Coding for Efficient DNA Synthesis

Andreas Lenz†, Yi Liu‡, Cyrus Rashtchian§, Paul H. Siegel§, Antonia Wachter-Zeh∗, and Eitan Yaakobi†

†Institute for Communications Engineering, Technical University of Munich, Germany
‡Computer Science and Engineering Department and the Qualcomm Institute, University of California, San Diego
§Department of Electrical and Computer Engineering, CMRR, University of California, San Diego
∗Computer Science Department, Technion – Israel Institute of Technology, Haifa, Israel

Abstract—For DNA data storage to become a feasible technology, all aspects of the encoding and decoding pipeline must be optimized. Writing the data into DNA, which is known as DNA synthesis, is currently the most costly part of existing storage systems. As a step toward more efficient synthesis, we study the design of codes that minimize the time and number of required materials needed to produce the DNA strands. We consider a popular synthesis process that builds many strands in parallel in a step-by-step fashion using a fixed supersequence. The machine iterates through S one nucleotide at a time, and in each cycle, it adds the next nucleotide to a subset of the strands. The synthesis time is determined by the length of S. We show that by introducing redundancy to the synthesized strands, we can significantly decrease the number of synthesis cycles. We derive the maximum amount of information per synthesis cycle assuming S is an arbitrary periodic sequence. To prove our results, we exhibit new connections to cost-constrained codes.

I. INTRODUCTION

In the past decade, DNA has emerged as a potentially viable storage technology [1], [2]. Compared to traditional storage media, DNA offers the possibility of significantly improved information density and durability [3]–[5]. While much recent work has optimized many aspects of the DNA data storage pipeline [6]–[9], we identify and address the goal of optimizing the synthesis process. Typically information is stored by first preprocessing the digital data and then encoding it in physical DNA molecules using a synthesis machine. Most experiments on DNA data storage use the same type of synthesis process [10]–[12]. The machine creates a large number of DNA strands in parallel, where each strand is grown by one nucleotide at a time. To append nucleotides to the strands, the synthesis machine follows a fixed supersequence of possible nucleotides. As the machine iterates through this supersequence, the next nucleotide is added to a select subset of the DNA strands. This process continues until the machine reaches the end of the supersequence. In particular, each synthesized DNA strand must be a subsequence of the machine’s supersequence. Figure 1 depicts the synthesis process of multiple strands from a fixed supersequence. To increase the throughput of the DNA synthesis process, we consider the problem of encoding the DNA strands with the goal of minimizing the total number of cycles used by the synthesis machine. Not only will this decrease the synthesis time, but it will also decrease the monetary cost because each cycle expends chemicals and reagents [10]–[13].

A theoretical model of the process involves several variables. For simplicity, assume that the number of strands k is fixed, based on the size of the synthesis machine (in typical systems, k ≈ 10⁶). Then, the length n of each strand may be fixed or variable (usually n is between 100 and 1000). When n is fixed, a naive solution in which information is encoded into DNA strands using the rule (00) → A, (01) → C, (10) → G, and (11) → T uses a supersequence of length 4n that repeats the substring ACGT exactly n times. This scheme achieves an information rate of 0.5 bits/cycle, since it requires 4 cycles to synthesize one nucleotide and one nucleotide contains two bits of information. We show that by introducing redundancy to the synthesized strands in the form of a synthesis code, the synthesis time can be significantly decreased, respectively the information rate can be increased, compared to uncoded systems. As one of our results, we present a simple encoding scheme with a single redundancy symbol that achieves an information rate of 0.8 bits/cycle. Then, we show that this can be further optimized to an optimum of 0.95 bits/cycle, while increasing the number of redundancy symbols, using a more sophisticated scheme based on constrained codes. In other words, we encode the strands to achieve nearly twice the throughput and half the cost compared to the uncoded solution.

More precisely, we aim to determine the maximum number of bits that can be encoded into a set of k strands, each of length n, while given an overall budget T on the number of synthesis cycles (i.e., the supersequence has length T). In particular we derive the maximum possible amount of information per synthesis time, given the usage of an arbitrary periodic synthesis sequence. To prove our results, we exhibit connections between the number of subsequences of a sequence and cost-constrained systems.

