IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

3069

Adaptive Read Thresholds for NAND Flash

Borja Peleato, Member, IEEE, Rajiv Agarwal, Student Member, IEEE, John M. Cioffi, Fellow, IEEE,
Minghai Qin, Student Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—A primary source of increased read time on NAND
flash comes from the fact that, in the presence of noise, the flash
medium must be read several times using different read threshold
voltages for the decoder to succeed. This paper proposes an algo-
rithm that uses a limited number of rereads to characterize the
noise distribution and recover the stored information. Both hard
and soft decoding are considered. For hard decoding, this paper
attempts to find a read threshold minimizing bit error rate (BER)
and derives an expression for the resulting codeword error rate.
For soft decoding, it shows that minimizing BER and minimizing
codeword error rate are competing objectives in the presence of
a limited number of allowed rereads, and proposes a tradeoff
between the two. The proposed method does not require any prior
knowledge about the noise distribution but can take advantage
of such information when it is available. Each read threshold is
chosen based on the results of previous reads, following an optimal
policy derived through a dynamic programming backward recur-
sion. The method and results are studied from the perspective of an
SLC Flash memory with Gaussian noise, but this paper explains
how the method could be extended to other scenarios.

Index Terms—Flash memory, multi-level memory, voltage
threshold, adaptive read, soft information, symmetric capacity.

I. INTRODUCTION

A. Overview

HE introduction of Solid State Drives (SSD) based on

NAND flash memories has revolutionized mobile, lap-
top, and enterprise storage by offering random access to the
information with dramatically higher read throughput and
power-efficiency than hard disk drives. However, SSD’s are
considerably more expensive, which poses an obstacle to their
widespread use. NAND flash manufacturers have tried to pack
more data in the same silicon area by scaling the size of the
flash cells and storing more bits in each of them, thus reducing
the cost per gigabyte (GB), but this cell-size shrinkage has
come at the cost of reduced performance. As cell-size shrinks to
sub-16 nm limits, noise can cause the voltage residing on the
cell at read time to be significantly different from the intended

Manuscript received January 25, 2015; revised May 7, 2015; accepted
June 29, 2015. Date of publication July 8, 2015; date of current version
September 3, 2015. The associate editor coordinating the review of this paper
and approving it for publication was L. Dolecek.

B. Peleato is with the Department of Electrical & Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: bpeleato@
purdue.edu).

R. Agarwal and J. M. Cioffi are with the Electrical Engineering Department,
Stanford University, Stanford, CA 94305 USA (e-mail: rajivag@stanford.edu;
cioffi @stanford.edu).

M. Qin and P. H. Siegel are with the Department of Electrical & Computer
Engineering, University of California, San Diego, CA 92093 USA (e-mail:
mqin@ucsd.edu; psiegel @ucsd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2015.2453413

voltage at the time of write. Even in current state-of-the-art
19 nm NAND, noise is significant towards the end of life of
the drive. One way to recover host data in the presence of
noise is to use advanced signal processing algorithms [1]-[4],
but excessive re-reads and post-read signal processing could
jeopardize the advantages brought by this technology.

Typically, all post-read signal processing algorithms require
re-reads using different thresholds, but the default read thresh-
olds, which are good for voltage levels intended during write,
are often suboptimal for read-back of host data. Furthermore,
the noise in the stored voltages is random and depends on
several factors such as time, data, and temperature; so a fixed set
of read thresholds will not be optimal throughout the entire life
of the drive. Thus, finding optimal read thresholds in a dynamic
manner to minimize BER and speed up the post-processing is
essential.

The first half of the paper proposes an algorithm for charac-
terizing the distribution of the noise for each nominal voltage
level and estimating the read thresholds which minimize BER.
It also presents an analytical expression relating the BER found
using the proposed methods to the minimum possible BER.
Though BER is a useful metric for algebraic error correction
codes, the distribution of the number of errors is also important.
Some flash memory controllers use a weaker decoder when
the number of errors is small and switch to a stronger one
when the former fails, both for the same code (e.g., bit-flipping
and min-sum for decoding an LDPC code [5]). The average
read throughput and total power consumption depends on how
frequently each decoder is used. Therefore, the distribution of
the number of errors, which is also derived here, is a useful tool
to find NAND power consumption.

The second half of the paper modifies the proposed algorithm
to address the quality of the soft information generated, instead
of just the number of errors. In some cases, the BER is too
large for a hard decoder to succeed, even if the read is done
at the optimal threshold. It is then necessary to generate soft
information by performing multiple reads with different read
thresholds. The choice of read thresholds has a direct impact
on the quality of the soft information generated, which in turn
dictates the number of decoder iterations and the number of
re-reads required. The paper models the flash as a discrete
memoryless channel with mismatched decoding and attempts
to maximize its capacity through dynamic programming.

The overall scheme works as follows. First, the controller
reads with an initial threshold and attempts a hard-decoding of
the information. If the noise is weak and the initial threshold
was well chosen, the decoding succeeds and no further pro-
cessing is needed. Otherwise, the controller performs additional
reads with adaptively chosen thresholds to estimate the mean

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3070

and/or variance of the voltages for each level. These estimates
are in turn used to estimate the minimum feasible BER and
the corresponding optimal read threshold. The flash controller
then decides whether to perform an additional read with that
estimated threshold to attempt hard decoding again, or directly
attempt a more robust decoding of the information, leveraging
the previous reads to generate soft information.

B. Literature Review

Most of the existing literature on optimizing the read thresh-
olds for NAND flash assumes that prior information on the
noise is available (e.g., [6]-[10]). Some methods, such at the
one proposed by Wang et al. in [11], assume complete knowl-
edge of the noise and choose the read thresholds so as to max-
imize the mutual information between the values written and
read, while others attempt to predict the noise from the num-
ber of program-erase (PE) cycles and then optimize the read
thresholds based on that prediction. An example of the latter
was proposed by Cai ef al. in [12]. References [13] and [14]
also address threshold selection and error-correction.

However, in some practical cases there is no prior informa-
tion available, or the prior information is not accurate enough
to build a reliable noise model. In these situations, a common
approach is to perform several reads with different thresholds
searching for the one that returns an equal number of cells on
either side, i.e., the median between the two levels.! However,
the median threshold is suboptimal in general, as was shown
in [1]. In [2] and [15] Zhou et al. proposed encoding the
data using balanced, asymmetric, or Berger codes to facili-
tate the threshold selection. Balanced codes guarantee that all
codewords have the same number of ones and zeros, hence
narrowing the gap between the median and optimal thresholds.
Asymmetric and Berger codes, first described in [16], leverage
the known asymmetry of the channel to tolerate suboptimal
thresholds. Berger codes are able to detect any number of
unidirectional errors. In cases of significant leakage, where all
the cells reduce their voltage level, it is possible to perform
several reads with progressively decreasing thresholds until the
Berger code detects a low enough number of errors, and only
then attempt decoding to recover the host information.

Researchers have also proposed some innovative data repre-
sentation schemes with different read threshold requirements.
For example, rank modulation [17]-[21] stores information in
the relative voltages between the cells instead of using pre-
defined levels. A parallel writing strategy for flash memories
is studied in [22]. Theoretically, rank modulation does not
require actual read thresholds, but just comparisons between
the cell voltages. Unfortunately, there are a few technological
challenges that need to be overcome before rank modulation
becomes practical. Other examples include constrained codes
[23], [24]; write-once memory codes [25]-[27]; and other
rewriting codes [28]. All these codes impose restrictions on the
levels that can be used during a specific write operation. Since

In many cases this threshold is not explicitly identified as the median cell
voltage, but only implicitly as the solution of % = %, where (@1, 01)
and (u, 0p) are the mean and standard deviation of the level voltages.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

read thresholds need only separate the levels being used, they
can often take advantage of these restrictions.

