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Abstract— The achievable information rates for multilevel cod-
ing (MLC) systems with multistage decoding (MSD) are examined
on two-dimensional binary-input intersymbol interference (ISI)
channels. One MSD scheme employs trellis-based detection,
while another involves zero-forcing equalization and linear noise
prediction. Information rates are determined by examining the
output statistics at each stage of MSD. The first scheme is shown
to achieve rates very close to known information-theoretic limits.
Systems with low-density parity-check codes are then optimized
to approach these rates.

I. INTRODUCTION

Two-dimensional (2D) intersymbol-interference (ISI) chan-
nels with a binary input constraint arise as models for emerg-
ing storage technologies such as multi-track optical recording
[1] and holographic recording [2]. The input and output rela-
tionship for a discrete-time 2D ISI channel can be described
by

yi,j =
∑
s,t

hs,txi−s,j−t + ni,j , (1)

where {xi,j} is the channel input 2D-sequence (or page),
{yi,j} is the channel output, and {ni,j} is white Gaussian
noise with zero mean and variance σ2 . The impulse response
of the channel {hi,j} is assumed to have finite span, and the
indices i and j take integer values.

Although this is a natural generalization of the one-
dimensional (1D) ISI channel, many important tools are not
readily applicable; e.g., the BCJR algorithm [3] for 2D ISI
does not necessarily have bounded per-symbol computational
complexity [4]. One must rely on suboptimal detection strate-
gies, e.g., Marrow and Wolf [4] or O’Sullivan and Singla [5].
The difficulty in applying the BCJR algorithm also precludes
the Monte Carlo method of [6], [7] for calculating achievable
information rates, though Chen and Siegel [8] provide related
Monte Carlo approaches, while Zhang, Duman, and Kurtas [9]
extend the 1D methods of [6], [7] along multiple tracks.

In this paper, we determine achievable rates for 2D ISI chan-
nels by considering the application of multilevel coding (MLC)
with multistage decoding (MSD) as in [7]. In MLC, several
codewords are interleaved, and then sequentially decoded with
MSD. Each decoded codeword is accounted for at subsequent
decoding stages. Two specific MSD schemes are proposed.

One involves the iterative multi-strip (IMS) detection algo-
rithm of [4] (Section III), and the other uses zero-forcing
equalization and linear noise prediction (Section IV). As in [7],
[10], achievable information rates are determined by analyzing
each stage of MSD, and then LDPC component codes are
optimized for each stage. This approach is outlined in Section
II, and numerical results are given in Section V. When MSD
with IMS detection is used, we observe achievable rates near
the symmetric information rate (i.e., the mutual information
rate for independent and identically distributed equiprobable
inputs) of 2D channels, as confirmed by the recent bounds
of Chen and Siegel [8]. Additional remarks are provided in
Section VI.

II. MULTILEVEL CODING AND MULTISTAGE DECODING

The structure for MLC and MSD is shown in Fig. 1. For
an m-level encoder, a block of data bits u is partitioned into
m subblocks of varying sizes, and each of these is separately
mapped to a codeword of length N . For the �th code of rate
R

(�)
m , the codeword is denoted by c

(�) = (c
(�)
1 , . . . , c

(�)
N ). All

of the mN code bits are then interleaved into a 2D channel
input page, where code bits from the �th codeword are placed
at positions in the set

I(�) =
{
(i, j) ∈ Z

2 : i + j ≡ (� − 1) mod m
}

.

This interleaving pattern is illustrated in Fig. 1(b) for the
case where m = 3. The overall system has a rate R̄m =∑m

�=1 R
(�)
m /m.

The multistage decoder, depicted in Fig. 1(c), recovers the
codewords sequentially, at each stage using the decisions from
previously decoded interleaves. More precisely, for each stage
� = 1, . . . , m, the decoding comprises two steps:

1) A detector processes the entire received page {yi,j}

and obtains soft-decisions z
(�) = (z

(�)
1 , . . . , z

(�)
N ) corre-

sponding to the code bits in the �th interleave. If � > 1,
the codeword decisions ĉ

(1), ĉ(2), . . . , ĉ(�−1) are also
supplied as a priori information to the detector.