II. PRELIMINARIES

Throughout the paper, we use the (shifted) modulo operator (a mod p) ∈ {1, . . . , p}. Let x ∈ Σⁿ be a strand, which is a string of length n over the alphabet Σ of size |Σ| = q. The length of a string x ∈ Σⁿ is denoted by |x| = n and
the length-m prefix of x is denoted by $x_{1:m}$. The \textit{radius-t deletion ball} obtained after exactly t deletions in x is denoted by $D(x,t)$ and its size is $V_D(x,t)$. The \textit{global deletion ball} of x is defined by $D^*(x) = \bigcup_{t \in \mathbb{N}} D(x,t)$ and its size is $V_D^*(x) = |D^*(x)|$. A strand $S \in \Sigma^*$ is called a \textit{supersequence} of $x \in \Sigma^*$, if x can be obtained by deleting sbol symbols from S, i.e., $x \in D^*(S)$. In reverse, $s \in \Sigma^*$ is called a \textit{subsequence} of $x \in \Sigma^*$, if it can be obtained from x via deletions, i.e., $s \in D^*(x)$. Further, for any k strands $x_1, \ldots, x_k \in \Sigma^*$ we define $S \triangleq \text{SCS}(x_1, \ldots, x_k)$ to be the \textit{shortest common supersequence} (SCS) of x_1, \ldots, x_k. Note that while the SCS strands are not unique their length is and in the following, the particular choice of the SCS will not be of importance.

A. Problem Formulation

Consider a system, where digital data shall be encoded and synthesized into k DNA strands $x_1, \ldots, x_k \in \Sigma^*$ in parallel. These strands can be of equal or different lengths. The synthesis is performed by choosing a synthesis sequence of nucleotides $S = (S_1, S_2, \ldots) \in \Sigma^*$ and in each cycle $i = 1, \ldots, |S|$, for each DNA strand x_j, it is possible to either attach the symbol S_i to the strand x_j or to perform no action. The sequence S must be chosen such that it is possible to synthesize each strand with this procedure. If a strand x can be synthesized by the synthesis sequence S, then this implies that x is a subsequence of S and the other direction holds as well, since by definition every subsequence of S can be synthesized by S. Hence, the following lemma follows directly.

Lemma 1. The sequences x_1, \ldots, x_k can be synthesized using the synthesis sequence S if and only if S is a common supersequence of x_1, \ldots, x_k.

The key figure of merit of our analysis is the synthesis time of a set of sequences x_1, \ldots, x_k, which is defined as follows.

Definition 1. The \textit{synthesis time} $t_S(x_1, \ldots, x_k)$ of a set of strands x_1, \ldots, x_k with the synthesis sequence S is defined to be the smallest number of synthesis cycles that are required to synthesize the strands x_1, \ldots, x_k with S, i.e.,

$$t_S(x_1, \ldots, x_k) = \min_{t \in \mathbb{N}} \{\text{synthesis time}\} \text{ s.t. } \{x_1, \ldots, x_k\} \subseteq D^*(S_1:t).
$$

The aim of this analysis is to design codes $C^p_n \subseteq \Sigma^{n\cdot k}$ that on DNA strands, such that the tuples of strands inside this code have a small synthesis time. That is, we allow only to synthesize tuples of sequences x_1, \ldots, x_k that are contained in C^p_n. Designing C^p_n also allows to control the synthesis time. Hereby, it is possible to distinguish between two different setups. First, there is the case, where S is fixed and does not depend on the strands x_1, \ldots, x_k and second, the case, where the synthesis sequence is variable and may be a function of the strands x_1, \ldots, x_k. In the latter case, it is natural to use $S(x_1, \ldots, x_k) = \text{SCS}(x_1, \ldots, x_k)$ as this sequence minimizes the synthesis time for these strands. In this paper we focus however on the former case, where the synthesis sequence is fixed. Note that in this case, the number of sequences k is irrelevant for the code design and we therefore restrict $k = 1$ in the following. With the above definition of the synthesis time, we can directly identify the main trade-off in the code design. On the one hand, it is desirable to have a small synthesis time, i.e., strongly restrict the sequences x to be a subsequence of a possibly short prefix of S. On the other hand, we are striving for a large information content $\log|C^p_n|$. These contradictory goals naturally motivate the statement of the following optimization.

