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Abstract—We present a universal coding scheme, based on
polar codes, that can achieve the compound capacity of any finite
set of binary-input asymmetric channels. The scheme is a hybrid
combination of Honda and Yamamoto’s polar coding scheme
for asymmetric channels and a universal polar coding scheme
for symmetric channels proposed by Hassani and Urbanke. In
the proposed universal construction for the asymmetric setting,
we exploit the staircase structure in the universal scheme for
symmetric channels to define a coding strategy that requires
neither storage-intensive shared boolean functions nor a side-
channel between encoder and decoder in order to transmit bits
corresponding to bit-channels that are not completely polarized.

I. INTRODUCTION

Arikan [1] constructed capacity-achieving codes for bi-
nary input symmetric channels. A capacity-achieving coding
scheme based on source and channel polarization for binary
input asymmetric channels was proposed by Honda and Ya-
mamoto [7] which, following Mondelli et al. [8], we refer to as
the integrated scheme. In this scheme, Boolean functions are
shared between encoder and decoder for non-information car-
rying bit-channels, requiring exponential storage complexity.
En Gad et al. [4] used randomized rounding for low entropy
and not completely polarized bit-channels. In addition, a side
channel was used to reliably transmit bits corresponding to not
completely polarized bit-channels whose fraction is vanishing
with respect to the block length. This reduces the storage
requirement to polynomial complexity. It was noted in [8] that
better simulation results were achieved when an argmax rule
was used in place of randomized rounding to encode low-
entropy bits, an observation subsequently confirmed analyti-
cally by Chou and Bloch [2].

A compound channel is a set of DMCs, (X , {ps(y|x) : s ∈
S},Y) where y ∈ Y for every state s in the set S. The com-
pound channel can be looked at as a DMC with state, where
the state is arbitrarily selected and fixed for the transmission
of an entire block. The assumption is that the decoder knows
the channel state. Hassani and Urbanke [5], [6] presented two
“polar-like” universal coding schemes to achieve rates close
to the compound capacity of binary-input symmetric discrete-
memoryless channels (DMCs). In this paper, we present a
universal polar coding scheme for the asymmetric setting that
combines elements of the integrated scheme in [7] and the
staircase construction in [5], [6] when the compound capacity-
achieving distribution is non-uniform. Our modifications to
these constructions eliminate the need for using either storage-
intensive shared Boolean functions or a separate side channel

to transmit bits corresponding to bit-channels that are not
completely polarized.

In Section II we introduce some notation and recall some
background results. In Section III we reformulate the inte-
grated scheme in [7], [4] for achieving the capacity of binary-
input asymmetric channels. In Section IV we describe the
universal polar coding scheme for binary-input asymmetric
DMCs that uses a modification of the staircase construction
in [5] to simplify the encoding and decoding of incompletely
polarized bit-channels.

II. PRELIMINARIES

In this paper we consider only binary-input asymmetric
DMCs. We denote the input alphabet by X = {0, 1} and the
output alphabet by Y . We express any set of random variables
Xi, Xi+1, ..., Xj (i < j) by a row vector (Xi, Xi+1, ..., Xj)
which is denoted by Xi:j . We denote the set {1, 2, 3, ..., N}
by [N ]. Let U1:N be a row vector and let A ⊂ [N ]. The
row vector consisting of elements in U1:N corresponding to
the subset of positions A in the same order from left to right
is denoted by UA. We use the abbreviation "w.p." for "with
probability".

Let S = {1, 2, ..., s}, s ∈ N, be a set of DMCs
which are characterized by the conditional distributions
pl(y|x), l ∈ S. Let (X1, Yl1), (X2, Yl2), ..., (XN , YlN ) be
i.i.d. random tuples distributed according to PX(x)pl(y|x),
where l ∈ S and N = 2n. Let GN be the conven-
tional polar transformation, represented by a binary ma-
trix of dimension N × N . If U1:N = X1:NGN , then
we denote P(U1:N = u1:N ) by PU1:N (u1:N ) and simi-
larly we denote P(Ui = ui|U1:i−1Y 1:N

l = u1:i−1y1:Nl )
by PUi|U1:i−1Y 1:N

l
(ui|u1:i−1y1:Nl ). For two random variables

(X,Yl) distributed as PX(x)pl(y|x), the Bhattacharya param-
eter is defined as

Z(X|Yl) = 2
∑
y

PY (y)
√
PX|Yl(1|y)PX|Yl(0|y).

Let β < 0.5 and define the following subsets obtained by
polarization, with notation adapted from [4].