2) The component decoder determines the �th interleaved
codeword ĉ

(�) from z
(�).

For m = 1, there is a single outer code, and the channel detec-
tor is given no a priori information. Due to the interleaving
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Fig. 1. (a) Multilevel encoder, (b) example interleaving pattern for m = 3
on a page of width 30, and (c) multistage decoder.

structure shown in Fig. 1(b), if each of the previous stages
decoded correctly, then diagonal bands of the input page are
known exactly at subsequent decoding stages.

Generally, a set of achievable information rates for a given
m-level system can be determined as follows. At the output of
each stage �, one first finds the marginal conditional output dis-
tribution for the corresponding interleave, f(z

(�)
j |c

(�)
j ), under

the assumption that previous stages decoded correctly, and that
all channel inputs are independent and identically distributed
equiprobable random variables. From this, the information rate
R

(�)
m = I(C

(�)
j ; Z

(�)
j ) can be calculated, and continuing the

analysis through all stages yields an overall system rate R̄m.
Also, using the marginal distributions at each stage of MSD,
one can design LDPC component code ensembles to approach
R

(�)
m by applying methods based on those in [11]. This idea of

MLC/MSD system optimization was presented earlier in [10]
for 1D ISI channels. In the next two sections, we present two
specific implementations of MSD for 2D ISI channels.
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Fig. 2. Illustration of strip-wise BCJR detection and an example trellis.

III. MSD WITH ITERATIVE MULTI-STRIP DETECTION

The first MSD scheme we consider involves the IMS de-
tection algorithm of Marrow and Wolf [4]. This soft-decision
algorithm has been shown to achieve near-optimal bit detection
on 2D ISI channels, while having finite computational and
storage complexity per symbol.

The IMS algorithm relies on applying the BCJR algorithm
to each row of the received page {yi,j}. Let us assume that
0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny for {yi,j}, and that the impulse
response {hi,j} is nonzero only if 0 ≤ i ≤ Lx and 0 ≤ j ≤
Ly. Any finite-span response can be brought into this form
with appropriate delays. In this case, each channel output row
y(j) = (y1,j , y2,j, . . . , yNx,j) depends upon Ly + 1 rows of
inputs, x(j − Ly), x(j − Ly + 1), . . . ,x(j). The relationship
between the multiple input strips and the output strip can be
described exactly with a trellis which has Ly +1 binary inputs
per edge, and 1 output per edge. An example of such a trellis
is shown in Fig. 2, with labels given for the inputs (and outputs
in parenthesis). Consequently, the log a posteriori probability
ratio (LAPPR) for the inputs given y(j), i.e.,

λi,j−t(j) = log
P (xi,j−t = 1 |y(j))

P (xi,j−t = −1 |y(j))
, (2)

for t = 0, . . . , Ly and i = 0, . . . , Nx, can be calculated using
the BCJR algorithm on this trellis [3].

Notice from (2) that each decoded strip y(j) corresponds to
Ly+1 input strips, as also depicted in Fig. 2. So when adjacent
strips are decoded, overlapping sets of input LAPPRs result.



Altogether a given input strip is addressed by Ly +1 separate
strip-wise detectors. Therefore, the IMS algorithm passes
these overlapping messages between all strip-wise detectors,
effectively providing extrinsic information for each detector
based on its neighbors. The complete algorithm is summarized
below.

Let ai,j = log P (xi,j = 1)/P (xi,j = −1) be the a priori
information for the channel inputs, and denote the jth row by
a(j) = (a1,j , a2,j, . . . , aNx,j).

