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Abstract—Linear programming (LP) decoding approximates
maximum-likelihood (ML) decoding of a linear block code by
relaxing the equivalent ML integer programming (IP) problem
into a more easily solved LP problem. The LP problem is defined
by a set of box constraints together with a set of linear inequalities
called “parity inequalities” that are derived from the constraints
represented by the rows of a parity-check matrix of the code and
can be added iteratively and adaptively. In this paper, we first
derive a new necessary condition and a new sufficient condition
for a violated parity inequality constraint, or “cut,” at a point
in the unit hypercube. Then, we propose a new and effective
algorithm to generate parity inequalities derived from certain
additional redundant parity check (RPC) constraints that can
eliminate pseudocodewords produced by the LP decoder, often
significantly improving the decoder error-rate performance. The
cut-generating algorithm is based upon a specific transformation
of an initial parity-check matrix of the linear block code. We
also design two variations of the proposed decoder to make it
more efficient when it is combined with the new cut-generating
algorithm. Simulation results for several low-density parity-check
(LDPC) codes demonstrate that the proposed decoding algorithms
significantly narrow the performance gap between LP decoding
and ML decoding.

Index Terms—Iterative decoding, linear codes, linear program-
ming (LP) decoding, low-density parity-check (LDPC) codes, max-
imume-likelihood (ML) decoding, pseudocodewords.

I. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes were first
introduced by Gallager in the 1960s [1], together with
a class of iterative decoding algorithms. Later, in the 1990s,
the rediscovery of LDPC codes by MacKay and Neal [2], [3]
launched a period of intensive research on these codes and their
decoding algorithms. Significant attention was paid to iterative
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message-passing (MP) decoders, particularly belief propaga-
tion (BP) [4] as embodied by the sum-product algorithm (SPA)
[5].

Despite the unparalleled success of iterative decoding in prac-
tice, it is quite difficult to analyze the performance of such iter-
ative MP decoders due to the heuristic nature of their message
update rules and their local nature. An alternative approach,
linear programming (LP) decoding, was introduced by Feldman
et al. [6] as an approximation to maximum-likelihood (ML) de-
coding.

Many theoretical and empirical observations suggest similar-
ities between the performance of LP and MP decoding methods.
For example, graph-cover decoding can be used as a theoretical
tool to show the connection between LP decoding and iterative
MP decoding [7].

However, there are some key differences that distinguish LP
decoding from iterative MP decoding. One of these differences
is that the LP decoder has the ML certificate property, i.e., it is
detectable if the decoding algorithm fails to find an ML code-
word. When it fails to find an ML codeword, the LP decoder
finds a noninteger solution, commonly called a pseudocode-
word. Another difference is that while adding redundant parity
checks (RPCs) satisfied by all the codewords can only improve
LP decoding, adding RPCs may have a negative effect on MP
decoding, especially in the waterfall region, due to the creation
of short cycles in the Tanner graph. This property of LP de-
coding allows improvements by tightening the LP relaxation,
i.e., reducing the feasible space of the LP problem by adding
more linear constraints from RPCs.

In the original formulation of LP decoding proposed by
Feldman et al., the number of constraints in the LP problem
is linear in the block length but exponential in the maximum
check node degree, and the authors also argued that the number
of useful constraints could be reduced to polynomial in code
length. The computational complexity of the original LP for-
mulation, therefore, can be prohibitively high, motivating the
design of computationally simplified decoding algorithms that
can achieve the same error-rate performance with a smaller
number of constraints. For example, efficient polynomial-time
algorithms can be used for solving the original LP formulation
[8]. An alternative LP formulation whose size is linear in
the check node degree and code length can also be obtained
by changing the graphical representation of the code [9],
[10]; namely, all check nodes of high degree are replaced by
dendro-subgraphs (trees) with an appropriate number of auxil-
iary degree-3 check nodes and degree-2 variable nodes. Several
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other low-complexity LP decoders were also introduced in
[11], suggesting that LP solvers with complexity similar to the
min-sum algorithm and the SPA are feasible.

Another approach is to add linear constraints in an adaptive
and selective way during the LP formulation [12]. Such an adap-
tive linear programming (ALP) decoding approach also allows
the adaptive incorporation of linear constraints generated by
RPCs into the LP problem, making it possible to reduce the
feasible space and improve the system performance. A linear
inequality derived from an RPC that eliminates a pseudocode-
word solution is referred to as a “cut.”

An algorithm proposed in [12] uses a random walk on a subset
of the code factor graph to find these RPC cuts. However, the
random nature of this algorithm limits its efficiency. In fact, ex-
periments show that the average number of random trials re-
quired to find an RPC cut grows exponentially with the length
of the code.

Recently, the authors of [13] proposed a separation algorithm
(SA) that derives Gomory cuts from the integer programming
(IP) formulation of the decoding problem and finds cuts from
RPCs which are generated by applying Gaussian elimination to
the original parity-check matrix. In [14], a cutting-plane method
was proposed to improve the fractional distance of a given bi-
nary parity-check matrix—the minimum weight of nonzero ver-
tices of the fundamental polytope—by adding redundant rows
obtained by converting the parity-check matrix into row echelon
form after a certain column permutation. However, we have ob-
served that the RPCs obtained by the approach in [14] are not
able to produce enough cuts to improve the error-rate perfor-
mance relative to the SA when they are used in conjunction with
either ALP decoding or the SA. A detailed survey on mathemat-
ical programming approaches for decoding binary linear codes
can be found in [15].

In this paper, we greatly improve the error-correcting perfor-
mance of LP decoding by designing algorithms that can effi-
ciently generate cut-inducing RPCs and find possible cuts from
such RPCs. First, we derive a new necessary condition and a
new sufficient condition for a parity check to provide a cut at a
given pseudocodeword. These conditions naturally suggest an
efficient algorithm that can be used to find, for a given pseu-
docodeword solution to an LP problem, the unique cut (if it
exists) among the parity inequalities associated with a parity
check. This algorithm was previously introduced by Taghavi et
al. [16, Algorithm 2] and, independently and in a slightly dif-
ferent form, by Wadayama [17, Fig. 6].