The scheme proposed in this paper is similar to those de-
scribed in [29] and [30] in that it assumes no prior information
about the noise or data representation, but it is significantly
simpler and more efficient. We propose using a small number
of reads to simultaneously estimate the noise and recover the
information, instead of periodically testing multiple thresholds
(as in [29]) or running a computationally intensive optimization
algorithm to perfect the model (as in [30]). A prior version of
this paper was published in [31], but the work presented here
has been significantly extended.

II. SYSTEM MODEL

Cells in a NAND flash are organized in terms of pages,
which are the smallest units for write and read operations.
Writing the cells in a page is done through a program and
verify approach where voltage pulses are sent into the cells
until their stored voltage exceeds the desired one. Once a cell
has reached its desired voltage, it is inhibited from receiving
subsequent pulses and the programming of the other cells in
the page continues. However, the inhibition mechanism is non-
ideal and future pulses may increase the voltage of the cell
[12], creating write noise. The other two main sources of noise
are inter-cell interference (ICI), caused by interaction between
neighboring cells [32], and charge leakage [33].

Some attempts have been made to model these sources of
noise as a function of time, voltage levels, amplitude of the pro-
gramming pulses, etc. Unfortunately, the noise is temperature-
and page-dependent as well as time- and data-dependent [34].
Since the controller cannot measure those factors, it cannot ac-
curately estimate the noise without performing additional reads.
This paper assumes that the overall noise follows a Gaussian
distribution for each level, as is common in the literature, but
assumes no prior knowledge about their means or variances.
Section VI will explain how the same idea can be used when
the noise is not Gaussian.

Reading the cells in a page is done by comparing their stored
voltage with a threshold voltage ¢. The read operation returns a
binary vector with one bit for each cell: 1 for voltages lower
than ¢ and O for higher ones. However, the aforementioned
sources of voltage disturbance can cause some cells to be mis-
classified, introducing errors in the bit values read. The choice
of a read threshold therefore becomes important to minimize
the BER in the reads.

In a b-bit MLC flash, each cell stores one of 2% distinct
predefined voltage levels. When each cell stores multiple bits,
i.e. b > 2, the mapping of information bits to voltage levels is
done using Gray coding to ensure that only one bit changes
between adjacent levels. Since errors almost always happen
between adjacent levels, Gray coding minimizes the average
BER. Furthermore, each of the b bits is assigned to a different
page, as shown in Fig. 1. This is done so as to reduce the number
of comparisons required to read a page. For example, the lower
page of a TLC (b = 3) flash can be read by comparing the cell
voltages with a single read threshold located between the fourth
and fifth levels, denoted by D in Fig. 1. The first four levels

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

Ll,,,,,,] ,,,,,,, 1,,,,,,] ,,,,,,, Q ,,,,,, Q ,,,,,,, Q ,,,,,, 0_;~—Lower page
A1 Q. 0_____0_____0_____1._____ 1. “*Mldd|e page
1 i<—Upper page

VL

G ~—Thresholds

Fig. 1. Typical mapping of bits to pages and levels in a TLC Flash memory.

encode a bit value 1 for the lower page, while the last four
levels encode a value 0. Unfortunately, reading the middle and
upper pages require comparing the cell voltages with more read
thresholds: two (B, F) for the middle page and four (A,C,E,G)
for the upper page.

Upper pages take longer to read than lower ones, but the
difference is not as large as it might seem. Flash chips generally
incorporate dedicated hardware for performing all the com-
parisons required to read upper pages, without the additional
overhead that would arise from issuing multiple independent
read requests. Read commands only need to specify the page
being read and a scalar parameter representing the desired shift
in the read thresholds from their default value. If the page
is a lower one, which employs only one threshold, the scalar
parameter is understood as the shift in this threshold. If the page
is an upper one, which employs multiple read thresholds, their
shifts are parameterized by the scalar parameter. For example,
a parameter value of A when reading the middle page in
Fig. 1 could shift thresholds B and F by A and —%A mV,
respectively. Then, cells whose voltage falls between the shifted
thresholds B and F would be read as 0 and the rest as 1.

After fixing this parametrization, the flash controller views
all the pages in an MLC or TLC memory as independent SLC
pages with a single read shift parameter to optimize. In theory,
each low level threshold could be independently optimized, but
the large number of reads and memory required would render
that approach impractical. Hence, most of the paper will assume
a SLC architecture for the flash and Section VI will show
how the same method and results can be readily extended to
memories with more bits per cell.

Fig. 2(a) shows two overlapping Gaussian probability den-
sity functions (pdfs), corresponding to the two voltage levels
to which cells can be programmed. Since data is generally
compressed before being written onto flash, approximately
the same number of cells is programmed to each level. The
figure also includes three possible read thresholds. Denoting by
(1, 01) and (u2, 02) the means and standard deviations of the
two Gaussian distributions, the thresholds are: tpean = W,
tmedian = %, and 7*, which minimizes BER. If the noise
variance was the same for both levels all three thresholds would
be equal, but this is not the case in practice.

There exist several ways in which the optimal threshold, 7*,
can be found. A common approach is to perform several reads
by shifting the thresholds in one direction until the decoding
succeeds. Once the data has been recovered, it can be compared
with the read outputs to find the threshold yielding the lowest

3071

t (BER=5.6%)
mean
(BER = 4.8%)

P |

median

- = =t* (BER = 4.5%)

Probability

voltage
(a)
1
0.8
©
E 0.6
S
£ 045
o
0.2F
0
voltage
(b)

Fig. 2. (a) Cell voltages pdf in an SLC page, and BER for three different
thresholds: fmean = (41 + 1) /2 is the average of the cell voltages, fmedian
returns the same number of 1 s and 0 s and * minimizes the BER and is located
at the intersection of the two pdfs. (b) cdf corresponding to pdf in (a).

BER [29]. However, this method can require a large number
of reads if the initial estimate is inaccurate, which reduces
read throughput, and additional memory to store and compare
the successive reads, which increases cost. The approach taken
in this paper consists of estimating (w1, o1) and (u2, o2) and
deriving * analytically. This will be done with as few reads
as possible, thereby reducing read time. Furthermore, the noise
estimates can also be used for other tasks, such as generating
soft information for LDPC decoding.

A read operation with a threshold voltage ¢ returns a binary
vector with a one for each cell whose voltage level is lower than
t and zero otherwise. The fraction of ones in the read output is
then equal to the probability of a randomly chosen cell having
a voltage level below z. Consequently, a read with a threshold
voltage ¢ can be used to obtain a sample from the cumulative
distribution function (cdf) of cell voltages at ¢, illustrated in
Fig. 2(b).

The problem is then reduced to estimating the means and
variances of a mixture of Gaussians using samples from their
joint cdf. These samples will be corrupted by model, read, and
quantization noise. Model noise is caused by the deviation of
the actual distribution of cell voltages from a Gaussian. Read
noise is caused by the intrinsic reading mechanism of the flash,
which can read some cells as storing higher or lower voltages
than they actually have. Quantization noise is caused by limited
computational accuracy and rounding of the Gaussian cdf.?
All these sources of noise are collectively referred to as read
noise in this paper. It is assumed to be zero mean, but no other
restriction is imposed in our derivations.