$$N^*(S, T) \triangleq \max_{0 \leq \alpha \leq 1} \frac{|C^p_n|}{T} \text{ s.t. } t_S(x) \leq T \forall x \in C^p_n.
$$

In other words, given a maximum synthesis time T, we would like to characterize the maximum amount of information that we can synthesize in this time. Similarly, for codes that contain strands of any length, we replace n by $*$ in the above definition. Given the above maximization problem, we are now in the position to present the figure of merit discussed in this paper, i.e., the (asymptotic) maximum \textit{information rate} measured by number of bits per synthesis cycle. Given a semi-infinite \textit{1} \footnote{A semi-infinite sequence is a sequence $S = (S_i : i \in \mathbb{N})$ that starts at symbol S_1, but does not have an end. This semi-infinite length is necessary to formally define the limit value in the definitions of $R(S, \alpha)$ and $R^*(S)$.} sequence S and $0 \leq \alpha \leq 1$, we define

$$R(S, \alpha) = \lim_{T \to \infty} \frac{\log(\max_{1 \leq n \leq T} |S_1:T|)}{T},$$

and similarly

$$R^*(S) = \lim_{T \to \infty} \frac{\log(\max_{1 \leq n \leq T} |S_1:T|)}{T}.$$
In particular, \(D_2(n, t) = \sum_{i=0}^{\lfloor t \rfloor} \binom{n-i}{i} \) and \(D_3(n, t) = \sum_{i=0}^{\lfloor t \rfloor} \binom{n-i}{i} \sum_{j=0}^{\lfloor t \rfloor} \binom{j}{i} \). Explicit values for the resulting information rates are given in the next theorem.

Theorem 3. For all \(0 \leq \alpha \leq 1 \), and \(q = 2 \), it holds that
\[
\max_{S \in \Sigma^*} R(S, \alpha) = R(A_2, \alpha) = \begin{cases} \alpha h(\alpha^{-1} - 1) & \text{if } \alpha \geq \frac{2}{3} \\ \alpha & \text{otherwise} \end{cases},
\]
where \(h(x) \) is the binary entropy function. Further, for any \(q \),
\[
\max_{S \in \Sigma^*} R^*(S) = R^*(A_q) = -\log z_q,
\]
where \(z_q \) is the largest root of the polynomial \(\sum_{i=1}^{q} z^i - 1 \).

Proof. The first part of the theorem directly follows from an asymptotic analysis of the quantity \(D_2(T, T - \lfloor \alpha T \rfloor) \). The second part is proven as follows. For a fixed number \(t \) of deletions, the number of subsequences of \(A_q^T \) is given by [15]
\[
|D(A_q^T, t)| = [z^T] \left(\sum_{j=1}^{q} z^j \right)^{T-t} \frac{1}{1 - z},
\]
where \([z^T] \) denotes the operation of extracting the coefficient of \(z^T \). Therefore, we obtain
\[
|D^*(A_q^T)| = \sum_{t=0}^{T} |D(A_q^T, t)| = [z^T] \left(\sum_{j=1}^{q} z^j \right)^T \frac{1}{1 - z} \left(\sum_{j=1}^{q} z^j \right)^{-1} = [z^T] \left(\frac{1}{1 - z} \sum_{t=0}^{\infty} \left(\sum_{j=1}^{q} z^j \right)^t \right) \left(\frac{1}{1 - z} \right) \left(1 - \sum_{j=1}^{q} z^j \right)^{-1}.
\]

Denote now by \(z_q \) the smallest singularity of the generating function, i.e., the smallest solution to \(z + \cdots + z^q = 1 \) for \(z \). Given this singularity of the generating function, we can deduce by standard combinatorial arguments that the asymptotic behavior of \(|D^*(A_q^T)| \) is \(R^*(A_q) = -\log z_q \). \(\square \)

Figure 4 displays \(R(A_2, \alpha) \) versus \(\alpha \). Theorem 3 provides a solution to the problem \(\max_{S \in \Sigma^*} R(S, \alpha) \) for binary sequences and to the problem \(\max_{S \in \Sigma^*} R^*(S) \) for any \(q \). We will show in Sections IV-A a connection between \(R^*(S) \) and the capacity of a cost-constrained channel, along with a technique for computing it for an arbitrary periodic sequence. We will also present evidence of a conjectured relationship between \(R(S, \alpha) \) and a capacity associated with a cost-constrained channel with fixed average symbol cost.