The conditions also serve as the motivation for a new, more
efficient adaptive cut-inducing RPC generation algorithm that
identifies useful RPCs by performing specific elementary row
operations on the original parity-check matrix of the binary
linear code. By adding the corresponding linear constraints into
the LP problem, we can significantly improve the error-rate
performance of the LP decoder, even approaching the ML
decoder performance in the high-SNR region for some codes.
Finally, we modify the ALP decoder to make it more efficient
when being combined with the new cut-generating algorithm.
Simulation results demonstrate that the proposed decoding
algorithms significantly improve the error-rate performance of
the original LP decoder.
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The remainder of this paper is organized as follows. In
Section II, we review the original formulation of LP decoding
and several adaptive LP decoding algorithms. Section III
presents the new necessary condition and new sufficient
condition for a parity-check to induce a cut, as well as their
connection to the efficient cut-search algorithm (CSA). In
Section IV, we describe our proposed algorithm for finding
RPC-based cuts. Section V presents our simulation results, and
Section VI concludes this paper.

II. LP DECODING AND ADAPTIVE VARIANTS

A. LP Relaxation of ML Decoding

Consider a binary linear block code C of length » and a cor-
responding m X n parity-check matrix H. A codewordy € C
is transmitted across a memoryless binary-input output-sym-
metric channel, resulting in a received vector r. Assuming that
the transmitted codewords are equiprobable, the ML decoder
finds the solution to the following optimization problem (see,
e.g., [12]):

minimize % u

subject to unweC (1)

where u; € {0,1}, and ~y is the vector of log-likelihood ratios
(LLR) defined as

low Pr(R; =ri|u; =0)
V=08 PI‘(RZ':7‘1;|U¢:1) )

2)

Since the ML decoding problem (1) is an IP problem, it is de-
sirable to replace its integrality constraints with a set of linear
constraints, transforming the IP problem into a more readily
solved LP problem. The desired feasible space of the corre-
sponding LP problem should be the codeword polytope, i.¢., the
convex hull of all the codewords in C. With this, unless the cost
vector of the LP decoding problem is orthogonal to a face of the
constraint polytope, the optimal solution is one integral vertex of
its codeword polytope, in which case it is the same as the output
of the ML decoder. When the LP solution is not unique, there is
at least one integral vertex corresponding to an ML codeword.
However, the number of linear constraints typically needed to
represent the codeword polytope increases exponentially with
the code length, which makes such a relaxation impractical.

As an approximation to ML decoding, Feldman et al. [6],
[8] relaxed the codeword polytope to a polytope now known
as fundamental polytope [7], denoted as P(H), which depends
on the parity-check matrix H.

Definition 1 (Fundamental Polytope [7]): Let us define

C;2 {x € F}|(x,h;) = 0 (in F5)} (3)

where h; is the jth row of the parity-check matrix H and 1 <
j < m. Thus, C; is the set of all binary vectors satisfying the
Jjth parity-check constraint. We denote by conv(C;) the convex
hull of C; in R™, which consists of all possible real convex com-
binations of the points in C;, now regarded as points in R™. The
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fundamental polytope P(H) of the parity-check matrix H is de-
fined to be the set

P (H) = () conv (C;). 4)

Therefore, LP decoding can be written as the following opti-
mization problem:

7'u
subject to u € P(H). ®)

minimize

The solution of the aforementioned LP problem corresponds
to a vertex of the fundamental polytope that minimizes the cost
function. Since the fundamental polytope has both integral and
nonintegral vertices, with the integral vertices corresponding
exactly to the codewords of C [6], [7], if the LP solver outputs
an integral solution, it must be a valid codeword and is guar-
anteed to be an ML solution, which is called the ML certificate
property. The nonintegral solutions are called pseudocode-
words. Since the fundamental polytope is a function of the
parity-check matrix H used to represent the code C, different
parity-check matrices for C may have different fundamental
polytopes. Therefore, a given code has many possible LP-based
relaxations, and some may be better than others when used for
LP decoding.

The fundamental polytope can also be described by a set of
linear inequalities, obtained as follows [6]. First of all, for a
point u within the fundamental polytope, it should satisfy the
box constraints such that 0 < u; < 1, for? = 1,...,n. Then,
let N(7) C {1,2,...,n} be the set of neighboring variable
nodes of the check node j in the Tanner graph, that is, N'(j) =
{i : H;; = 1} where H;; is the element in the jth row and
ith column of the parity-check matrix, H. For each row j =
1,...,m of the parity-check matrix, corresponding to a check
node in the associated Tanner graph, the linear inequalities used
to form the fundamental polytope P(H) are given by

Z(l — ;) +

eV

> w21, VYV CN(), with |V] odd
FEN (VY
(6)

where for a set &', |X'| denotes its cardinality. It is easy to see
that (6) is equivalent to

S

iV

D wi V-1, YV CN(), with [V] odd.
IEN NV
(7

Note that, for each check node 7, the corresponding inequalities
in (6) or (7) and the linear box constraints exactly describe the
convex hull of the set C;.

The linear constraints in (6) [and therefore also (7)] are
referred to as parity inequalities, which are also known as
forbidden set inequalities [6]. It can be easily verified that these
linear constraints are equivalent to the original parity-check
constraints when each u; takes on binary values only.

Proposition 1 ([6, Th. 4]): The parity inequalities of the form
(6) derived from all rows of the parity-check matrix H and the

box constraints completely describe the fundamental polytope
P(H).
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With this, LP decoding can also be formulated as follows:

minimize v u
subject to 0 < u; <1, for all i

Nl-u)+ D w>1 (8)

ey iENTH\V
for all 7,V CN(j), with |V| odd.

In the following parts of this paper, we refer to the aforemen-
tioned formulation of LP decoding problem based on the funda-
mental polytope of the original parity-check matrix as the orig-
inal LP decoding.

B. ALP Decoding

In the original formulation of LP decoding presented in [6],
every check node j generates 2N (i)I-1 parity inequalities that
are used as linear constraints in the LP problem described in
(8). The total number of constraints and the complexity of the
original LP decoding problem grow exponentially with the max-
imum check node degree. So, even for binary linear codes with
moderate check degrees, the number of constraints in the orig-
inal LP decoding could be prohibitively large. In the literature,
several approaches to reducing the complexity of the original
LP formulation have been described [8]-[12]. We will use ALP
decoding [12] as the foundation of the improved LP decoding al-
gorithms presented in later sections. The ALP decoder exploits
the structure of the LP decoding problem, reflected in the state-
ment of the following lemma.