1) Initialization. For each row j, let the extrinsic informa-
tion for the jth strip-wise BCJR detector be

αj−t(j) = (α1,j−t(j), α2,j−t(j), . . . , αNx,j−t(j)),

and set αj−t(j) = a(j − t), for each t = 0, . . . , Ly .
2) IMS iterations. Repeat the following for a fixed number

of times, as specified by the user.

a) Strip-wise detection. For each row of outputs y(j),
apply the strip-wise BCJR algorithm to obtain the
set of LAPPRs,

λj−t(j) = (λ1,j−t(j), λ2,j−t(j), . . . , λNx,j−t(j)),

for t = 0, . . . , Ly, where λj−t(j) is as defined in
(2). The extrinsic information αj−t(j) serves as a
priori input for the strip-wise BCJR algorithm.

b) Extrinsic information update. For each row j and
each t = 0, . . . , Ly, use the LAPPRs to calculate
λ̃j−t(j) = λj−t(j)−αj−t(j). Then, again for each
row j and each t = 0, . . . , Ly, update the extrinsic
information for the jth strip-wise detector,

αj−t(j) = a(j−t)+


j−t+Ly∑

k=j−t

λ̃j−t(k)


−λ̃j−t(j).

3) Soft decision. For each row j, calculate the soft decisions
z(j) = (z1,j, z2,j , . . . , zNx,j) according to

z(j) = a(j) +

j+Ly∑
k=j

λ̃j(k).

Since the IMS algorithm can utilize a priori information, it
can be readily incorporated into MSD. Given a known set of
decisions {x̂i,j : i, j ∈ I(�)} from a previous stage �, the a
priori information ai,j in Step 1 is set to +∞ if x̂i,j = 1,
and to −∞ otherwise. For this MSD scheme, there is no
closed form solution for the achievable rates for each stage. So
simulations are used to generate output sequences at each stage
� of MSD, and the distribution f(z

(�)
j |c

(�)
j ) is approximated

with histograms. Achievable rates are then calculated using
these distributions. It can be shown that these densities are
symmetric, i.e., f(z

(�)
j |c

(�)
j ) = f(−z

(�)
j | − c

(�)
j ), and it is

also observed empirically that they are exponential symmetric,
i.e., f(z

(�)
j |1) = ez

(�)
j f(z

(�)
j | − 1). Numerical results for the

achievable rates of this scheme are plotted in Fig. 4.

−

+ (i, j) ∈ I(�)

x̂i,j , (i, j) ∈
S�−1

k=1 I
(k)

{yi,j} zi,j
1

h(U,V )
g(�)(U, V )

Fig. 3. Detector block for MSD with zero-forcing equalization and noise
prediction.

IV. MSD WITH ZERO-FORCING EQUALIZATION AND

LINEAR NOISE PREDICTION

We now consider a low-complexity alternative to MSD with
IMS detection, which further permits a closed form calculation
of the densities and achievable rates at each stage.

Recall that a simple method for equalizing a 2D ISI channel
is zero-forcing equalization; i.e., if we introduce the (U, V )-
transform of {hi,j} as

h(U, V ) =
∑
i,j

hi,jU
iV j ,

then the ideal zero-forcing equalizer has a transform equal
to g(U, V ) = 1/h(U, V ). This inverse response may not
be stable in the sense that

∑
|gi,j | < ∞ [12], and so this

equalization technique is not applicable to all ISI channels.
The zero-forcing equalizer can be very closely approximated
using the pseudo-inverse method of Weeks [13], and for certain
responses, e.g., {hi,j} where hi,j = 0 whenever i < 0 or
j < 0, it can be implemented exactly using feedback.

One adverse consequence of zero-forcing equalization is
that it colors the noise and enhances the noise power. However,
MSD can exploit this noise coloration through linear predic-
tion, because once channel input bits are known from previous
stage decisions, then one can solve for the corresponding noise
values on those interleaves. The resulting structure for the
detector block at each stage of MSD (see Fig. 1(c)) is shown in
Fig. 3, and the filter components for each stage are described
below. An example is provided in Fig. 5.