2Since the Gaussian cdf has no analytical expression, it is generally quan-
tized and stored as a lookup table.

3072

It is desirable to devote as few reads as possible to the esti-
mation of (i1, 01) and (w2, 02). The accuracy of the estimates
would improve with the number of reads, but read time would
also increase. Since there are four parameters to be estimated, at
least four reads will be necessary. Section III describes how the
read thresholds should be chosen to achieve accurate estimates
and Section IV extends the framework to consider how these
reads could be reused to obtain soft information for an LDPC
decoder. If the soft information obtained from the first four
reads is enough for the decoding to succeed, no additional reads
will be required. Section V proposes a dynamic programming
method for optimizing the thresholds for a desired objective.
Finally, Section VI explains how to extend the algorithm for
MLC or TLC memories, as well as for non-Gaussian noise
distributions. Section VII provides simulation results evaluating
the performance of the proposed algorithms and Section VIII
concludes the paper.

III. HARD DECODING: MINIMIZING BER
A. Parameter Estimation

Lets;, i =1,...,4 be four voltage thresholds used for read-
ing a page and let y;, i =1, ..., 4 be the fraction of ones in
the output vector for each of the reads, respectively. If (u1, o1)
and (w2, 02) denote the voltage mean and variance for the cells
programmed to the two levels, then

1 [—t I (2 —1
o - i 1
3 2Q< - >+2Q< = >+n>, (1)
i=1,...,4, where
o0 1 2
00 = / @m) te T ®
X

and ny, denotes the read noise associated to y;. In theory,
it is possible to estimate (w1, 01) and (u2,02) from (¢, y;),
i=1,...,4 by solving the system of non-linear equations in
Eq. (1), but in practice the computational complexity could be
too large for some systems. Another possibility would be to
restrict the estimates to a pre-defined set of values and generate
a lookup table for each combination. Finding the table which
best fits the samples would require negligible time but the mem-
ory required could render this approach impractical for some
systems. This section proposes a progressive read algorithm
that combines these two approaches, providing similar accuracy
to the former and requiring only a standard normal (1 = 0,
o = 1) look-up table.

Progressive Read Algorithm: The key idea is to perform two
reads at locations where one of the Q functions is known to
be either close to O or close to 1. The problem with solving
Eq. (1) was that a sum of Q functions cannot be easily inverted.
However, once one of the two Q functions is fixed at O or 1, the
equation can be put in linear form using a standard normal table
to invert the other Q function. The system of linear equations
can then be solved to estimate the first mean and variance.
These estimates can then be used to evaluate a Q function from
each of the two remaining equations in Eq. (1), which can

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

then be solved in a similar way. For example, if #; and #, are
significantly smaller than w;, then

Q(Mz—ll):0:Q<M2—l2)
07 07

and Eq. (1) can be solved for ft] and &7 to get

—~ nh—n

"o Ty — 0 T2y

=t +a0 ' 2). A3)

Substituting these in the equations for the third and fourth reads
and solving gives

W —13
0~ 1(2y3 —q3) — O~ '(2y4 — q4)

0’5:

=t +50 ' 2ys— qu), 4

- n 1 —t4
qs:Q(=) q4=Q< —=)
o] o]

It could be argued that, since the pdfs are not known a priori,
it is not possible to determine two read locations where one of
the Q functions s close to O or 1. In practice, however, each read
threshold can be chosen based on the result from the previous
ones. For example, say the first randomly chosen read returned
y1 = 0.6. This is likely in a region where both levels overlap.
Hence, a smart choice would be to obtain two reads for the
lower level that are clear of the higher level by reading to the
far left of #1. Once the lower level is canceled, the first read can
be used in combination with a fourth read to the right of #; to
estimate the higher level distribution.

Once the mean and variance of both pdfs have been esti-
mated, it is possible to derive an estimate for the read threshold
minimizing the BER. The BER associated to a given read
threshold ¢ is given by

BER(1) = % (Q (“202_ t) +1-0 (’“01_ t)))

Making its derivative equal to zero gives the following equation
for the optimal threshold #*

1 U —t* 1 up —t*
() 20(2)

fop) fop) o] o]
where ¢ (x) = 27)~ Y/ 2¢=/2 The optimal threshold 7* is

located at the point where both Gaussian pdfs intersect. An
estimate #* for #* can be found from the quadratic equation

&\ _(F-m\ (F-m)
()= (57) -(557)
o1 a1 o))

which can be shown to be equivalent to solving Eq. (6) with
(u1,01) and (uz, 02) replaced by their estimated values.

where

(6)

)

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

If some parameters are known, the number of reads can be
reduced. For example, if w1 is known, the first read can be re-
placed by #; = w1, y1 = 0.25. Similarly, if o7 is known (#1, y1)
are not needed in Eqs. (3), (4).

B. Error Propagation

This subsection first studies how the read locations affect the
accuracy of the estimators (17, 01) (2, 02), and . Then it
analyzes how the accuracy of 7 translates into BER(t*) and
provides guidelines for choosing the read locations. Without
loss of generality, it assumes that (@1, o1) are estimated first
using (#1,y1) and (f2, y2) according to the Progressive Read
Algorithm described in Section III-A, and (w2, 02) are esti-
mated in the second stage. Eq. (1) then becomes

0 <L) = 2y; — 2ny,
o1

for i = 1, 2 and the estimates are given by Eq. (3).

If the read thresholds are on the tails of the distributions, a
small perturbation in the cdf value y could cause a significant
change in Q7' (y). This will in turn lead to a significant change
in the estimates. Specifically, a first-order Taylor expansion of
o'+ ny) at y can be written as

0O +ny) :x—me%ny+o(n§), (8)

where x = Q! (y). Since the exponent of e is always positive,
the first-order error term is minimized when x = 0, i.e., when
the read is performed at the mean. The expressions for (i1, 67)
and (12, 67) as seen in Egs. (3), (4) use inverse Q functions, so
the estimation error due to read noise will be reduced when the
reads are done close to the mean of the Gaussian distributions.
The first order Taylor expansion of Eq. (3) at o7 is given by

2
~ _ o1 . 2 2
o1 =01 0 (n2 —n1) + O (ny, n;y 9
where
(11—/1»21)2
m=2v2we M my, +0(n}) (10a)
(12—;421)2
=2V2re T ny,+0 (nfz) . (10b)

A similar expansion can be performed for 17, obtaining

nin

_ (tr — npny — (1 —
M1 = p1 — o1
h—1

+0 (n% n%) .
(11)
Two different tendencies can be observed in the above ex-
pressions. On one hand, Egs. (10a) and (10b) suggest that both
t1 and t, should be chosen close to) so as to reduce the
magnitude of n; and ny. On the other hand, if #; and 1, are
very close together, the denominators in Egs. (9) and (11) can
become small, increasing the estimation error.
The error expansions for [z, o7, and ;;, are omitted for
simplicity, but it can be shown that the dominant terms are

3073

s
&
(]
2
§ s —6—0al/o
/" 7 * *
6| P ===lb= |/t 1
WT s (e & — ul/p
S . BER({) - BER(t")
BER(t)
10° : '
107 107 1072 107"
Read noise

Fig. 3. The relative error in the mean, variance, and threshold estimates
increases linearly with the read noise (slope = 1), but the BER error grows
quadratically (slope = 2) and is negligible for a wide range of read noise
amplitudes.

linear in ny,, i=1,...,4 as long as all ny, are small enough.
The Taylor expansion for BER(#*) at ¢* is

BER(7) = BER(F*) + <i¢ (“ 2 ﬂ)
207

02

—ﬁqs (’“C; t)) er+0 (e,%)

—BER(*") + O (e,%) ,

12)

where 7* = * + ex. The cancellation of the first-order term
is justified by Eq. (6). Summarizing, the mean and variance
estimation error increases linearly with the read noise, as does
the deviation in the estimated optimal read threshold. The
increase in BER, on the other hand, is free from linear terms. As
long as the read noise is not too large, the resulting BER(;;) is
close to the minimum possible BER. The numerical simulations
in Fig. 3 confirm these results.