Lemma 1 ([12, Th. 1]): If at any given point u € [0,1]"
one of the parity inequalities introduced by a check node j is
violated, the rest of the parity inequalities from this check node
are satisfied with strict inequality.

Definition 2: Given a parity-check node j, a set ¥V C N(7)
of odd cardinality, and a vector n € [0, 1]™ such that the corre-
sponding parity inequality of the form (6) or (7) does not hold,
we say that the constraint is violated or, more succinctly, a cut
at u.!

In [12], an efficient algorithm for finding cuts at a vector u €
[0, 1]™ was presented. It relies on the observation that violation
of a parity inequality (7) at u implies that

VI-1<> u < |V ©)
and 1%
0< > w<uy, forall veV (10)
LEN(H\V

where V is an odd-sized subset of (7).

Given a parity check 7, the algorithm first puts its neighboring
variables in u into nonincreasing order, i.e., u;, > ... > u; ,
for u;, € N(j). It then successively considers subsets of odd
cardinality having the form V = {u;,....,u;, ., } € N(j),in-
creasing the size of V by 2 each step, until a cut (if one exists) is

In the terminology of [15], if (7) does not hold for a pseudocodeword u,
then the vector (r,¢) € R™ X R, wherer, = 1 foralli € V,r; = —1 for all
i € N(j)\V, r; = 0 otherwise, and ¢ = |V| — 1, is a valid cut, separating u
from the codeword polytope.
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found. This algorithm can find a cut among the constraints cor-
responding to a check node j by examining at most [N {(7)|/2
inequalities, rather than exhaustively checking all 2N GI-1 .
equalities in the original formulation of LP decoding.

The ALP decoding algorithm starts by solving the LP
problem with the same objective function as (1), but with only
the following constraints:

0 < uy,

{ui S 17

The solution of this initial LP problem can be obtained simply
by making a hard decision on the components of a received
vector. The ALP decoding algorithm starts with this point,
searches every check node for cuts, adds all the cuts found
during the search as constraints into the LP problem, and solves
it again. This procedure is repeated until an optimal integer
solution is generated or no more cuts can be found (see [12]

for more details). Adaptive LP decoding has exactly the same
error-correcting performance as the original LP decoding.

ify; >0

ity < 0. an

III. CuT CONDITIONS

In this section, we derive a necessary condition and a suffi-
cient condition for a parity inequality to be a cut atu € [0,1]™.
We also show their connection to the efficient cut-search algo-
rithm (CSA) proposed by Taghavi ef al. [16, Algorithm 2] and
Wadayama [17, Fig. 6]. This algorithm is more efficient than the
search technique from [12] that was mentioned in Section II.

Consider the original parity inequalities in (6) given by
Feldman et al. in [6]. If a parity inequality derived from check
node j induces a cut at u, the cut can be written as

Z(l—qu)—F Z u; < 1,

Y tEN(GN\V

(12)

for some V C N (j) with [V] odd.
From (12) and Lemma 1, we can derive the following neces-
sary condition for a parity-check constraint to induce a cut.

Theorem 1: Given a nonintegral vector u and a parity check
JrletS = {i € N(j)|0 < w; < 1} be the set of nonintegral
neighbors of j in the Tanner graph, andlet7 = {7 € N (§)|u; >
%} A necessary condition for parity check 7 to induce a cut at
uis

SN-uw)+ > w<l (13)
€T EN(GNT
This is equivalent to
1 1
——u > =S| -1 14
Do |5 wl > 50 IS| (14)

€S

where, for z € R, |z| denotes the absolute value.
Proof: Fora given vector u and a subset X C A7), define
the function
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If parity check j incudes a cut at u, there must be a set V C
N(4) of odd cardinality such that (12) holds. This means that
g (Veut) < 1. Now, it is easy to see that the set 7 minimizes the
function g (X), from which it follows that g (7) < g (Ve ) <
1. Therefore, inequality (13) must hold in order for parity check
7 to induce a cut.

For% < u; <1, we have

S

€S

or equivalently

1 1
5.|5|—42 g Ui <1
€S
which implies inequality (14). |

Remark 1: Theorem 1 shows that to see whether a parity-
check node could provide a cut at a pseudocodeword u we only
need to examine its fractional neighbors.

Reasoning similar to that used in the proof of Theorem 1
yields a sufficient condition for a parity-check node to induce
a cut at u.

Theorem 2. Given a nonintegral vector u and a parity check
LletS={i e N0 <wu; <1}and T = {i € N(j)|u; >
+}. If the inequality

1
——u <1

5 (15)

Z(l—’llq‘,)-l— Z ui+2-Iiréi§1

ieT PENGNT

holds, there must be a violated parity inequality derived from
parity check 7. This sufficient condition can be written as

1
— — U

2

>

€S

— 2 -1min
i€S

1
> 5181 (16

1
g U

Proof: Lemma 1 implies that if parity check 5 gives a cut
at u, then there is at most one odd-sized set V C N(j) that
satisfies (12). From the proof of Theorem 1, we have g (7) <
g (X) for all ¥ C AN(j). If |[7] is even, we need to find one
element i* € A(4) such that inserting it into or removing it
from 7" would result in the minimum increment to the value of
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L , and the increment

g (7). Obviously, i* = arg min |5

€N (5)
is 2 - |% — u;+|. If more than one ¢ minimizes the expression
| % — ui|, we choose one arbitrarily as ¢*. Hence, setting

_ [T\,
V‘{Tuww

ifi* e 7
, ifi* ¢ T
we have g (V) = g(T) + 2+ |5 — wi| > g(7). If inequality
(15) holds, then g (7)) < g (V) < 1. Since either | 7| or |V] is
odd, (15) is a sufficient condition for parity-check constraint 7
to induce a cut at u. Arguing as in the latter part of the proof of
Theorem 1, it can be shown that (15) is equivalent to (16). W

Theorems 1 and 2 provide a necessary condition and a suffi-
cient condition, respectively, for a parity-check node to produce
a cut at any given vector u. It is worth pointing out that (13) be-
comes a necessary and sufficient condition for a parity check
to produce a cut when |7| is odd, and (15) becomes a neces-
sary and sufficient condition when |7 | is even. Together, they
suggest a highly efficient technique for finding cuts, the CSA
described in Algorithm 1. If there is a violated parity inequality,
the CSA returns the set V corresponding to the cut; otherwise,
it returns an empty set.