HX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≥ 1− 2−N
β

}.

LX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≤ 2−N
β

}.

HX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N
l ) ≥ 1− 2−N

β

}.

LX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N
l ) ≤ 2−N

β

}.



Note that LX ⊆ LX|Yl , l ∈ S. From Theorem 1 in [7] we
have the following results.

lim
N→∞

1

N
|HX | = H(X).

lim
N→∞

1

N
|LX | = 1−H(X).

lim
N→∞

1

N
|HX|Yl | = H(X|Yl).

lim
N→∞

1

N
|LX|Yl | = 1−H(X|Yl).

We define several other subsets of bit-channels as follows.

Il = HX ∩ LX|Yl
Fl = HX ∩ LcX|Yl
D = LX
R = (HX ∪ LX)

c

We refer to these as good, bad, deterministic, and not com-
pletely polarized bit-channels, respectively.

The capacity of a compound channel is well known [3,
p. 170] and is given by

Cc = max
PX(x)

min
l∈S

I(X;Yl).

where (X,Yl) is distributed as PX(x)pl(y|x).

III. POLAR CODE FOR ASYMMETRIC CHANNELS

In this section, we present the capacity-achieving asymmet-
ric channel coding scheme based upon [7], [4], [2] which
is used as a building block in our proposed universal polar
coding scheme. Let the asymmetric DMC be characterized
by p(y|x) and let p(x) be the non-uniform capacity-achieving
input distribution. We use the same notation as in Section
II with the substitution of Y , I and F for Yl, Il and Fl
respectively as we are considering here the single channel case.
Now we describe the encoding and decoding procedure.

A. Code construction

We first generate random function f : F → {0, 1}, where
each f(j), j ∈ F is chosen independently and uniformly.
These frozen bits are shared between encoder and decoder.

We also generate independent random boolean functions
λi : {0, 1}i−1 → {0, 1} for each i ∈ R by using the following
probability rule:
λi(u

1:i−1) = u w.p. PUi|U1:i−1(u|u1:i−1), for u ∈ {0, 1}

independently for each u1:i−1. Let the set of random func-
tions be denoted by λR. These functions are shared between
encoder and decoder, which can require exponential storage
complexity.

Encoding
Input: randomly chosen message M1:|I|

Output: codeword X1:N

for i = 1 : N , encode Ui as follows.

1. If i ∈ I , the value of Ui is given by setting U I = M1:|I|.
2. If i ∈ F , we set Ui = f(i).
3. If i ∈ D, we encode Ui using the argmax rule [2]

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

4. If i ∈ R, we set Ui = λi(U
1:i−1).

end
Transmit X1:N = U1:NGN .

The decoding algorithm is as follows.

Decoding
Input: received vector Y 1:N

Output: message estimate M̂1:|I|

for i = 1 : N
1. If i ∈ F , set Ûi = f(i)
2. If i ∈ LX ∪ I , set
Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1, Y 1:N ) ≥

PUi|U1:i−1,Y 1:N (0|Û1:i−1, Y 1:N )}
3. If i ∈ R, set Ûi = λi(Û

1:i−1).
end
Decode M̂ = Û I .

For i ∈ D, the induced conditional distribution δi(u|u1:i−1)
on Ui given U1:i−1 satisfies δi(u|u1:i−1) = 1 and δi(u +
1|u1:i−1) = 0 where

u = argmaxx∈{0,1}PUi|U1:i−1(x|u1:i−1).

The ensemble average distribution of U1:N is
E(λR,f)[P(U1:N = u1:N |(λR, f))]

= 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1).

This average distribution is O(2−N
β′

) close in total variation
distance to the distribution when X1:N is an i.i.d. random
vector, for β′ < 0.5. Therefore, the decoding method is reli-
able, with average probability of error E(λR,f)[Pe(λR, f)] =

O(2−N
β′

) [7]. In [4], use of a side-channel is proposed
for bit-channels (HX ∪ LX|Y )c as an alternative to sharing
boolean functions. In contrast to [4] we propose sharing
boolean functions for bit-channels (HX ∪ LX)c to enable
the use of this scheme for universal coding. The quanti-
ties PUi|U1:i−1(u|u1:i−1) and PUi|U1:i−1,Y 1:N (u|u1:i−1, y1:N )
used during encoding and decoding can be computed in
O(N logN) real operations using techniques in [7].