In view of these results, it seems that the read thresholds
should be spread out over both pdfs but close to the levels’
mean voltages. Choosing the thresholds in this way will re-
duce the error propagating from the reads to the estimates.
However, read thresholds can be chosen sequentially, using the
information obtained from each read in selecting subsequent
thresholds. Section V proposes a method for finding the optimal
read thresholds more precisely.

IV. SOFT DECODING: TRADEOFF BER-LLR

This section considers a new scenario where a layered de-
coding approach is used for increased error-correction capabil-
ity. After reading a page, the controller may first attempt to
correct any bit errors in the read-back codeword using a hard
decoder alone, typically a bit-flipping hard-LDPC decoder [35].
Reading with the threshold 7 found through Eq. (7) reduces the
number of hard errors but there are cases in which even BER(;;)
is too high for the hard decoder to succeed. When this happens,
the controller will attempt a soft decoding, typically using a
min-sum or sum-product soft LDPC decoder.

Soft decoders are more powerful, but also significantly slower
and less power efficient than hard decoders. Consequently,

3074

TABLE I
FAILURE RATE FOR A N = 2048 BCH CODE AS A FUNCTION
OF PROBABILITY OF BIT ERROR p, AND
CORRECTION CAPABILITY «

Failure rate | pe = 0.008 pe =0.01 p. = 0.012
a =23 0.05 0.28 0.62
a =25 0.016 0.15 0.46
a =27 0.004 0.07 0.31

invoking soft LDPC decoding too often can significantly impact
the controller’s average read time. In order to estimate the
probability of requiring soft decoding, one must look at the
distribution of the number of errors, and not at BER alone.
For example, if the number of errors per codeword is uniformly
distributed between 40 and 60 and the hard decoder can correct
75 errors, soft decoding will never be needed. However, if the
number of errors is uniformly distributed between 0 and 100
(same BER), soft decoding will be required to decode 25% of
the reads. Section I'V-A addresses this topic.

The error-correction capability of a soft decoder depends
heavily on the quality of the soft information at its input. It is al-
ways possible to increase such quality by performing additional
reads, but this decreases read throughput. Section IV-B shows
how the Progressive Read Algorithm from the previous section
can be modified to provide high quality soft information.

A. Distribution of the Number of Errors

Let N be the number of bits in a codeword. Assuming
that both levels are equally likely, the probability of error
for any given bit, denoted p,, is given in Eq. (5). Errors can
be considered independent, hence the number of them in a
codeword follows a binomial distribution with parameters N
and p.. Since N is usually large, it becomes convenient to
approximate the binomial by a Gaussian distribution with mean
Np. and variance Np.(1 — p.), or by a Poisson distribution with
parameter Np, when Np, is small.

Under the Gaussian approximation paradigm, a codeword

a—Npe

fails to decode with probability Q(m
denotes the number of bit errors that can be corrected.
Table I shows that a small change in the value of « may increase
significantly the frequency with which a stronger decoder is
needed. This has a direct impact on average power consumption
of the controller. The distribution of bit errors can thus be used
to judiciously obtain a value of « in order to meet a power
constraint.

), where o

B. Obtaining Soft Inputs

After performing M reads on a page, each cell can be
classified as falling into one of the M + 1 intervals between the
read thresholds. The problem of reliably storing information
on the flash is therefore equivalent to the problem of reliable
transmission over a discrete memoryless channel (DMC), such
as the one in Fig. 4. Channel inputs represent the levels to
which the cells are written, outputs represent read intervals, and
channel transition probabilities specify how likely it is for cells
programmed to a specific level to be found in each interval at
read time.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

Fig. 4. DMC channel equivalent to Flash read channel with four reads.

It is well known that the capacity of a channel is given
by the maximum mutual information between the input and
output over all input distributions (codebooks) [36]. In practice,
however, the code must be chosen at write time when the chan-
nel is still unknown, making it impossible to adapt the input
distribution to the channel. Although some asymmetric codes
have been proposed (e.g. [15], [24], [37]), channel inputs are
equiprobable for most practical codes. The mutual information
between the input and the output is then given by

M+1
106GY) = > ;pu log(p1;) + pajlog(pa)
=
P1j + P2y
— (p1j + p2y) log (7’ 5 ’), (13)
where pjj, i =1,2,j=1,..., M + 1 are the channel transition

probabilities. For Gaussian noise, these transition probabilities
can be found as

pij=Q<Mi—_tj) _Q<Ml_7t]_l>7
a; [eoF]

where f) = —oo and 41 = 00.

The inputs to a soft decoder are given in the form of log-
likelihood ratios (LLR). The LLR value associated with a read
interval k is defined as LLRy = log(p1x/p2x)- When the mean
and variance are known it is possible to obtain good LLR
values by reading at the locations that maximize /(X; ¥) [11],
which tend to be on the so-called uncertainty region, where
both pdfs are comparable. However, the mean and variance
are generally not known and need to be estimated. Section III
showed how to choose the read thresholds to obtain accurate
estimates, but those reads tend to produce poor LLR values.
Hence, there are two opposing trends: spreading out the reads
over a wide range of voltage values yields more accurate mean
and variance estimates but degrades the performance of the soft
decoder, while concentrating the reads on the uncertainty region
provides better LLR values but might yield inaccurate estimates
which in turn undermine the soft decoding.

Some flash manufacturers are already incorporating soft read
commands that return 3 or 4 bits of information for each cell,
but the thresholds for those reads are often pre-specified and
kept constant throughout the lifetime of the device. Further-
more, most controller manufacturers use a pre-defined mapping
of read intervals to LLR values regardless of the result of the
reads. We propose adjusting the read thresholds and LLR values
adaptively to fit our channel estimates.

(14)

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

Our goal is to find the read locations that maximize the
probability of successful decoding when levels are equiprob-
able and the decoding is done based on the estimated transition
probabilities. With this goal in mind, Section IV-C will derive
a bound for the (symmetric and mismatched) channel capacity
in this scenario and Section V will show how to choose the
read thresholds so as to maximize this bound. The error-free
coding rate specified by the bound will not be achievable in
practice due to finite code length, limited computational power,
etc., but the BER at the output of a decoder is closely related to
the capacity of the channel [38], [39]. The read thresholds that
maximize the capacity of the channel are generally the same
ones that minimize the BER, in practice.

C. Bound for Maximum Transmission Rate

Shannon’s channel coding theorem states that all transmis-
sion rates below the channel capacity are achievable when the
channel is perfectly known to the decoder; unfortunately this
is not the case in practice. The channel transition probabilities
can be estimated by substituting the noise means and variances
[, A2, 01, 02 into Eq. (14) but these estimates, denoted pj,
i=1,2,j=1,...,5, are inaccurate. The decoder is therefore
not perfectly matched to the channel.