Algorithm 1 Cut-Search Algorithm (CSA)

Input: parity-check node 3 and vector u
Output: variable node set V
LYV —T={ieN({lu>3ilandS — {i e N(j)|0 <

u; < 1}

2:if |V| is even then

3: if S # () then

4 i* «— arg Ii]féiél ‘% —u,

5:  else

6: i* « arbitrary ¢ € N(j)

7:  endif

8 if:* € V then

9: V — VA {i*}

10: else

11: YV — VU {i*}

12: end if

13: end if

14:9f > (1 —u;)+ > u; <1then
eV 1EN(H\V

15:  Found the violated parity inequality on parity-check
node j

16: else

17:  There is no violated parity inequality on parity-check
node j

18: V10

19: end if

20: return V

As mentioned previously, the CSA was used by Taghavi et
al. [16, Algorithm 2] in conjunction with ALP decoding, and
by Wadayama [17, Fig. 6] as a feasibility check in the context
of interior point decoding. In addition to providing another per-
spective on the CSA, the necessary condition and sufficient con-
dition proved in Theorems 1 and 2, respectively, serve as the
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basis for a new adaptive approach to finding cut-inducing RPCs,
as described in Section IV.

IV. LP DECODING WITH ADAPTIVE
CUT-GENERATING ALGORITHM
A. Generating RPCs

Although the addition of a redundant row to a parity-check
matrix does not affect the F2-nullspace and, therefore, the linear
code it defines, different parity-check matrix representations
of a linear code may give different fundamental polytopes un-
derlying the corresponding LP relaxation of the ML decoding
problem. This fact inspires the use of cutting-plane techniques
to improve the error-correcting performance of the original LP
and ALP decoders. Specifically, when the LP decoder gives a
nonintegral solution (i.e., a pseudocodeword), we try to find
the RPCs that introduce cuts at that point, if such RPCs exist.
The cuts obtained in this manner are called RPC cuts. The
effectiveness of this method depends on how closely the new
relaxation approximates the ML decoding problem, as well
as on the efficiency of the technique used to search for the
cut-inducing RPCs.

An RPC can be obtained by modulo-2 addition of some of
the rows of the original parity-check matrix, and this new check
introduces a number of linear constraints that may give a cut. In
[12], a random walk on a cycle within the subgraph defined by
the nonintegral entries in a pseudocodeword served as the basis
for a search for RPC cuts. However, there is no guarantee that
this method will find a cut (if one exists) within a finite number
ofiterations. In fact, the average number of random trials needed
to find an RPC cut grows exponentially with the code length.

The IP-based SA in [13] performs Gaussian elimination on a
submatrix comprising the columns of the original parity-check
matrix that correspond to the nonintegral entries in a pseu-
docodeword in order to get RPCs. In [14], the RPCs that
potentially provide cutting planes are obtained by transforming
a column-permuted version of the submatrix into row echelon
form. The chosen permutation organizes the columns according
to descending order of their associated nonintegral pseudocode-
word entries, with the exception of the column corresponding
to the largest nonintegral entry, which is placed in the rightmost
position of the submatrix [14, p. 1010]. This approach was
motivated by the fact that a parity check j provides a cut at a
pseudocodeword if there exists a variable node in A/'{(j) whose
value is greater than the sum of the values of all of the other
neighboring variable nodes [14, Lemma 2]. However, when
combined with ALP decoding, the resulting “cutting-plane
algorithm” does not provide sufficiently many cuts to surpass
the SA in error-rate performance.

Motivated by the new derivation of the CSA based on
the conditions in Theorems 1 and 2, we next propose a new
algorithm for generating cut-inducing RPCs. When used with
ALP decoding, the cuts have been found empirically to achieve
near-ML decoding performance in the high-SNR region for
several short-to-moderate length LDPC codes. However, ap-
plication of these new techniques to codes with larger block
lengths proved to be prohibitive computationally, indicating
that further work is required to develop practical methods for
enhanced LP decoding of longer codes.
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Given a nonintegral solution of the LP problem, we can see
from Theorems 1 and 2 that an RPC with a small number of
nonintegral neighboring variable nodes may be more likely to
satisfy the necessary condition for providing a cut at the pseu-
docodeword. Moreover, the nonintegral neighbors should have
values either close to 0 or close to 1; in other words, they should
be as far from % as possible.

Letp = (p1.p2....,pn) € [0,1]" be a pseudocodeword so-
lution to LP decoding, with @ nonintegral positions, & 0s, and
n —a — b 1s. We first group entries of p according to whether
their values are nonintegral, 0, or 1. Then, we sort the nonin-
tegral positions in ascending order according to the value of

|3 — pi| and define the permuted vector p’ = II(p) satisfying
the following ordering:

1 1

5 P < S5 (17)

/ /

Pauy1 = = Patb = 0,
and , ;o

Potb+1 = =Pn =

By applying the same permutation I to the columns of the orig-
inal parity-check matrix H, we get

H'2I(H) = <H(f)|H(0)\H(1>) (18)

where HY', H® and H® consist of columns of H corre-
sponding to positions of p’ with nonintegral values, 0s, and 1s,
respectively.

The following familiar definition from matrix theory will be
useful [18, p. 10].

Definition 3: A matrix is in reduced row echelon form if its
nonzero rows (i.e., rows with at least one nonzero element) are
above any all-zero rows, and the leading entry (i.e., the first
nonzero entry from the left) of a nonzero row is the only nonzero
entry in its column and is always strictly to the right of the
leading entry of the row above it.