IV. SYNTHESIS CODES VIA CONSTRAINED CODES

A. Code Construction for the Alternating Sequence

In this section we present a construction of a family of synthesis codes. Without loss of generality we let the alphabet be \(\Sigma = \{0, 1, 2, \ldots, q-1\} \) while the results apply for arbitrary alphabets of size \(q \). Assume also that the synthesis sequence is the alternating sequence \(A_q \).

For a given string \(x \) of length \(n \), we start by determining its synthesis time using the alternating sequence \(A_q \), i.e., the value of \(t_{A_q}(x) \). A useful tool will hereby be the derivative of the strand \(x = (x_1, x_2, \ldots, x_n) \), which is defined by \(x' = (x'_1, x'_2, \ldots, x'_n) \in \{1, 2, \ldots, q\}^n \), where for \(1 \leq i \leq n \), \(x'_i = (x_i - x_{i-1}) \mod q \in \{1, 2, \ldots, q\} \), while \(x_0 = 0 \). Note that this mapping is invertible, i.e., given the derivative \(x' \), it is possible to revert back the string \(x \). The \(L_1 \) weight of a string \(y \) is the sum of its entries, that is, \(L_1(y) = \sum_{i=1}^{q} y_i \).

Lemma 4. It holds that \(t_{A_q}(x) = L_1(x') \).

Proof. Assume that \(x = (x_1, x_2, \ldots, x_n) \). For \(1 \leq i \leq n \), it holds that if the symbol \(x_{i} \) is synthesized on the \(t_i \)-th cycle, then the symbol \(x_{i+1} \) will be synthesized on the \((t_i + (x_i - x_{i-1}) \mod q) \)-th cycle. Thus, the number of cycles is \(\sum_{i=1}^{n} (x_{i+1} - x_{i}) \mod q \), which is equal to \(L_1(x') \). \(\square \)

Following Lemma 4, a general code construction of a synthesis code with strands of length \(n \) and synthesis time \(T \), with the alternating sequence, is simply given by
\[
C_n^T = \{ x \in \Sigma^n \mid L_1(x') \leq T \}.
\]

While this does not provide an explicit code construction with efficient encoding and decoding maps. For the special case of \(T = \lfloor \frac{n}{2} \rfloor \), we have the following encoder which encodes any strand \(u = (u_1, u_2, \ldots, u_{n-1}) \) of length \(n - 1 \) into a strand \(c \) of length \(n \) such that its synthesis time is at most \(T \). Define \(x' = (u_1', u_3', \ldots, u_{n-1}') \) and the complement of some \(y \) by \(y^c \), where \(y^c_i = q - y_i - 1 \). We encode
\[
|c' = (x', (x')^c , \text{ if } L_1(x') \leq T |. \]

Since \(L_1(x') + L_1((x')^c) = (q+1)n \), it follows that \(t_{A_q}(c) \leq T \). In order to decode the strand \(c \), one simply verifies the value of \(c'_i \) which can be \(1 \) or \(q \). In the former \(u' = (c_1', \ldots, c_{n-1}') \), while in the latter \(u' \) is decoded from \((c')^c \).

B. From Subsequences to Cost-constrained Systems

As we have illustrated in Section IV-A for the alternating sequence, the synthesis time constraint can be translated to a cost constraint for the \(L_1 \) weight of a string. We now turn to establishing this connection between the synthesis problem \(R^*(S) \) and cost-constrained systems for arbitrary sequences.