The subject of mismatched decoding has been of interest
since the 1970’s. The most notable early works are by Hui
[40] and Csiszar and Korner [41], who provided bounds on the
maximum transmission rates under several different conditions.
Merhav et al. [42] related those results to the concept of gen-
eralized mutual information and, more recently, Scarlett et al.
[39] found bounds and error exponents for the finite code
length case. It is beyond the scope of this paper to perform a
detailed analysis of the mismatched capacity of a DMC channel
with symmetric inputs; the interested reader can refer to the
above references as well as [43]-[46]. Instead, we derive a
simplified lower bound for the capacity of this channel in the
same scenario that has been considered throughout the paper.

Theorem 1: The maximum achievable rate of transmission
with vanishing probability of error over a Discrete Memoryless
Channel with equiprobable binary inputs, output alphabet),
transition probabilities p;;, i =1,2, j=1,...,|)|, and max-
imum likelihood decoding according to a different set of
transition probabilities ﬁ,\j i=1,2, j=1,...,]1)Y| is lower
bounded by

=

1 g —~
p=3 > pijlog(p1)) + pajlog(pa)

— i+ pap log (@) (1)

Proof: Provided in the Appendix. (]

Itis worth noting that C,, j is equal to the mutual information
given in Eq. (13) when the estimates are exact, and decreases
as the estimates become less accurate. In fact, the probability
of reading a given value y €) can be measured directly as
the fraction of cells mapped to the corresponding interval, so

3075

it is usually the case that pix + pox = pix + pax. The bound
then becomes Cp,i’ =I1X;Y) — D(P||i)), where I1(X; Y) is the
symmetric capacity of the channel with matched ML decoding
and D(P||P) is the relative entropy (also known as Kullback-
Leibler distance) between the exact and the estimated transition

probabilities.
VI
Zm,log() +p,10g<)
D2j

In this case Cp, p is a concave function of the transition probabil-
ities (p;j, pij), i = 1,2,j =1,..., ||, since the relative entropy
is convex and the mutual 1nf0rmati0n is concave [36]. The
bound attains its maximum when the decoder is matched to the
channel (i.e. pjj = pjj Vi, j) and the read thresholds are chosen
so as to maximize the mutual information between X and Y, but
that solution is not feasible for our problem.

In practice, both the capacity of the underlying channel
and the accuracy of the estimates at the decoder depend on
the location of the read thresholds and cannot be maximized
simultaneously. Finding the read thresholds 71, ..., t2 which
maximize Cp 3 is not straightforward, but it can be done numer-
ically. Section V describes a dynamic programming algorithm
for choosing each read threshold based on prior information
about the noise and the result of previous reads.

D(P||P) = (16)

V. OPTIMIZING READ THRESHOLDS

In most practical cases, the flash controller has prior infor-
mation about the voltage distributions, based on the number
of PE cycles that the page has endured, its position within the
block, etc. This prior information is generally not enough to
produce accurate noise estimates, but it can be used to improve
the choice of read thresholds. We wish to determine a policy to
choose the optimal read thresholds sequentially, given the prior
information and the results from previous reads.

This section proposes a dynamic programming framework to
find the read thresholds that maximize the expected value of a
user-defined reward function. If the goal is to minimize the BER
at the estimated threshold 7*, as in Section III, an appropriate
reward would be 1 — BER(;:). If the goal is to maximize the
channel capacity, the reward could be chosen to be I(X; Y) —
D(P||P), as shown in Section IV-C.

Let x = (11, U2,01,02) and rj = (¢,yi), i=1,...,4 be
vector random variables, so as to simplify the notation. If the
read noise distribution f, is known, the prior distribution for x
can be updated based on the result of each read r;j using Bayes
rule and Eq. (1):

fx\rl

ri =K fxirq,.mig 'fy”Xsfi

=K fxjry,..rig " Ju <yi -

o)

where K is a normalization constant. Furthermore, let
R(ry, r2, r3, r4) denote the expected reward associated with the

1 n1 —t
s(e(*5)

a7

3076

reads ry, .. ., I'g, after updating the prior fx accordingly. In the
following, we will use R to denote this function, omitting the
arguments for the sake of simplicity.

Choosing the fourth read threshold 74 after the first three
reads ry, ..., r3 is relatively straightforward: 74 should be cho-
sen so as to maximize the expected reward, given the results of
the previous three reads. Formally,

6= argrr}axE{R|r1, ..., T3, 14}, (18)
7l

where the expectation is taken with respect to (y4, X) by fac-
toring their joint distribution in a similar way to Eq. (18):

Jyaxier s = fyalxy Sxiey s
This defines a policy & for the fourth read, and a value V3 for
each possible state after the first three reads:

19)
(20)

.,I'3)=t2

., I3) :E{R|I‘1, ..

m4(ry, ..

V3(I‘1,.. '7r37t:1}'

In practice, the read thresholds #; and samples y; can only take a
finite number of values, hence the number of feasible arguments
in these functions (states) is also finite. This number can be
fairly large, but it is only necessary to find the value for a small
number of them, those which have non-negligible probability
according to the prior fx and value significantly larger than 0.
For example, states are invariant to permutation of the reads
so they can always be reordered such that ; < f; < 3. Then,
states which do not fulfill y; < y2 < y3 can be ignored. If the
number of states after discarding meaningless ones is still too
large, it is also possible to use approximations for the policy
and value functions [47], [48].

Equations (19) and (20) assign a value and a fourth read
threshold to each meaningful state after three reads. The same
idea, using a backward recursion, can be used to decide the third
read threshold and assign a value to each state after two reads:

m3(ry, r2) = argrr}axE {V3(ry, ..., r3)ry, r2, 33 (2D
3

Va(ry, r2) = max E {V3(r1, ..., r3)r1, r2, 13}, (22)
where the expectation is taken with respect to (y3, X). Similarly,
for the second read threshold

ma(ry) = argmgXE{Vz(l‘l, ry)|ry, 2} (23)

Vi(ry) = mtng{Vz(l‘l, r2)(ry, 2}, (24)
where the expectation is taken with respect to (y2, x). Finally,
the optimal value for the first read threshold is

= argmtaxE{Vl (t,yDln}.
1

These policies can be computed offline and then programmed
in the memory controller. Typical controllers have multiple
modes tailored towards different conditions in terms of number
of PE cycles, whether an upper or lower page is being read,
etc. Each of these modes would have its own prior distri-
butions for (i1, w2, o1,02), and would result in a different

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

policy determining where to perform each read based on the
previous results. Each policy can be stored as a partition of
the feasible reads, and value functions can be discarded, so
memory requirements are very reasonable. Section VII presents
an example illustrating this scheme.

Just like in Section I1I-A, the number of reads can be reduced
if some of the noise parameters or prior information is available.
The same backward recursion could be used to optimize the
choice of thresholds, but with fewer steps.

VI. EXTENSIONS

Most of the paper has assumed that cells can only store
two voltage levels, with their voltages following Gaussian
distributions. This framework was chosen because it is the most
widely used in the literature, but the method described can
easily be extended to memories with more than two levels and
non-Gaussian noise distributions.