By applying a suitable sequence of elementary row opera-
tions ® (over ) to H', we get

A2o(H') = (I‘{(f>|ﬁ<0>|ﬁ<1)> (19)
where H'? is in reduced row echelon form. Applying the in-
verse permutation 11~ to columns of H, we get an equivalent
parity-check matrix - _
H=1"'(H) (20)
whose rows are likely to be cut-inducing RPCs, for the reasons
stated previously.
Multiple nonintegral positions in the pseudocodeword
p could have values with the same distance from %, 1e.,
|1 —p;| = |1 — pj| for some i # j. In such a case, the ordering
of the nonintegral positions in (17) is not uniquely determined.
Hence, the set of RPCs generated by operations (18) — (20) may
depend upon the particular ordering reflected in the permuta-
tion II. Nevertheless, if the decoder uses a fixed, deterministic
sorting rule such as, for example, a stable sorting algorithm,
then the decoding error probability will be independent of the
transmitted codeword. _
The next theorem describes a situation in which a row of H

is guaranteed to provide a cut.
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Theorem 3: 1f there exists a weight-one row in submatrix
H , the corresponding row of the equivalent parity-check ma-
trix H is a cut-inducing RPC.

Proof: Given a pseudocodeword p, suppose the jth row of
submatrix H(¥) has weight 1 and the corresponding nonintegral
position in p is p;. Since it is the only nonintegral position in
N(4), the left-hand side of (16) is equal to —]% — p;|. Since
0 < p; < 1, this is larger than — %, the right-hand side. Hence,
according to Theorem 2, RPC j satisfies the sufficient condition
for providing a cut. In other words, there must be a violated
parity inequality induced by RPC j. |

Remark 2: Theorem 3 is equivalent to [ 13, Theorem 3.3]. The
proof of the result shown here, though, is considerably simpler,
thanks to the application of Theorem 2.

Although Theorem 3 only ensures a cut for rows with weight
1 in submatrix H®, rows in H® of weight greater than 1 may
also provide RPC cuts. Hence, the CSA should be applied on
every row of the redundant parity-check matrix H to search for
all possible RPC cuts. The approach of generating a redundant
parity-check matrix H based on a given pseudocodeword and
applying the CSA on each row of this matrix is called adaptive
cut generation (ACG). Combining ACG with ALP decoding,
we obtain the ACG-ALP decoding algorithm described in Al-
gorithm 2. Beginning with the original parity-check matrix, the
algorithm iteratively applies ALP decoding. When a point is
reached when no further cuts can be produced from the orig-
inal parity-check matrix, the ACG technique is invoked to see
whether any RPC cuts can be generated. The ACG-ALP de-
coding iteration stops when no more cuts can be found either
from the original parity-check matrix or in the form of RPCs.

Algorithm 2 ALP with adaptive cut-generation (ACG-ALP)
decoding algorithm

Input: cost vector v, original parity-check matrix H

Output: Optimal solution of current LP problem

1: Initialize the LP problem with the constraints in (11).

2: Solve the current LP problem, and get optimal solution z*.

3: Apply Algorithm 1 (CSA) on each row of H.

4: if No cut is found and z™ is nonintegral then

5: Construct H associated with z* according to (18)—(20).

6 Apply Algorithm 1 (CSA) to each row of H.

7: end if

8: if No cut is found then

9 Terminate.

10: else

11:  Add cuts that are found into the LP problem as constraints,
and go to line 2.

12: end if

B. Reducing the Number of Constraints in the LP Problem

In the ALP decoding, the number of constraints in the LP
problem grows as the number of iterations grows, increasing
the complexity of solving the LP problem. For ACG-ALP de-
coding, this problem becomes more severe since the algorithm
generates additional RPC cuts and uses more iterations to suc-
cessfully decode inputs on which the ALP decoder has failed.
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From Lemma 1, we know that a binary parity-check con-
straint can provide at most one cut. Hence, if a binary parity
check gives a cut, all other linear inequalities introduced
by this parity check in previous iterations can be removed
from the LP problem. The implementation of this observation
leads to a modified ALP (MALP) decoder referred to as the
MALP-A decoder [16]. This decoder improves the efficiency
of ALP decoding, where only cuts associated with the original
parity-check matrix are used. However, with ACG-ALP de-
coding, different RPCs may be generated adaptively in every
iteration and most of them give only one cut throughout the
sequence of decoding iterations. As a result, when MALP-A
decoding is combined with the ACG technique, only a small
number of constraints are removed from the LP problem, and
the decoding complexity is only slightly reduced.

Definition 4: A linear inequality constraint of the form
aTx > b is called active at point x* if it holds with equality,
i.e., alx* = b, and is called inactive otherwise.

For an LP problem with a set of linear inequality constraints,
the optimal solution x* € [0,1]™ is a vertex of the polytope
formed by the hyperplanes corresponding to all active con-
straints. In other words, if we set up an LP problem with only
those active constraints, the optimal solution remains the same.
Therefore, a simple and intuitive way to reduce the number
of constraints is to remove all inactive constraints from the
LP problem at the end of each iteration, regardless of whether
or not the corresponding binary parity check generates a cut.
This approach is called MALP-B decoding [16]. By combining
the ACG technique and the MALP-B algorithm, we obtain
the ACG-MALP-B decoding algorithm. It is similar to the
ACG-ALP algorithm described in Algorithm 2 but includes
one additional step that removes all inactive constraints from
the LP problem, as indicated in Line 3 of Algorithm 3.

Algorithm 3 ACG-MALP-B/C Decoding Algorithm

Input: cost vector -y, original parity-check matrix H
Output: Optimal solution of current LP problem

1: Initialize LP problem with the constraints in (11).

2: Solve the current LP problem, get optimal solution z*.

3: ACG-MALP-B only: remove all inactive constraints from
the LP problem.

4: ACG-MALP-C only: remove inactive constraints that have
above-average slack values from the LP problem.

5: Apply CSA only on rows of H that have not introduced
constraints.

6: if No cut is found and z* is nonintegral then
7:  Construct H according to z*.

8:  Apply CSA on each row of H.

9: end if

10: if No cut is found then

11: Terminate.

12: else

13:  Add found cuts into LP problem as constraints, and go to
line 2.