Let \(S = (S_1 S_2 \ldots) \), \(S_i \in \Sigma \) be a semi-infinite sequence. We define the subsequence graph \(G(S) \) of \(S \) by the directed graph which has vertices \(V = \{(v_0, v_1, v_2, \ldots) \} \), where a vertex \(v_i \), \(i \geq 1 \) corresponds to the \(i \)-th symbol in \(S \) and \(v_0 \) is an auxiliary starting vertex. Vertex \(v_i \) and \(v_j \), are connected by an edge of weight \(\epsilon(e) = j - i \), if \(j > i \) and \(S_k \neq S_j \) for all \(i < k < j \). Thus, each vertex \(v_i \) has \(|\Sigma| \) outgoing edges, denoted by \(E_i \), to the next appearance of each symbol in \(\Sigma \), succeeding \(v_i \). Fig. 2 shows \(G(S) \) for \(S = (ACGTACGT \ldots) \). A path \(r \) of length \(\ell \) through \(G(S) \) is a sequence \(r = (v_i, v_i+1, \ldots, v_{i+\ell}) \) of consecutive vertices, starting from some vertex \(v_i \). Its generated sequence is \(g(r) = (S_{i+1} S_{i+2} \ldots S_{i+\ell}) \) and has length \(\ell \). We define \(M_1(n, n') \), \(c \in \{0, 1, \ldots, n\} \) to be the number of paths of length \(\ell \) that have a total edge weight of at most \(n \) and start from vertex \(v_i \) in \(G(S) \). \(G(S) \) compactly characterizes all subsequences of \(S \) as paths through \(G(S) \). The following lemma establishes the exact relationship between the number of subsequences of a sequence \(S \) and the graph \(G(S) \).

Lemma 5. For any semi-infinite sequence \(S \), the number of subsequences of \(S_{1:n} \) of length \(n-t \) is given by
\[
|D(S_{1:n}, t)| = M_0(n, n-t).
\]

Proof. Denote by \(Q \) the set of all paths of length \(n-t \) through \(G(S) \) that start from \(v_0 \) and have weight at most \(n \). We will
show that $|Q| = |D(S_{1:n}, t)|$. First, notice that for each $r \in Q$, we have $g(r) \in D(S_{1:n}, t)$ by construction of the graph $G(S)$. On the other hand, let $x \in D(S_{1:n}, t)$ and let $1 \leq i_1 < i_2 < \cdots < i_{n-t} \leq n$ with $x = (S_{i_1}, S_{i_2}, \ldots, S_{i_n})$ be the left-most alignment of x in S. Then, $r = (v_{i_0}, v_{i_1}, \ldots, v_{i_{n-t}})$ is a path through $G(S)$ with $g(r) = x$. Finally, using that two non-identical paths $r_1, r_2 \in Q$, $r_1 \neq r_2$, generate two different sequences $g(r_1) \neq g(r_2)$, we obtain $|Q| = |\{x : x = g(r), r \in Q\}| = |D(S_{1:n}, t)|$. □

Having available this correspondence, we present an efficient way to compute the number of subsequences.

Lemma 6. Let S be any semi-infinite sequence and $c, i, n' \in \mathbb{N}_0$. Then,

$$M_i(c, n') := \sum_{e \in E} M_{i + \tau(e)}(c - \tau(e), n' - 1), \text{ if } n' > 0,$$

$$1, \text{ if } n' = 0.$$

Proof. The proof is immediate, since each outgoing edge $e \in E$, from v_i to $v_{i + \tau(e)}$, leads to a distinct path. Further, each edge with $\tau(e) > c$ leads to a path which has a larger cost than c, and thus we exclude these edges. □

Note that by Lemma 6 for the computation of $M_0(n, n-t)$, we only require values $M_i(c, n')$, where $i + c = n$. Table 1 shows the values of $M_i(n - i, n')$ for the sequence $S = (ACGTACGT)$. The table can be computed efficiently by iteratively filling the first row with one’s and then compute the subsequent rows according to the edges in $G(S)$.