Definition 1: D
(�)
L denotes the indices for the nonzero coef-

ficients of the �-stage noise prediction filter with a maximum
delay of L (excluding the coordinate (0,0)). Since this filter
only operates on values from the current and previously
decoded interleaves, we can formally define this set as

D
(�)
L = −

{
(s, t) ∈

�−1⋃
k=1

I(k) − (� − 1, 0) , |s| , |t| ≤ L

}
.

Using this, we can now define the optimal prediction filter at
each stage. Let {ỹi,j} denote the output from the zero-forcing
equalizer in Fig. 3, and let {ñi,j} be the corresponding colored
noise such that ỹi,j = xi,j + ñi,j .

Lemma 1: Suppose D
(�)
L = {(s1, t1), . . . , (sn, tn)}. Let

the colored-noise autocorrelation function be R̃(s, t) =
E(ñi,j ñi−s,j−t), let R̃ equal

2
6666664

R̃(0, 0) . . . R̃(s1 − sn, t1 − tn)

R̃(s2 − s1, t2 − t1) R̃(s2 − sn, t2 − tn)

R̃(s3 − s1, t3 − t1) R̃(s3 − sn, t3 − tn)
...

. . .
...

R̃(sn − s1, tn − t1) · · · R̃(0, 0)

3
7777775

,



and let v =
(
R̃(s1, t1), . . . , R̃(sn, tn)

)T

. For the �-th stage

noise prediction filter, set g
(�)
0,0 = 1. The optimal values for the

remaining coefficients {g
(�)
s,t , (s, t) ∈ D

(�)
L } are then

g
(�) =

[
g
(�)
s1,t1

, . . . , g
(�)
sn,tn

]T

= −R̃−1
v,

and the noise variance after the �-th stage prediction filter is

E
(
ñ

(�)
i,j

)2

= R̃(0, 0) − v
T R̃−1

v.

Proof: For g
(�)
0,0 = 1, the output from the �-th stage

prediction filter is

ỹ
(�)
i,j = ỹi,j +

∑
(s,t)∈D

(�)
L

g
(�)
s,t ñi−s,j−t = xi,j + ñ

(�)
i,j . (3)

The resulting noise variance may then be expressed as

E
(
ñ

(�)
i,j

)2

= E


ñi,j +

∑
(s,t)∈D

(�)
L

g
(�)
s,t ñi−s,j−t




2

. (4)

From the orthogonality principle (or equivalently by taking
derivatives), it follows that the remaining filter coefficients
which minimize this variance satisfy

E




ñi,j +

∑
(s,t)∈D

(�)
L

g
(�)
s,t ñi−s,j−t


 ñi−s′,j−t′


 = 0 (5)

for all (s′, t′) ∈ D
(�)
L . This can be simplified to,

−E (ñi,j ñi−s′,j−t′) =
∑

(s,t)∈D
(�)
L

g
(�)
s,tE(ñi−s,j−tñi−s′,j−t′)

or
−R̃(s′, t′) =

∑
g
(�)
s,t R̃(s′ − s, t′ − t).

Furthermore, this linear system of equations can be expressed
in matrix form as −v = R̃g

(�), and thus the optimal coeffi-
cients are g

(�) = −R̃−1
v.

Noting (4), we find that

E
(
ñ

(�)
i,j

)2

= E
(
ñ2

i,j

)
+ 2

∑
(s,t)∈D

(�)
L

g
(�)
s,tE (ñi,j ñi−s,j−t) +

∑
(s,t),(s′,t′)∈D

(�)
L

g
(�)
s′,t′g

(�)
s,tE (ñi−s′,j−t′ ñi−s,j−t)

= R̃(0, 0) + 2vT
g

(�) + (g(�))T R̃g
(�)

= R̃(0, 0) − 2vT R̃−1
v + v

T R̃−1
v

= R̃(0, 0) − v
T R̃−1

v.

which completes the proof of the lemma.
Since the outputs at each stage are conditionally Gaussian, we
also have the next corollary.

Corollary 1: R
(�)
m = I(X ; X + Z(�)), where P (X = 1) =

P (X = −1) = 1/2, and Z(�) is Gaussian with zero mean and

Var(Z(�)) = E
(
ñ

(�)
i,j

)2

.