14: end if
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Since adding further constraints into an LP problem reduces
the feasible space, the minimum value of the cost function is
nondecreasing as a function of the number of iterations. In our
computer simulations, the ACG-MALP-B decoding algorithm
was terminated when no further cuts could be found. (See Fig. 6
for statistics on the average number of iterations required to de-
code one codeword of the (155,64) Tanner LDPC code.)

In our implementation of both MALP-B and ACG-MALP-B
decoding, we have noticed that a considerable number of the
constraints deleted in previous iterations are added back into
the LP problem in later iterations, and, in fact, many of them
are added and deleted several times. We have observed that
MALP-B-based decoding generally takes more iterations to
decode a codeword than ALP-based decoding, resulting in a
tradeoff between the number of iterations and the size of the
constituent LP problems. MALP-B-based decoding has the
largest number of iterations and the smallest LP problems to
solve in each iteration, while ALP-based decoding has a smaller
number of iterations but larger LP problems.

Although it is difficult to know in advance which inactive
constraints might become cuts in later iterations, there are sev-
eral ways to find a better tradeoff between the MALP-B and
ALP techniques to speed up LP decoding. This tradeoff, how-
ever, is highly dependent on the LP solver used in the imple-
mentation. For example, we used the simplex solver from the
open-source GNU linear programming kit (GLPK) [19], and
found that the efficiency of iterative ALP-based decoders is
closely related to the total number of constraints used to decode
one codeword, i.e., the sum of the number of constraints used in
all iterations. This suggests a new criterion for the removal of
inactive constraints whose implementation we call the MALP-C
decoder.

In MALP-C decoding, instead of removing all inactive con-
straints from the LP problem in each iteration, we remove only
the linear inequality constraints with slack variables that have
above-average values, as indicated in Line 4 of Algorithm 3.
The ACG-MALP-B and ACG-MALP-C decoding algorithms
are both described in Algorithm 3, differing only in the use of
Line 3 or Line 4. Although all three of the adaptive variations
of LP decoding discussed in this paper—ALP, MALP-B, and
MALP-C—have the exact same error-rate performance as the
original LP decoder, they may lead to different decoding results
for a given received vector when combined with the ACG tech-
nique, as shown in Section V.

V. NUMERICAL RESULTS

To demonstrate the improvement offered by our proposed de-
coding algorithms, we compared their error-correcting perfor-
mance to that of ALP decoding (which, again, has the same
performance as the original LP decoding), BP decoding (two
cases, using the SPA with a maximum of 100 iterations and 1000
iterations, respectively), the SA [13], the random-walk-based
RPC search algorithm [12], and ML decoding for various LDPC
codes on the additive white Gaussian noise (AWGN) channel.
We use the simplex algorithm from the open-source GLPK [19]
as our LP solver. The LDPC codes we evaluated are MacKay’s
rate—%, (3,6)-regular LDPC codes with lengths 96 and 408, re-
spectively [20]; a rate—%, (3,4)-regular LDPC code of length
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Fig. 1. FER versus E, /Ny for random (3,4)-regular LDPC code of length 100 on the AWGN channel.

Frame Error Rate (FER)

-8-LP/ALP
-©-BP (100 itr)
—©-BP (1000 itr)
—%—SA

=7~ ACG-ALP
-~ ACG-MALP-B
—&-ACG-MALP-C
—— ML lower bound

5
E,N, (dB)

3 3.5 4 4.5

Fig. 2. FER versus E; /N, for MacKay’s random (3,6)-regular LDPC code of length 96 on the AWGN channel.

100; the rate—%, (3,5)-regular Tanner code of length 155 [21];
and a rate-0.89, (3,27)-regular high-rate LDPC code of length
999 [20].

The proposed ACG-ALP, ACG-MALP-B, and ACG-
MALP-C decoding algorithms are all based on the under-
lying cut-searching algorithm (Algorithm 1) and the adaptive
cut-generation technique of Section IV-A. Therefore, their
error-rate performance is very similar. However, their perfor-
mance may not be identical, because cuts are found adaptively
from the output pseudocodewords in each iteration and the
different sets of constraints used in the three proposed algo-
rithms may lead to different solutions of the corresponding LP
problems.

In our simulation, the LP solver uses double-precision
floating-point arithmetic, and therefore, due to this limited
numerical resolution, it may round some small nonzero vector

coordinate values to 0 or output small nonzero values for vector
coordinates which should be 0. Similar rounding errors may
occur for coordinate values close to 1. Coordinates whose
values get rounded to integers by the LP solver might lead to
some “false” cuts—parity inequalities not actually violated by
the exact LP solution. This is because such rounding by the LP
solver would decrease the left-hand side of parity inequality (6).
On the other hand, when coordinates that should have integer
values are given nonintegral values, the resulting errors would
increase the left-hand side of parity inequality (6), causing
some cuts to be missed. Moreover, this would also increase the
size of the submatrix H(" in (18), leading to higher complexity
for the ACG-ALP decoding algorithm.

To avoid such numerical problems in our implementation of
the CSA, we used I — 10~¢ instead of 1 on the right-hand side
of the inequality in Line 14 of Algorithm 1. Whenever the LP
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TABLE 1
FRAME ERRORS OF ACG-ALP DECODER ON MACKAY’S RANDOM (3,6)-REGULAR LDPC CODE OF LENGTH 96 ON THE AWGN CHANNEL

Ep/No (dB) | Transmitted Frames | Error Frames | Pseudocodewords | Incorrect Codewords

3.0 1,136,597 3,000 857 2,143

3.5 4,569,667 3,000 395 2,605

4.0 16,724,921 3,000 103 2,897

45 54,952,664 3,000 12 2,988

5.0 185,366,246 3,000 0 3,000

5.5 665,851,530 3,000 0 3,000

10° T T T
-B-LP/ALP
-©-BP (100 itr)
-©-BP (1000itr) ||
—*—SA I
~7ACG-ALP |
—A— ACG-MALP-Bf]
—<4—ACG-MALP-C|]
— ML (IP [13))

Frame Error Rate (FER)

Fig. 3. FER versus E; /Ny for (155,64) Tanner LDPC code on the AWGN channel.

solver outputs a solution vector, coordinates with value less than
10~% were rounded to 0 and coordinates with value larger than
1 — 1079 were rounded to 1. The rounded values were then
used in the cut-search and RPC-generation steps in the decoding
algorithms described in previous sections. If such a procedure
were not applied, and if, as a result, false cuts were to be pro-
duced, the corresponding constraints, when added into the LP
problem to be solved in the next step, would leave the solution
vector unchanged, causing the decoder to become stuck in an
endless loop. We saw no such behavior in our decoder simula-
tions incorporating the prescribed thresholding operations.