IV. UNIVERSAL SCHEME FOR ASYMMETRIC CHANNELS

Let p(x) be the non-uniform compound capacity-achieving
distribution for compound channel S. Consider the good bit-
channels Il and bad bit-channels Fl for l ∈ S, as well as
the deterministic channels D and not competely polarized
channels R. Note that |R| is a vanishing fraction of the block
length as N increases.

Let L = min{|I1|, |I2|..., |Is|}. Clearly, limN→∞
L
N = Cc.

If the inequality |I1 ∩ I2 ∩ ... ∩ Is| ≤ L is strict, then not all
channels in the set S share the same set of good bit-channels.



By assigning message bits to indices in I1∩I2∩...∩Is, uniform
random frozen bits to indices in HX − (I1 ∩ I2 ∩ ... ∩ Is),
and encoded bits derived using the same coding scheme as
in Section III, we can get a reliable code, but it will not be
capacity-achieving.

Note that Fl ∪ Il = HX for all l ∈ S. This implies that
for any channels l,m ∈ S, l 6= m, a bit-channel which is
good for channel l and not good for channel m will be a bad
bit-channel for channel m. This fact will enable us to adapt
the universal coding scheme for symmetric channels [5] to
the asymmetric case and to construct codes that achieve rates
close to L

N .
As in [5], [6], we use a staircase composed of polar blocks to

achieve rates close to L
N and universality. We exploit the stair-

case structure to avoid sharing storage-intensive boolean func-
tions bits corresponding to not completely polarized indices in
R. To do so, we initially assume |I1 ∩ I2 ∩ ....∩ Is| ≥ |R|, an
assumption that will be relaxed later (see Remark IV-B.2).
Take I ′ to be a subset of I1 ∩ I2 ∩ .... ∩ Is such that
|I ′| = |R|. Define an arbitrary bijection g : I ′ → R. Let
L′ = min{|I1|, |I2|, ....|Is|} − |I ′|.

A. Code construction

Generate a random frozen vector W 1:N such that

P(W 1:N = u1:N ) =

2−(|HX |)Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1).

The vector W 1:N is shared between encoder and decoder.
Let us assume that there is a linear MDS code M with
blocklength |HX | − |R| over a field GF (2q) for some q ∈ N,
and consider its equivalent binary linear code representation.
We will make us of the following result to achieve universality
in our construction.

Lemma 1. Let G be the generator matrix of the linear MDS
codeM over GF (2q). If G does not have a zero column, then
any position in the binary representation of codewords of M
will have an equal number of zeros and ones.

Proof: Let j be any column of G. Since it is non-zero,
it has a non-zero entry gij ∈ GF (2q). The jth position of
the codeword corresponding to message [0, . . . ,mi, . . . , 0] will
be migij . A mi ranges over all elements of GF (2q), migij
also does. Therefore the binary representation of this codeword
entry ranges over all possible binary q-tuples. This ensures
that for any position in the binary representation of M there
exists a codeword which has the value 1 in that position. Due
to linearity of the equivalent binary representation, we must
have an equal number of zeros and ones in that position.

We arrange polar blocks of size N , for N sufficiently large,
in a staircase with height N . We extend the staircase by
placing k ∈ N such staircases side-by-side. Now take q such
extended staircases, graphically placed one above the other,
as illustrated in Fig. 1 for the case N = 6, k = 3, and
q = 2. While encoding we fill all the polar blocks column-
by-column from left to right in the staircase structure, and we
follow the same order for decoding. Hence we encode/decode

Fig. 1. Extended staircases with k=3, N=6 and q =2

different polar blocks in parallel while encoding/decoding a
column. The total number of columns is (k + 1)N − 1, and
we label them with indices 1 : (k + 1)N − 1 from left to
right. Our goal is to encode each polar block in the staircase
with the same ensemble average distribution as we produced
in the asymmetric channel coding so that decoding will be
reliable. The encoding and decoding schemes are as follows.

Encoding
Input: qL′ information bits for each full column.
Output: U1:N of each polar block in the staircase.

• To encode non-full-height columns on the left from t =
1 : N −1, we assign Ui = Wi for the block with channel
index i in that column. Repeat this for all q staircases.
This step ensures that the prefix part of the polar blocks
satisfies the required ensemble average distribution.

• To encode full-height columns from t = N ≤ i ≤ kN :
– First, encode the blocks with index i ∈ LX in

column t using the argmax rule. Repeat this for all
q staircases. This maintains the required conditional
distribution for these indices.