We now turn to compute $|D(S_{1:i})|$, for a periodic sequence $S = (ss \ldots)$, where $s \in \Sigma^L$ is the period of S and $L \in \mathbb{N}$ is the period length of the sequence S. Clearly, also for such a sequence S, the graph $G(S)$ allows to explore the subsequence spectrum. However, it is possible to simplify the graph by taking into account the periodicity. In particular, we observe that $M_i(c, n') = M_{i + zL}(c, n')$ for any $i \in \{1, \ldots, L\}$ and any integer $z \geq 0$. This motivates to introduce the

![Fig. 2: Subsequence graph $G(S)$ for the semi-infinite sequence $S = (ACGTACGT \ldots)$. Edge decorations highlight the edge weights (Dotted \triangle, dashed \triangle 2, solid \triangle 3, thick \triangle 4).](image)

![Fig. 3: Simplified graph $\hat{G}(s)$ for $s = (ACGT)$. Hereby, the last symbol of the period, T, can take the role of the starting vertex.](image)
Given the graph $\hat{G}(s)$, we define the $L \times L$ edge cost partition matrix $P(s)$. For a pair (i, j), the entry $P(z)_{i,j}$ is

$$P(z)_{i,j} = \begin{cases} 0, & \text{if there is no edge } e : i \to j \\ 2^{-\tau(e)}, & \text{if edge } e : i \to j \text{ has cost } \tau(e) \end{cases}$$

Let $\rho(z)$ be the largest eigenvalue of $P(z)$. The (combinatorial) capacity of the cost-constrained channel is given by $C = z_0$, where z_0 is the unique solution of $\rho(z) = 1$, or, equivalently, the largest real solution of the determinantal equation

$$\det(I - P(z)) = 0.$$

This represents the maximum information rate of a synthesis code using the synthesis sequence $S = (ss\ldots)$, measured in units of bits per synthesis cycle. Its inverse $T_{\text{bin}} = C^{-1}$ is the minimum possible number of synthesis cycles per bit.

The capacity can also be described as the maximum normalized entropy of a stationary Markov chain on the costly channel graph $\hat{G}(s)$, as follows. Let $\pi_i, i \in \{1, \ldots, L\}$ be the stationary state probabilities, and let p_e denote the transition probability associated with the edge $e \in \hat{E}$. The entropy of the Markov chain P is defined by $H(P) = \sum_{i=1}^{L} \pi_i \sum_{e \in \hat{E}} p_e \log p_e$. The average cost (per symbol) associated with the graph $\hat{G}(s)$ is $T_s(P) = \sum_{i=1}^{L} \pi_i \sum_{e \in \hat{E}} p_e \tau(e)$. The (probabilistic) capacity of the cost-constrained channel is then given by

$$C = \max_P \frac{H(P)}{T_s(P)}.$$

The equivalence between combinatorial capacity and probabilistic capacity is proved in [17]. If P^* is the unique capacity-achieving Markov chain, then the quantity $R^* \overset{\text{def}}{=} H(P^*) = C T_s(P^*)$ can be interpreted as the coding rate of an optimal synthesis code in units of bits per symbol.

For the graph $\hat{G}(s)$ in Figure 3 corresponding to the sequence $s = (AGCT)$, we find that $\rho(z) = 2^{-2} + 2^{-2z} + 2^{-3z} + 2^{-4z}$, implying capacity $C = s_0 \approx 0.9468$ bits/synthesis cycle, with $T_{\text{bin}} = 1.0562$ cycles per bit2. The corresponding Markov chain P^* is defined by $q_{e}^* = 2^{-C\tau(e)}$ and $\pi_i^* = 1/4$ for all i. The average synthesis time per code symbol is $T_s(P^*) \approx 1.7657$ cycles per symbol and the coding rate is $R^* \approx 1.6717$ bits per code symbol. The inverse rate $f^* = (R^*)^{-1} \approx 0.5981$ can be thought of as an expansion factor. It is interesting to compare this optimal coding scheme with the construction from Section IV-A. If we synthesize codewords from that construction using the alternating synthesis sequence with period $s = (AGCT)$, the resulting scheme will have a higher coding rate $R = 2$ bits/code symbol and lower expansion factor $f = R^{-1} = 0.5$. However, the synthesis times per symbol and bit are $T_s = 2.5$ and $T_{\text{bit}} = 1.25$, respectively. We see that the increased expansion factor of the optimal code leads to substantial reductions in synthesis time per code symbol and per bit.