Finally, we want to point out that there exist LP solvers, such
as OSopt_ex Rational LP Solver [22], that produce exact rational
solutions to LP instances with rational input. However, such
solvers generally have higher computational overhead than their
floating-point counterparts. For this reason, we did not use an
exact rational LP solver in our empirical studies.

Fig. 1 shows the simulation results for the length-100, reg-
ular-(3,4) LDPC code whose frame error rate (FER) perfor-
mance was also evaluated in [12] and [13]. We can see that
the proposed algorithms have a gain of about 2 dB over the
original LP and ALP decoders. They also perform significantly
better than both the SA and the random-walk algorithm. The
figure also shows the results obtained with the box-and-match
soft-decision decoding algorithm (BMA) [23], whose FER per-
formance is guaranteed to be within a factor of 1.05 times that of

ML decoding. We conclude that the performance gap between
the proposed decoders and ML decoding is less than 0.2 dB at
an FER of 1075,

In Fig. 2, we show simulation results for MacKay’s length-96,
(3,6)-regular LDPC code (the 96.33.964 code from [20]). Again,
the proposed ALP-based decoders with ACG demonstrate su-
perior performance to the original LP, BP, and SA decoders
over the range of SNRs considered. Table I shows the actual
frame error counts for the ACG-ALP decoder, with frame errors
classified as either pseudocodewords or incorrect codewords;
the ACG-MALP-B and ACG-MALP-C decoder simulations
yielded very similar results. We used these counts to obtain a
lower bound on ML decoder performance, also shown in the
figure, by dividing the number of times the ACG-ALP decoder
converged to an incorrect codeword by the total number of
frames transmitted. Since the ML certificate property of LP
decoding implies that ML decoding would have produced the
same incorrect codeword in all of these instances, this ratio
represents a lower bound on the FER of the ML decoder. We
note that when Fj, /Ny is greater than 4.5 dB, all decoding
errors correspond to incorrect codewords, indicating that the
ACG-ALP decoder has achieved ML decoding performance
for the transmitted frames.

Fig. 3 compares the performance of several different decoders
applied to the (3,5)-regular, (155,64) Tanner code, as well as
the ML performance curve from [13]. It can be seen that the
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Fig. 5. FER versus E, /N, for MacKay’s random (3,27)-regular LDPC code of length 999 on the AWGN channel.

proposed ACG-ALP-based algorithms narrow the 1.25 dB gap
between the original LP decoding and ML decoding to approx-
imately 0.25 dB.

We also considered two longer codes: MacKay’s rate—%,
random (3,6)-regular LDPC code of length 408 (the 408.33.844
code from [20]) and a rate-0.89 LDPC code of length 999
(the 999.111.3.5543 code from [20]). Because of the increased
complexity of the constituent LP problems, we only simulated
the ACG-MALP-B and ACG-MALP-C decoders. In Fig. 4, it is
confirmed that the proposed decoding algorithms provide sig-
nificant gain over the original LP decoder and the BP decoder,
especially in the high-SNR region. The results for the high-rate
LDPC code, as shown in Fig. 5, again show that the proposed
decoding algorithms approach ML decoding performance for
some codes, where the ML lower bound is obtained using the

same technique as in Fig. 2. However, for the code of length
408, we found that the majority of decoding failures corre-
sponded to pseudocodewords, so, in contrast to the case of the
length-96 and length-999 MacKay codes discussed previously,
the frame error data do not provide a good lower bound on ML
decoder performance to use as a benchmark.

Since the observed improvements in ACG-ALP-based de-
coder performance come from the additional RPC cuts found in
each iteration, these decoding algorithms generally require more
iterations and/or the solution of larger LP problems in compar-
ison to ALP decoding. In the remainder of this section, we em-
pirically investigate the relative complexity of our proposed al-
gorithms in terms of statistics such as the average number of iter-
ations, the average size of constituent LP problems, and the av-
erage number of cuts found in each iteration. All statistical data



ZHANG AND SIEGEL: ADAPTIVE CUT GENERATION ALGORITHM FOR IMPROVED LINEAR PROGRAMMING DECODING

6591

Number of Iterations
>
T

-B-ALP
—*—SA
~—~ACG-ALP
—A— ACG-MALP-B
~4ACG-MALP-C

1.5 2 25

3.5 4

ED/NO (dB)

Fig. 6. Average number of iterations for decoding one codeword of (155,64) Tanner LDPC code.

presented here were obtained from simulations of the Tanner
(155,64) code on the AWGN channel. We ran all simulations
until at least 200 frame errors were counted.

In Fig. 6, we compare the average number of iterations
needed, i.e., the average number of LP problems solved, to
decode one codeword. Fig. 7(a) compares the average number
of constraints in the LP problem of the final iteration that results
in either a valid codeword or a pseudocodeword with no more
cuts to be found. In Fig. 7(b), we show the average number of
cuts found and added into the LP problem in each iteration.
Fig. 7(c) and (d) shows the average number of cuts found from
the original parity-check matrix H and from the generated
RPCs, respectively.

From Figs. 6 and 7(a), we can see that, as expected, the
ACG-ALP decoder takes fewer iterations to decode a code-
word on average than the ACG-MALP-B/C decoders, but the
ACG-MALP-B/C decoders have fewer constraints in each
iteration, including the final iteration. We have observed that
the ACG-MALP-B/C decoders require a larger number of
iterations to decode than the ACG-ALP decoder, and fewer cuts
are added into the constituent LP problems in each iteration on
average, as reflected in Fig. 7(b). This is because there are some
iterations in which the added constraints had been previously
removed. Among all three proposed ACG-based decoding al-
gorithms, we can see that the ACG-ALP decoder has the largest
number of constraints in the final iteration and needs the least
overall number of iterations to decode, while ACG-MALP-B
decoding has the smallest number of constraints but requires
the largest number of iterations. The ACG-MALP-C decoder
offers a tradeoff between those two: it has fewer constraints
than the ACG-ALP decoder and requires fewer iterations than
the ACG-MALP-B decoder. If we use the accumulated number
of constraints in all iterations to decode one codeword as a
criterion to judge the efficiency of these algorithms during
simulation, then ACG-MALP-C decoding is more efficient
than the other two algorithms in the low and moderate SNR

regions, as shown in Table II. Note that the ACG-MALP-B
decoder is most efficient at high SNR where the decoding of
most codewords succeeds in a few iterations and the chance of
a previously removed inactive constraint being added back in
later iterations is quite small. Hence, ACG-MALP-B decoding
is preferred in the high-SNR region.