– Second, encode the blocks with index i ∈ R in
column t using the randomized rounding rule, i.e.,
Ui = u w.p. PUi|U1:i−1(u|U1:i−1) for d ∈ {0, 1}.
Repeat this for all q staircases. This will maintain
the required conditional distribution. Since these are
randomly generated, we use the inverse function g−1

to copy these bits to I ′ ⊆ I1 ∩ I2 ∩ ... ∩ Is where
they can be reliably decoded.

– Third, finish encoding the blocks with index i ∈ I ′
by assigning Ui = X ⊕U ′g(i), where U ′g(i) is the bit
copied from the block with index g(i) ∈ R and X
is the parity of the information bits corresponding
to that column. We do the same for all q staircases.
This maintains the distribution of the indices in HX
and also ensures the independence from previously
encoded bits of the polar block. This is the key
step of the construction, since direct use of U ′g(i) to
encode Ui would not satisfy the required distribution.

– Fourth, encode the blocks with indices i ∈ HX − I ′.



Fig. 2. Full-height column structure: X is the parity of the information bits
of the column and U is the encoded bit in the block with index g(i) in the
column.

∗ Encode qL′ information bits (equivalent to L′

symbols over GF (2q)) into codeword m in the
binary representation of M.

∗ Fill blocks with indices in i ∈ HX − I ′ in all q
staircases with codeword m as shown in Fig. 2.
By Lemma 1, a uniform distribution is guaranteed
for these positions, as required for indices in HX .
Since m depends only on the information bits of
the current column, independence from previously
encoded bits of the polar block is also guaranteed.

• To encode non-full-height columns t = kN + 1 : (k +
1)N − 1 on the right, we generate all bits randomly to
satisfy the distribution of the polar block. This is done as
follows:

– For blocks with index i ∈ HX generate Ui indepen-
dently and uniformly.

– For blocks with index i ∈ R, generate Ui = u w.p.
PUi|U1:i−1(u|U1:i−1), for u ∈ {0, 1}.

– For blocks with index i ∈ LX use argmax rule.
• Transmit X1:N = U1:NGN for each polar block.

Decoding
Input: Received vector Y 1:N for each block.
Output: Estimates of encoded information bits.
• To decode non-full-height columns on the left from
t = 1 : N − 1, we estimate Ûi = Wi for the block
with channel index i in that column. Repeat this for all
q staircases.

• To decode full-height columns from t = N ≤ i ≤ kN :
– First, decode the blocks with index i ∈ LX ∪ I ′

in column t using standard successive cancellation
decoding. This is possible since these indices are
either good for all channels or deterministic.

– Second, decode the blocks with index in HX − I ′:
∗ Decode the L′ symbols from the good indices

based on the channel that is selected. Let C be
the partially recovered codeword.

∗ The codeword m̂ can be recovered from c since
it is an MDS codeword, providing an estimate of

qL′ information bits corresponding to the column.
Let X̂ be the parity of the decoded information
bits in the column.

– Last, decode blocks with index i ∈ R by estimating
Ûi = X̂ ⊕ Û ′g−1(i) where Û ′g−1(i) is the already
decoded bit corresponding to the block with index
g−1(i) ∈ I ′ ih the same column.

• Ignore and do not decode non-full-height columns t =
kN + 1 : (k + 1)N − 1 on the right. Note that this will
not block further decoding.

Note that we encoded L′q information bits only in full-height
columns. Hence we get the rate L′

N for each full-height column.
Since |I

′|
N is diminishing, the rate for each such column will

be close to L
N . Also, as k increases, only full-height columns

will constitute a significant fraction of the code bits. The exact
relation between achievable rate R and k can be found in
[5], [6].

Now we derive an upper bound on q, which also upper
bounds the total number of polar blocks in the staircase
structure. If we consider a Reed-Solomon (RS) code as the
linear MDS code over GF (2q), the blocklength of the code
should divide 2q − 1. We bound q as follows.
• If |HX | − |R| is odd:

By Euler’s Theorem, q can take value φ(|HX | − |R|)
where φ is Euler’s totient function. Therefore q ≤
φ(|HX | − |R|) ≤ |HX | − |R| ≤ N .

• If |HX | − |R| is even:
Use a RS code of blocklength (|HX | − |R|) − 1. Then
q ≤ N since the blocklength is odd. Fill the remaining
position with the parity of the information bits to maintain
the distribution of the set HX in all q staircases and
modify the scheme accordingly.

The description of the coding scheme indicates why each polar
block will satisfy the required distribution. The following theo-
rem charaterizes the probabiity of error and encoding/decoding
complexity of the scheme.