Section II explained how each wordline in a MLC (two bits
per cell, four levels) or TLC (three bits per cell, eight levels)
memory is usually divided into two or three pages which are
read independently as if the memory was SLC. In that case,
the proposed method can be applied without any modifications.
However, if the controller is capable of simultaneously process-
ing more than two levels per cell, it is possible to accelerate
the noise estimation. MLC and TLC memories generally have
dedicated hardware that performs multiple reads in the ranges
required to read the upper pages and returns a single binary
value. For example, reading the upper page of a TLC memory
with the structure illustrated in Fig. 1 requires four reads with
thresholds (A, C, E, G) but cells between A and C would
be indistinguishable from cells between E and G; all of them
would be read as 0. However, one additional read of the lower
page (D threshold) would allow the controller to tell them apart.

Performing four reads (1, ..., #4) on the upper page of a
TLC memory would entail comparing the cell voltages against
16 different thresholds but obtaining only four bits of informa-
tion per cell. The means and variances in Egs. (3), (4) would
correspond to mixtures of all the levels storing the same bit
value. The same process would then be repeated for the middle
and lower page. A better approach, albeit more computationally
intensive, would be to combine reads from all three pages
and estimate each level independently. Performing one single
read of the lower page (threshold D), two of the middle page
(each involving two comparisons, with thresholds B and F) and
three of the upper page (each involving four comparisons, with
thresholds A, C, E, G) would theoretically provide more than
enough data to estimate the noise in all eight Gaussian levels. A
similar process can be used for MLC memories performing, for
example, two reads of the lower page and three of the upper page.

Hence, five page reads are enough to estimate the noise mean
and variance in all 4 levels of an MLC memory and 6 page
reads are enough for the 8 levels in a TLC memory. Other
choices for the pages to be read are also possible, but it is
useful to consider that lower pages have smaller probabilities
of error, so they often can be successfully decoded with fewer
reads. Additional reads could provide more precise estimates
and better LLR values for LDPC decoding.

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

There are papers suggesting that a Gaussian noise model
might not be accurate for some memories [49]. The proposed
scheme can also be extended to other noise distributions, as
long as they can be characterized by a small number of parame-
ters. Instead of the Q-function in Eq. (2), the estimation should
use the cumulative density function (cdf) for the corresponding
noise distribution. For example, if the voltage distributions
followed a Laplace instead of Gaussian distribution, Eq. (1)
would become

| . =C N R

= —e n
27 4 tae

+ ny,, (25)

for w1 < t; < uo and the estimator I;] of b1 would become
~ h—n
b =
log(1 — 2y1) — log(1 — 2y2)

(26)

when t1, p are significantly smaller than ;. Similar formulas
can be found to estimate the other parameters.

VII. NUMERICAL RESULTS

This section presents simulation results evaluating the per-
formance of the dynamic programming algorithm proposed in
Section V. Two scenarios will be considered, corresponding
to a fresh page with BER(#*) = 0.0015 and a worn-out page
with BER(#*) = 0.025. The mean voltage values for each level
will be the same in both scenarios, but the standard deviations
will differ. Specifically, 41 = 1 and uy = 2 for both pages, but
the fresh page will be modeled using o1 = 0.12 and 03 = 0.22,
while the worn page will be modeled using o1 = 0.18 and 0p =
0.32. These values, however, are unknown to the controller. The
only information that it can use to choose the read locations
are uniform prior distributions on 1, 12, o1, and o2, identical
for both the fresh and the worn-out pages. Specifically, 11 is
known to be in the interval (0.75, 1.25), iy in (1.8, 2.1), o in
(0.1,0.24) and o7 in (0.2, 0.36).

For each scenario, three different strategies for selecting the
read thresholds were evaluated. The first strategy, Si, tries to
obtain accurate noise estimates by spreading out the reads. The
second strategy, S2, concentrates all of them on the uncertainty
region, attempting to attain highly informative LLR values. Fi-
nally, the third strategy, S3, follows the optimal policy obtained
by the dynamic programming recursion proposed in Section V,
with Cp, j as reward function. The three strategies are illustrated
in Fig. 5 and the results are summarized in Table II, but before
proceeding to their analysis we describe the process employed
to obtain S3.

The dynamic programming scheme assumed that read
thresholds were restricted to move in steps of 0.04, and quan-
tized all cdf measurements also in steps of 0.04 (making the
noise ny from Eq. (1) uniform between —0.02 and 0.02). Start-
ing from these assumptions, Eqgs. (19) and (20) were used to find
the optimal policy w4 and expected value V3 for all meaningful
combinations of (t1, y1, f2, y2, 3, ¥3), which were in the order
of 10° (very reasonable for offline computations). The value
function V3 was then used in the backward recursion to find
the policies and values for the first three reads as explained

3077

Fresh page

Probability

L L [] L

0.5 1 1.5 2 2.5
Voltage

Worn-out page

Probability

0.5 1 1.5 2 2.5
Voltage

Fig. 5. Read thresholds for strategies S, S7, and S3 for a fresh and a worn-out
page.

TABLE 11
TRADE-OFF BETWEEN BER AND LDPC FAILURE RATE
FRESH PAGE S1 So Ss
i —ul/n 0.004 0.182 0012
|6 —o|/c 003 091 0.2
[t — t*|/t* 001 007 0.02
[BER(#*) — BER(¢*)|/BER(t*) | 0.1 14 0.11
LDPC fail rate | 0.15 0
Genie LDPC fail rate 1 0 0
OLD PAGE S1 So S3
[— |/ 0.005 0.053 0.021
|6 —o|/o 003 027 0.3
[t — t*|/t* 0.006 0015 0.011
|BER(#*) — BER(+*)|/BER(t*) | 0.003 0.009 0.007
LDPC fail rate 1 0.19 0.05
Genie LDPC fail rate 1 0 0.01

in Section V. The optimal location for the first read, in terms
of maximum expected value for /(X;Y) — D(P||P) after all
four reads, was found to be tT = 1.07. This read resulted in
y1 = 0.36 for the fresh page and y; = 0.33 for the worn page.
The policy m; dictated that t, = 0.83 for y; € (0.34, 0.38), and
ty = 1.63 for y; € (0.3, 0.34), so those were the next reads in
each case. The third and fourth read thresholds #3 and t4 were
chosen similarly according to the corresponding policies.
Finally, as depicted in Fig. 5, the read thresholds were

e Si:t=1(0.85, 1.15, 1.75, 2.125).

e Sy:t=(1.2, 1.35, 1.45, 1.6).

e S3 (fresh page): t = (1.07, 0.83, 1.79, 1.31) resulting
iny = (0.36, 0.04, 0.58, 0.496), respectively.

e 53 (worn page): t = (1.07, 1.63, 1.19, 1.43) resulting
iny = (0.33, 0.56, 0.43, 0.51), respectively.

3078

For the fresh page, the policy dictates that the first three reads
should be performed well outside of the uncertainty region, so
as to obtain good estimates of the means and variances. Then,
the fourth read is performed as close as possible to the BER-
minimizing threshold. Since the overlap between both levels is
very small, soft decoding would barely provide any gain over
hard decoding. Picking the first three reads for noise character-
ization regardless of their value towards building LLRs seems
indeed to be the best strategy. For the worn-out page, the policy
attempts to achieve a trade-off by combining two reads away
from the uncertainty region, good for parameter estimation,
with another two inside it to improve the quality of the LLR
values used for soft decoding.

