +U ′j , U

1:i−1U ′1:j−1Y 1:NY ′1:N . By Proposition 1,
the second bit-channel produced by the combining has the
Bhattacharyya parameter

Z(U ′i |Ui + U ′j , U
1:i−1U ′1:j−1Y 1:NY ′1:N )

= Z(Ui|U1:i−1Y 1:N )Z(U ′j |U1:j−1Y 1:N ))
(a)

≤ O(2−N
β

).

where β < 0.5. The identity (a) is true because either
the Bhattacharyya parameter Z(Ui|U1:i−1Y 1:N ) is 2−N

β

if
the conditional distribution is p1(y|x) or the Bhattacharyya
parameter Z(U ′j |U ′1:j−1Y 1:N ) is 2−N

β

if the conditional
distribution is p2(y|x). So we have G = min{|LX|Y2

∩
HX|Y1

|, |LX|Y1
∩ HX|Y2

}| new bit-channels that come into
the category of LX|Y1

∩LX|Y2
in the updated polar block of

length 2N . We use a bold font from now on to denote the
bit-channels in the updated polar block to disitnguish them
from the bit-channels of the original polar block. Now the
fraction of the updated bit-channels LX|Y1

∩ LX|Y2
with

respect to the updated block length becomes as follows.

2(LX|Y1
∩ LX|Y2

) +G

2N
.

The procedure can be done recursively. In stage t of the
recursive procedure, we take two polar blocks obtained in
stage t − 1 and perform the same bit-channel combinings
that were mentioned in the first step. After t recursions, the
fraction of the updated LX|Y1

∩ LX|Y2
with respect to the

updated block length becomes as follows.

2t(LX|Y1
∩ LX|Y2

) + (2t − 1)G

2tN
.

This will increase and become closer to |LX|Y1
∩ LX|Y2

| +
G = min{|LX|Y1

|, |LX|Y2
|} per block length N as t grows.

Now let the bit-channels LX|Y1
∩ LX|Y2

in the updated
polar block be L12 and repeat the same recursive procedure

to increase the bit-channels L12 ∩ LX|Y3
. We continue the

recursive procedure until we finish all p(y|x) ∈ C. Hence by
this method, one can increase the cardinality of bit-channels
∩p(y|x)∈CLX|Y per block length N that can get arbitrarily
close to minp(y|x)∈C |LX|Y |. The details for this method are
given in [4]. Our main requirement is to show the validity of
this method with an arbitrary source, which followed from
Proposition 1. The scheme supports any non-uniform source
with an arbitrary class C of finite cardinality. But the block
length can become unbounded as the cardinality of the class
C grows, in contrast to the staircase scheme.

VI. CONCLUSION

We defined the problem of source coding with side in-
formation at the receiver whose correlation is unknown to
the encoder. We studied two coding strategies based on
polar codes for this problem. The code designed by the
staircase scheme with rate R supports any source with
any side information whose conditional distribution given
source p(y|x) is of symmetric channel type whenever R >
H(X̃|Y ). Here the random variable pair (X̃, Y ) is distributed
as PX̃(x)p(y|x) and PX̃(x) = 0.5. A naive Slepian-Wolf
code derived using the method [11] requires the computa-
tion of a high dimensional systematic parity-check matrix
(q[(N − L)(1 + N(k − 1)) + N(N − 1)] × N2qk) for
the universal channel code. We avoid the computation of
such a high dimensional parity-check matrix and its use
in our staircase code construction. The second scheme is
based on the technique of universalization using bit-channel
combining. Using this method, we can design a code for a
non-uniform source with arbitrary C of finite cardinality. An
open problem is to find a stronger coding strategy where a
code designed for an arbitrary source X at rate R can support
any correlated side information Y whenever R > H(X|Y ).
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APPENDIX A
Proof of Lemma 3:

Z(X|Y ) = 2
∑
y∈Y

√
PX,Y (0, y)PX,Y (1, y)

= −1 +
∑
y∈Y

[∑
x∈X

√
PX,Y (x, y)

]2
(a)

≥ −1 +
∑
y∈Y

∑
j∈J

Q(j)
[∑
x∈X

√
P j
X,Y (x, y)

]2
=
∑
j∈J

Q(j)(−1 +
∑
y∈Y

[∑
x∈X

√
P j
X,Y (x, y)

]2
)

=
∑
j∈J

Q(j)Zj(X|Y ).

(2)

Inequality (a) follows from Minkowsky’s inequality∑
k∈K

(
∑
j∈J

Q(j)ajk
1
r )

r
≥
[∑
j∈J

Q(j)(
∑
k∈K

ajk)
1
r ]r

which holds when r < 1 and ajk is non-negative. Here

r = 0.5 and ajk =
√
P j
X,Y (x, y).