Theorem 1.
1. For every polar block (U1:N ) encoded in the staircase
EW 1:N [P(U1:N = u1:N |W 1:N )] =
2−(|HX |)Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1).
2. The average probability of error is EW 1:N [Pe(W

1:N )] =

NqkO(2−N
β

) for β < 0.5.
3. Encoding and decoding take O((log2N)qlog2 3−1) and
O((log2N)

2
qlog2 3−1) binary operations per bit, respectively.

Encoding and decoding also take O(log2N) real operations
per bit.

Proof Refer to the Appendix.

B. Remarks
1 We used a linear MDS code to satisfy the distribution

for each block. In the symmetric channel construction,
linearity is not required.

2 If the condition |I1∩I2∩....∩Is| ≥ |R| does not hold, we
can use the universalizing technique based on polarizing



indices [5] with the required number of recursions
to produce a partially universalized block that satisfies
the desired condition. We can then use this partially
universalized block in the staircase structure.

V. CONCLUSION

We presented a universal polar coding scheme for a com-
pound channel defined by a finite set of binary-input asym-
metric DMCs with non-uniform compound capacity-achieving
input distribution. The proposed scheme exploits the underly-
ing staircase structure in the code construction to avoid the
need for either side-channel transmission or storage-intensive
Boolean functions for bits corresponding to not completely
polarized bit-channels. The scheme requires a large block
length, leaving open the problem of designing codes with short
block length. Another open problem is the construction of a
stronger universal polar code with reduced storage complexity,
which achieves rate R less than compound capacity with
non-uniform compound capacity-achieving input distribution
p(x) and also achieves rate R for any channel whose mutual
information evaluated at p(x) is larger than R.
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APPENDIX A
PROOF OF THEOREM 1

We summarize the important steps of the proof. Details are
omitted due to space constraints.
Step 1: Consider any polar block in the extended staircase
structure which lies completely in the full-height column
region. This polar block corresponds to N distinct full-height
columns. To get the distribution on encoded codeword U1:N

for such a block, we first compute the conditional distribution
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) for all i in the block.
If i ∈ LX , then by the encoding rule
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = δi(ui|u1:i−1).
If i ∈ R, then by the encoding rule
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = PUi|U1:i−1(ui|u1:i−1).
If i ∈ HX − I ′. then by Lemma 1
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = 0.5.
If i ∈ I ′, then by the encoding rule
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = 0.5.
Now Ui is encoded as X ⊕ Y where X is the parity of the
information bits in the column which are Bernoulli(0.5) and
independent of Y , which, in turn, is Bernoulli(p) for some p,
but dependent on the previously encoded columns. It follows
that Ui is a Bernoulli(0.5) random variable and independent
of previous columns. Together, these properties imply that, for
an encoded block belonging to full-height columns, U1:N is
distributed as
P(U1:N = u1:N |W 1:N )

= Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N )

= 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1)

(1)

Hence we get the required ensemble average distribution for
such blocks.
Step 2: Consider a polar block which is partly in the non-full-
height region on the right side. For Ui in a full-height column
regime, the conditional probability rule is the same as above.
For Ui in a non-full-height column, by the encoding rule we
get the required conditional distribution. Therefore, we get the
same ensemble average distribution of U1:N as above.
Step 3: Now consider a block which is partly in the non-full-
height column region on the left of the staircase structure and
partly in the full- height region. Let H be the index set of the
non-full-height region, with encoded bit Wi corresponding to
the index i. Then

EW 1:N [1(∩i∈H(ui = Wi))]

(a)
= 2−|H∩HX |Πi∈LX∩Hδi(ui|u1:i−1)Πi∈R∩H

PUi|U1:i−1(ui|u1:i−1)

(2)

where (a) follows by marginalizing over the distribution of
W 1:N . For Ui in the full-height columns, the required con-
ditional distribution is maintained as discussed in the earlier
steps. By combining everything, we get the required ensemble
average distribution of U1:N for these blocks as well. This con-
cludes the proof of part 1. The average probability of error for
each polar block is bounded in a similar manner to the proof of
Theorem 3 in [7] once we have the required ensemble average
distribution. Hence we get part 2 by using the union bound.
Encoding and decoding a polar block takes O(N log2N) real
operations. Encoding and decoding a RS codeword can be
done in O(L′ log2 L

′) and O(L′(log2 L
′)2) operations over

GF(2q) respectively. Addition and multiplication over this field
takes q and qlog2 3 binary operations respectively. One RS
codeword corresponds to Nq bits in the extended staircase.
This concludes part 3.