More generally, if we fix the average synthesis time per symbol T_s, we can find the corresponding maximum coding rate

$$R(T_s) = \max_P \frac{H(P)}{T_s(P)} \text{ s.t. } T_s(P) = T_s,$$

corresponding synthesis time per bit $T_{\text{bit}} = T_s / R(T_s)$, and the number of bits per unit synthesis cycle $C(T_s) = T_{\text{bit}}^{-1}$. For the q-ary alternating sequence, the range of possible values of T_s is $[T_{\text{min}}, T_{\text{max}}] = [\min_q, \tau(e), \max_q \tau(e)] = [1, q]$. The parametric expressions for $[R(T_s), T_s]$ in terms of the parameter z are given by

$$T_s(z) = \frac{\rho'(z)}{\ln(2) \rho(z)} - 1 = \frac{R(z) - \ln(2)}{\ln(2) \rho(z)}.$$

where $z \in (\infty, \infty)$. Note that there is a critical value $T_{\text{crit}} \in [T_{\text{min}}, T_{\text{max}}]$ such that for $T_s > T_{\text{crit}}$ an entropy larger than $R(T_s)$ is achieved by maximizing over Markov chains with average symbol cost less than T_s. Returning to the example where $q = 4$, we find that $\rho(z) = \sum_{i=1}^{4} 2^{-i z}$, from which we can readily derive $T_s(z)$ and $R(z)$.

The analysis of the $[R(T_s), T_s]$ trade-off for the binary alternating sequence A_2 with period $s = (01)$ leads to an interesting connection with the quantity $\mathcal{R}(s, \alpha)$ defined in Section II-A. The graph $\hat{G}(s)$ is shown in Figure 5. The maximum-entropy Markov chain with $T_s \in [1, 2]$ has edge transition probabilities p and $1 - p$, corresponding to edge costs 1 and 2, respectively, with average cost $(1 - p) + 2p = 1 + p = T_s$. The entropy $R = h(p)$, and $C(T_s) = h(p) / (1 + p)$. Set $\alpha = T_{\text{crit}}^{-1} = (1 + p)^{-1}$. For $T_s \leq T_{\text{crit}} = 3/2$, or $\alpha \leq 6$, we have $C(T_s) = \alpha h(1/\alpha) = \mathcal{R}(A_2, \alpha)$, where the second equality follows from Theorem 3. We conjecture that this is a special case of a more general result relating $\mathcal{R}(s, \alpha)$ to a combinatorial capacity for fixed average symbol cost, analogous to Theorem 7, and an equivalence between this combinatorial capacity and a corresponding probabilistic capacity. Figure 4 shows a plot of $\mathcal{R}(A_2, \alpha)$ versus α.

To illustrate the application of this analysis to non-alternating periodic sequences, we compare the capacities of the binary synthesis sequences with periods $s_0 = (01), s_1 = (001)$, and $s_2 = (0011)$. For $s_0 = (01)$, we know $C_0 = \log_2 \frac{1 + \sqrt{5}}{2} \approx 0.6942$. For $s_1 = (001)$, we have $C_1 = \log_2 \lambda_1$ where λ_1 is the largest positive root of $\lambda^6 - 4\lambda^3 + 1$. The largest real root $\lambda_1 \approx 1.5511$, so $\log_2 \lambda_1 \approx 0.6333$. Finally, for $s_2 = (0011)$, $C_2 = \log_2 \lambda_2$ where λ_2 is the largest positive root of $\lambda^6 - 6\lambda^4 + 1$. The root is $\lambda_2 \approx 1.5538$ and $C_2 = \log_2 \lambda_2 \approx 0.6358$. As expected, the capacity of the alternating sequence with period s_0 is largest.

The design of efficient DNA synthesis codes will be discussed in a subsequent work. There is a substantial literature on constructing codes for cost-constrained channels. For pointers to the literature, see [19].
REFERENCES