Fig. 8 presents an alternative way of comparing the com-
plexity of the decoding algorithms. It shows the average de-
coding time when we implement the algorithms using C++ code
on a desktop PC, with GLPK as the LP solver. The BP de-
coder is implemented in software with messages represented as
double-precision floating-point numbers, and the exact compu-
tation of SPA is used, without any simplification or approxi-
mation. The BP decoder iterations stop as soon as a codeword
is found, or when the maximum allowable number of itera-
tions—here set to 100 and 1000—have been attempted without
convergence. The simulation time is averaged over the number
of transmitted codewords required for the decoder to fail on 200
codewords.

We observe that the ACG-MALP-B and ACG-MALP-C
decoders are both uniformly faster than ACG-ALP over
the range of SNR values considered, and, as expected from
Table II, ACG-MALP-C decoding is slightly more efficient
than ACG-MALP-B decoding in terms of actual running time.
Of course, the decoding time depends both on the number of
LP problems solved and the size of these LP problems, and
the preferred tradeoff depends heavily upon the implemen-
tation, particularly the LP solver that is used. Obviously, the
improvement in error-rate performance provided by all three
ACG-based decoding algorithms over the ALP decoding comes
at the cost of increased decoding complexity. As SNR increases,
however, the average decoding complexity per codeword of the
proposed algorithms approaches that of the ALP decoder. This
is because, at higher SNR, the decoders can often successfully
decode the received frames without generating RPC cuts.
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cuts found from RPCs for decoding one codeword.

TABLE 11
AVERAGE ACCUMULATED NUMBER OF CONSTRAINTS IN ALL ITERATIONS
OF DECODING ONE CODEWORD OF (155,64) TANNER CODE ON THE
AWGN CHANNEL

E,/No (dB) | ACG-ALP | ACG-MALP-B | ACG-MALP-C
1.83 5495.8 5223.3 4643.1
233 1401.2 1387.3 1217.0
2.83 339.7 326.9 300.9
3.33 111.0 106.4 105.4
3.83 64.3 58.8 62.8

Fig. 6 shows that the ACG-ALP decoder requires, on average,
more iterations than the SA decoder. Our observations suggest
that this is a result of the fact that the ACG-ALP decoder can
continue to generate new RPC cuts after the number of iterations
at which the SA decoder can no longer do so and, hence, stops
decoding. The simulation data showed that the additional iter-
ations of the ACG-ALP decoder often resulted in a valid code-
word, thus contributing to its superiority in performance relative
to the SA decoder.

From Fig. 7(b), it can be seen that the ACG-ALP-based de-
coding algorithms generate, on average, fewer cuts per iteration
than the SA decoder. Moreover, as reflected in Fig. 7(c) and (d),
the ACG-ALP decoders find more cuts from the original parity-
check matrix and generate fewer RPC cuts per codeword. These
observations suggest that the CSA is very efficient in finding
cuts from a given parity check, while the SA decoder tends to
generate RPCs even when there are still some cuts other than the
Gomory cuts that can be found from the original parity-check

matrix. This accounts for the fact, reflected in Fig. 8, that the
SA becomes less efficient as SNR increases, when the orig-
inal parity-check matrix usually can provide enough cuts to de-
code a codeword. The effectiveness of our CSA permits the
ACG-ALP-based decoders to successfully decode most code-
words in the high-SNR region without generating RPCs, re-
sulting in better overall decoder efficiency.

Due to limitations on our computing capability, we have not
yet tested our proposed algorithms on LDPC codes of length
greater than 1000. We note that, in contrast to [12] and [16],
we cannot give an upper bound on the maximum number of it-
erations required by the ACG-ALP-based decoding algorithms
because RPCs and their corresponding parity inequalities are
generated adaptively as a function of intermediate pseudocode-
words arising during the decoding process. Consequently, even
though the decoding of short-to-moderate length LDPC codes
was found empirically to converge after an acceptable number
of interations, some sort of constraint on the maximum number
of iterations allowed may have to be imposed when decoding
longer codes. Finally, we point out that the complexity of the
algorithm for generating cut-inducing RPCs lies mainly in the
Gaussian elimination step, but as applied to binary matrices, this
requires only logical operations which can be executed quite ef-
ficiently.

VI. CONCLUSION

In this paper, we derived a new necessary condition and a
new sufficient condition for a parity-check constraint in a linear
block code parity-check matrix to provide a violated parity
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Fig. 8. Average simulation time for decoding one codeword of (155,64) Tanner LDPC code.

inequality, or cut, at a pseudocodeword produced by LP de-
coding. Using these results, we presented an efficient algorithm
to search for such cuts and proposed an effective approach
to generating cut-inducing RPCs. The key innovation in the
cut-generating approach is a particular transformation of the
parity-check matrix used in the definition of the LP decoding
problem. By properly reordering the columns of the original
parity-check matrix and transforming the resulting matrix into
a “partial” reduced row echelon form, we could efficiently
identify RPC cuts that were found empirically to significantly
improve the LP decoder performance. We combined the new
cut-generation technique with three variations of adaptive LP
decoding, providing a tradeoff between the number of iterations
required and the number of constraints in the constituent LP
problems. FER simulation results for several LDPC codes of
length up to 999 show that the proposed adaptive cut-genera-
tion, adaptive LP (ACG-ALP) decoding algorithms outperform
other enhanced LP decoders, such as the SA decoder, and
significantly narrow the gap to ML decoding performance for
LDPC codes with short-to-moderate block lengths.
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