Proof of Proposition 1:
The conditional distribution PU1|Y1Y2

(u1|y1y2) will be as
follows.

PU1|Y1Y2
(u1|y1y2) =

∑
u2∈X

PU1,U2|Y1Y2
(u1, u2|y1y2)

=
∑
u2∈X

PX1X2|Y1Y2
(u1 + u2, u2|y1y2)

=
∑
u2∈X

PX1|Y1
(u1 + u2|y1)PX2|Y2

(u2|y2).

The conditional distribution PU2|Y1Y2U1
(u2|y1y2u1) will be

as follows.

PU2|Y1Y2U1
(u2|y1y2u1) =

PU1,U2|Y1Y2
(u1, u2|y1y2)

PU1|Y1Y2
(u1|y1y2)

=
PX1|Y1

(u1 + u2|y1)PX2|Y2
(u2|y2)∑

u2∈X PX1|Y1
(u1 + u2|y1)PX2|Y2

(u2|y2)
.

The joint distribution PU1Y1Y2
(u1, y1, y2) will be as follows.

PU1Y1Y2
(u1, y1, y2)

=
∑
u2∈X

PU1U2Y1Y2
(u1, u2, y1, y2)

= PU1U2Y1Y2(u1, 0, y1, y2) + PU1U2Y1Y2(u1, 1, y1, y2)

= PU2(0)PU1Y1Y2|U2
(u1, y1, y2|0)

+ PU2(1)PU1Y1Y2|U2
(u1, y1, y2|1).

Let P 1
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2
(u1, y1, y2|0) and

P 2
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2
(u1, y1, y2|1)

be the two joint distributions on random variable triplet
(U1, Y1, Y2). Then,

Z1(U1|Y1Y2)

= 2
∑
y1y2

P 1
Y1Y2

(y1y2)
√
P 1
U1|Y1Y2

(0|y1y2)P 1
U1|Y1Y2

(1|y1y2)

= 2
∑
y1y2

PY1Y2|U2
(y1y2|0)√
PU1|Y1Y2U2

(0|y1y20)PU1|Y1Y2U2
(1|y1y20)

(a)
= 2

∑
y1y2

PY1
(y1)PY2|U2

(y2|0)√
PX1|Y1Y2U2

(0|y1y20)PX1|Y1Y2U2
(1|y1y20)

(b)
= 2

∑
y1y2

PY1(y1)PY2|U2
(y2|0)

√
PX1|Y1

(0|y1)PX1|Y1
(1|y1)

= 2
∑
y1

PY1
(y1)

√
PX1|Y1

(0|y1)PX1|Y1
(1|y1)

= Z(X1|Y1).

Identity (a) is true because Y1 is independent of U2 and Y2 is
independent of Y1 given U2. Identity (b) is true because X1 is
independent of Y2U2 given Y1. Similarly we can easily prove
that Z2(U1|Y1Y2) = Z(X1|Y1). Now Lemma 3 implies that
Z(U1|Y1Y2) ≥ Z(X1|Y1) Exchanging the roles of (X1, Y1)
and (X2, Y2), we also get Z(U1|Y1Y2) ≥ Z(X2|Y2). There-
fore Z(U1|Y1Y2) ≥ max{Z(X2|Y2), Z(X1|Y1)}. Then,

Z(U2|Y1Y2U1)

= 2
∑

y1y2u1∈Y1×Y2×X
PU1Y1Y2

(u1y1y2)√
PU2|U1Y1Y2

(0|u1y1y2)PU2|U1Y1Y2
(1|u1y1y2)

= 2
∑

y1y2u1∈Y1×Y2×X

PU1Y1Y2(u1y1y2)

PU1|Y1Y2
(u1|y1y2)[

PX1|Y1
(u1|y1)PX2|Y2

(0|y2)

PX1|Y1
(u1 + 1|y1)PX2|Y2

(1|y2)
]0.5

= 2
∑

y1y2u1∈Y1×Y2×X
PY1Y2

(y1y2)[
PX1|Y1

(u1|y1)PX1|Y1
(u1 + 1|y1)

PX2|Y2
(0|y2)PX2|Y2

(1|y2)
]0.5

= 2
∑
u1∈X

∑
y1∈Y1

∑
y2∈Y2

PY1
(y1)PY2

(y2)[
PX1|Y1

(u1|y1)PX2|Y2
(0|y2)

PX1|Y1
(u1 + 1|y1)PX2|Y2

(1|y2)
]0.5

= Z(X1|Y1)Z(X2|Y2).
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