Table II shows the relative error in our estimates and sector
failure rates averaged over 5000 simulation instances, with read
noise ny;, i =1,...,4 uniformly distributed between —0.02
and 0.02. The first three rows show the relative estimation error
of the mean, variance, and optimal threshold. It can be observed
that Sy provides the lowest estimation error, while S> produces
clearly wrong estimates. The estimates provided by S; are
noisier than those provided by S, but are still acceptable. The
relative increase in BER when reading at 7 instead of at * is
shown in the fourth row of each table. It is worth noting that the
BER(?) does not increase significantly, even with inaccurate
mean and variance estimates. This validates the derivation in
Section III-B.

Finally, the last two rows on each table show the failure
rate after 20 iterations of a min-sum LDPC decoder for two
different methods of obtaining soft information. The LDPC
code had 18% redundancy and 35072 bits per codeword. The
fifth row corresponds to LLR values obtained using the mean
and variance estimates from the Progressive Read Algorithm
and the last row, labeled “Genie LDPC”, corresponds to using
the exact values instead of the estimates. It can be observed
that strategy S1, which provided very accurate estimates, always
fails in the LDPC decoding. This is due to the wide range
of cell voltages that fall between the middle two reads, being
assigned an LLR value close to 0. The fact that the “Genie
LDPC” performs better with S, than with S3 shows that the read
locations chosen by the former are better. However, S3 provides
lower failure rates in the more realistic case where the means
and variances need to be estimated using the same reads used
to produce the soft information.

In summary, S3 was found to be best from an LDPC code
point of view and S1 from a pure BER-minimizing perspective.
S> as proposed in [11] is worse in both cases unless the
voltage distributions are known. When more than four reads
are allowed, all three schemes perform similarly. After the first
four reads, all the strategies have relatively good estimates for
the optimal threshold. Subsequent reads are located close to
the optimal threshold, achieving small BER. Decoding failure
rates are then limited by the channel capacity, rather than by the
location of the reads.

VIII. CONCLUSION

NAND flash controllers often require several re-reads using
different read thresholds to recover host data in the presence

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

of noise. In most cases, the controller tries to guess the noise
distribution based on the number of PE cycles and picks the
read thresholds based on that guess. However, unexpected
events such as excessive leakage or charge trapping can make
those thresholds suboptimal. This paper proposed algorithms
to reduce the total read time and sector failure rate by using a
limited number of re-reads to estimate the noise and improve
the read thresholds.

The overall scheme will work as follows. First, the controller
will generally have a prior estimation of what a good read
threshold might be. It will read at that threshold and attempt
a hard-decoding of the information. If the noise is weak and the
initial threshold was well chosen, this decoding will succeed
and no further processing will be needed. In cases when this
first decoding fails, the controller will perform additional reads
to estimate the mean and/or variance of the voltage values for
each level. These estimates will in turn be used to estimate the
minimum achievable BER and the corresponding optimal read
threshold. The flash controller then decides whether to perform
an additional read with this threshold to attempt hard decoding
again, or directly attempt a more robust soft decoding of the
information, for example LDPC, leveraging the reads already
performed.

The paper proposes using a dynamic programming backward
recursion to find a policy for progressively picking the read
thresholds based on the prior information available and the
results from previous reads. This scheme will allow us to find
the thresholds that optimize an arbitrary objective. Controllers
using hard decoding only (e.g., BCH) may wish to find the read
threshold providing minimum BER, while those employing soft
decoding (e.g., LDPC) will prefer to maximize the capacity
of the resulting channel. The paper provides an approximation
for the (symmetric and mismatched) capacity of the channel
and presents simulations to illustrate the performance of the
proposed scheme in such scenarios.

APPENDIX
PROOF OF THEOREM 1

Proof: (Theorem 1): The proof is very similar to that for
Shannon’s Channel Coding Theorem, but a few changes will
be introduced to account for the mismatched decoder. Let
X € {1, 2}" denote the channel input and Y €)" the channel
output, with X; and Y; denoting their respective components
for i =1, ..., n. Throughout the proof, i’(A) will denote the
estimate for the probability of an event A obtained using the
transition probabilities p;; to differentiate it from the exact
probability P(A) obtained using transition probabilities p;;, i =
1,2,j=1,...,|Y|. The inputs are assumed to be symmetric,
s0 P(X) = P(X) and P(X, Y) = P(Y|X)P(X).

We start by generating 2"® random binary sequences of
length n to form a random code C with rate R and length n.
After revealing the code C to both the sender and the receiver, a
codeword x is chosen at random among those in C and transmit-
ted. The conditional probability of receiving a sequencey €)"
given the transmitted codeword x is given by P(Y = y|X =
x) = [[/_| Pxy;>» Where x; and y; denote the i-th components of
x and y, respectively.

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

The receiver then attempts to recover the codeword x that was
sent. However, the decoder does not have access to the exact
transition probabilities p;; and must use the estimated proba-
bilities p;; instead. When p;; = p;; Vi, j, the optimal decoding
procedure is maximum likelihood decoding (equivalent to max-
imum a posteriori decoding, since inputs are equiprobable). In
maximum likelihood decoding, the decoder forms the estimate
X = arg maxyec P(y|x), where P(Y = y|X = x) = [T Py is
the estimated likelihood of x, given y was received.

Denote by 2\2”) the set of length-n sequences {(x, y)} whose
estimated empirical entropies are e-close to the typical esti-
mated entropies:

AW = {(x, y) e {1,2)" x V" 27
‘_%logP(X:x)—l <€, (28)
‘—%logi’(Yzy)— v| <e (29)
—%logi’(X:x,Yzy)—MXY <e}, (30)

where @y and uyy represent the expected values of
—% log P(Y) and —%logP(X, Y), respectively, and the loga-
rithms are in base 2. Hence,

1 |V)
uy=—;ZZP<Yi=k>logP<Yi=k> 31
i=1 k=1
L pik+ o Pk + P2k
-3 10g(1) (32)
— 2 2
n 2 |V
nyz——ZZZP(X b, Y;=k) - log P(X;=b, Y;=k)
i=1 b=1 k=1
(33)
! Plk Plk P2k P2k
— 2 (e (F) e e(T)) e

where the exact transition probabilities are used as weights
in the expectation and the estimated ones are the variable
values. Particularly, (x, y) eA(") implies that Py = yiX =
x) > 2M1=1xr=€) apnd P(Y = y) < 27"r=€) We will say that
a sequence x € {1,2}" is in AE") if it can be extended to a
sequence (x,y) € A", and similarly fory € J".

First we show that with high probability, the transmitted and
received sequences (X, y) are in the Ai”) set. The weak law of
large numbers states that for any given € > 0, there exists no,
such that for any codeword length n > ng

1
P(‘——logP(X:x)—l Ze) < E (35)
n 3
1 A €
P(’——logP(Y =y) — > e) < -, (36)
n 3
1 A €
P<‘——10gP(X:x,Y:y)—/ny ze) < 3 (37)
n

Applying the union bound to these events shows that for n large
enough, P ((x, y) & Aé")) <e.