Incidentally, these results do not require that hi,j = 0
whenever i < 0 or j < 0. However, for channels which
do satisfy this condition, we can characterize the asymptotic
behavior of the achievable system rate below.

Theorem 1: limm→∞ R̄m = I(X ; X +Z∗), where P (X =
1) = P (X = −1) = 1/2, and Z∗ is Gaussian with zero mean
and Var(Z∗) = σ2/h2

0,0.
The proof of this theorem relies on the following lemma.

Lemma 2: Assume that hs,t = 0 whenever s < 0 or t < 0,
and let the set of active indices be J and |h0,0| > 0. If at the
�th stage J ⊆ D

(�)
L ∪ {(0, 0)}, and s, t ≥ 0 for any (s, t) ∈

D
(�)
L , then the optimal filter coefficients are g

(�)
s,t = hs,t/h0,0

for (s, t) ∈ J , and g
(�)
s,t = 0 otherwise. The noise variance at

the output of this filter is σ2/h2
0,0.

Proof: For these particular channel responses, the colored
noise term ñi,j at the output of the zero-forcing equalizer can
be described in terms of ni,j using feedback, i.e.,

ñi,j =
1

h0,0


ni,j −

∑
(s,t)∈J\{(0,0)}

hs,tñi−s,j−t


 , (6)

with i increasing along the horizontal axis, and then j increas-
ing along the vertical axis. Alternatively, the impulse response
of the zero-forcing equalizer {gs,t} is such that gs,t = 0 if
s < 0 or t < 0, and so we can write

ñi,j =
∑

s,t≥0

gs,tni−s,j−t. (7)

By noting the relation in (6), direct substitution of the
coefficients {g

(�)
s,t} into equation (3) yields ñ

(�)
i,j = ni,j/h0,0.

Moreover, it follows that E [ni,j ñi−s,j−t] = 0 for all (s, t) ∈

D
(�)
L , because ni,j never occurs in the summation (7) when

shifted by (s, t), where s, t ≥ 0 and (s, t) �= (0, 0). Therefore,
the choice of filter coefficients {g

(�)
s,t} is optimal since it

satisfies (5), which proves the lemma.
The proof of the theorem is omitted, but it essentially relies
on the fact that the fraction of stages that satisfy Lemma 2
goes to 1 as m → ∞.

V. NUMERICAL RESULTS

For MSD with IMS detection, we evaluate the achievable
rates for m = 1, 2, 3 on the channel considered by Chen
and Siegel [8]. The results are plotted in Fig. 4, where it
can be observed that a two-stage system has an achievable
rate within 0.5 dB of the symmetric information rate (SIR)
lower bound, and a three-stage system effectively achieves the
bound. As mentioned in Section II, LDPC codes are optimized
with respect to the output densities at each stage, and these
results are also shown in the figure.

To illustrate the second MSD technique, in Fig. 5 we present
the optimal noise prediction filters (with L = 1, and with
center taps marked by a ‘†’) for a four-stage system on a
channel for which the zero-forcing equalizer is stable. The
noise variance at the output of the zero-forcing equalizer is
about 2.76σ2, or 4.42 dB larger than the original noise variance
σ2. The achievable rates on this channel for m = 1, 2, 3 are
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{hi,j} =

[
0.8† 0.4
0.4 0.2

]

� g
(�) Variance/σ2

2
»
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–
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3
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3
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4

2
4 0.1728 0.3475

0.3475 1† 0.3475
0.3475 0.1728

3
5 1.09 (0.36 dB)

Fig. 5. Example of optimal noise prediction filters for MSD.

shown in Fig. 6, along with thresholds for optimized LDPC
code ensembles.

VI. FURTHER REMARKS

One important implication here is that IMS detection can be
used to nearly achieve the SIR, when incorporated into MSD.
It would be interesting to see if turbo-equalization systems can
also be designed to approach the SIR using IMS detection.
Naturally, other detection methods such as [5] can also be
used with MSD.
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