3079

When a codeword x € {1, 2}" is transmitted and y €)" is re-
ceived, an error will occur if there exists another codeword z €
C such that P(Y = yiX=1z) > Py = y|X = x). The estimated
likelihood of x is greater than 2"(!1=#xy=€) with probability at
least 1 — €, as was just shown. The other nR — 1 codewords in
C are independent from the received sequence. For a giveny €

AL, et Sy =[x e (1,207 P(Y = yIX = x) 2 207009
denote the set of input sequences whose estimated likelihood
is greater than 2"(1=#xy=¢) Then

1=) PX=xly=y) (38)
xef{l,2)"
. P(X =
> Z PY =y|X=x) 7A(%) (39)
= Py =y
- |Sy|2n(1—Mxy—6)2—n2n(My—6) (40)

which implies |Sy| < 27(4xy=#r+29) for all y € AL,

If(x,y) € 212”), any other codeword causing an error must be
in Sy. Let E;, i =1,...,nR — 1 denote the event that the i-th
codeword in the codebook C is in Sy, and F' the event that (X, y)

are in Aﬁ”). The probability of error can be upper bounded by

P& #x) =P(F)PR # X|F) + P(F)PR #X|F) (41)
2)LR71
<ePR#X|F)+ Y P(E(|F) 42)
i=1
<e+2"R|sy27" (43)
<e +2n(R+MXY*/ty71+2€) (44)

Consequently, as long as

IV
1
R <5 (pulogpin) + pax log(pau)

k=1
Pik + Pak
— (P1k + p2x) log (f) , (45)

for any 8§ > 0, we can choose € and n, so that for any n > n,
the probability of error, averaged over all codewords and over
all random codes of length n, is below §. By choosing a code
with average probability of error below & and discarding the
worst half of its codewords, we can construct a code of rate
R — % and maximal probability of error below 2§, proving
the achievability of any rate below the bound C ¥ defined in
Eq. (15). This concludes the proof. U

REFERENCES

[1] B. Peleato and R. Agarwal, “Maximizing MLC NAND lifetime and
reliability in the presence of write noise,” in Proc. IEEE ICC, 2012,
pp. 3752-3756.

[2] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with dy-
namic thresholds in nonvolatile memories,” in Proc. IEEE ISIT, 2011,
pp. 2143-2147.

[3] B. Peleato, R. Agarwal, and J. Cioffi, “Probabilistic graphical model
for flash memory programming,” in Proc. IEEE SSP Workshop, 2012,
pp- 788-791.

3080

[4]

[5

=

[6

)

[7

—

[8

—_

[9]

[10]

[11]

[12]

(13]

[14]

[15]
[16]
(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

M. Asadi, X. Huang, A. Kavcic, and N. P. Santhanam, “Optimal de-
tector for multilevel NAND flash memory channels with intercell in-
terference,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 825-835,
May 2014.

M. Anholt, N. Sommer, R. Dar, U. Perlmutter, and T. Inbar, “ Dual ECC
Decoder,” U.S. Patent 8429 498, Apr. 23, 2013.

G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 2, pp. 429-439, Nov. 2011.

F. Sala, R. Gabrys, and L. Dolecek, “Dynamic threshold schemes for
multi-level non-volatile memories,” IEEE Trans. Commun., vol. 61,
no. 7, pp. 2624-2634, Jul. 2013.

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,” in
Proc. Conf. Des., Autom. Test Eur., Mar. 2012, pp. 521-526.

Q. Li, A. Jiang, and E. F. Haratsch, “Noise modeling and capacity
analysis for NAND flash memories,” in Proc. IEEE ISIT, Jul. 2014,
pp. 2262-2266.

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribu-
tion in MLC NAND flash memory: Characterization, analysis, and model-
ing,” in Proc. Conf. Des., Autom. Test Eur., Mar. 2013, pp. 1285-1290.

J. Wang, T. Courtade, H. Shankar, and R. Wesel, “Soft information for
LDPC decoding in flash: Mutual information optimized quantization,” in
Proc. IEEE GLOBECOM, 2011, pp. 5-9.

Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation,”
in Proc. IEEE ICCD, 2013, pp. 123-130.

R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash memory
cells,” IEEE Commun. Lett., vol. 18, no. 9, pp. 1491-1494, Jul. 2014.

R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit-error-correcting
codes with applications to flash memory,” IEEE Trans. Inf. Theory,
vol. 59, no. 4, pp. 2315-2327, Apr. 2013.

H. Zhou, A. Jiang, and J. Bruck, “Non-uniform codes for asymmetric
errors,” in Proc. IEEE ISIT, 2011, pp. 1046-1050.

J. Berger, “A note on error detection codes for asymmetric channels,” Inf.
Control, vol. 4, no. 1, pp. 68-73, 1961.

A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank
modulation,” in Proc. IEEE ISIT, 2008, pp. 1736-1740.

A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659-2673,
Jun. 2009.

E. En Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank mod-
ulation,” in Proc. IEEE ISIT, Aug. 2011, pp. 884-888.

Q. Li, “Compressed rank modulation,” in Proc. 50th Annu. Allerton,
Oct. 2012, pp. 185-192.

E. En Gad, E. Yaakobi, A. Jiang, and J. Bruck, “Rank-modulation
rewriting codes for flash memories,” in Proc. IEEE ISIT, Jul. 2013,
pp. 704-708.

M. Qin, A. Jiang, and P. H. Siegel, “Parallel programming of rank modu-
lation,” in Proc. IEEE ISIT, Jul. 2013, pp. 719-723.

M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE J.
Sel. Areas Commun., vol. 32, no. 5, pp. 836-846, May 2014.

S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-free
codes,” in Proc. IEEE ISIT, Jul. 2014, pp. 1431-1435.

E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple error-
correcting WOM-codes,” [EEE Trans. Inf. Theory, vol. 58, no. 4,
pp- 2220-2230, Apr. 2012.

R. Gabrys and L. Dolecek, “Constructions of nonbinary WOM codes
for multilevel flash memories,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1905-1919, Apr. 2015.

A. Bhatia, M. Qin, A. R. Iyengar, B. M. Kurkoski, and P. H. Siegel,
“Lattice-based WOM codes for multilevel flash memories,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 933-945, May 2014.

Q.Liand A. Jiang, “Polar codes are optimal for write-efficient memories,”
in Proc. 51th Annu. Allerton, 2013, pp. 660-667.

N. Papandreou et al., “Using adaptive read voltage thresholds to enhance
the reliability of MLC NAND flash memory systems,” in Proc. 24th Great
Lakes Symp. VLSI, 2014, pp. 151-156.

D.-H. Lee and W. Sung, “Estimation of NAND flash memory threshold
voltage distribution for optimum soft-decision error correction,” IEEE
Trans. Signal Process., vol. 61, no. 2, pp. 440—449, Jan. 2013.

B. Peleato, R. Agarwal, J. Cioffi, M. Qin, and P. H. Siegel, “Towards
minimizing read time for NAND flash,” in Proc. IEEE GLOBECOM,
2012, pp. 3219-3224.

G. Dong, S. Li, and T. Zhang, “Using data postcompensation and predis-
tortion to tolerate cell-to-cell interference in MLC NAND flash memory,”

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 9, SEPTEMBER 2015

[33]

[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2718-2728,
Oct. 2010.

A. Torsi et al., “A program disturb model and channel leakage current
study for sub-20 nm NAND flash cells,” IEEE Trans. Electron Devices,
vol. 58, no. 1, pp. 11-16, Jan. 2011.

E. Yaakobi et al., “Error characterization and coding schemes for flash
memories,” in Proc. GC Wkshps, 2010, pp. 1856-1860.

D. Nguyen, B. Vasic, and M. Marcellin, “Two-bit bit flipping decoding of
LDPC codes,” in Proc. IEEE ISIT, 2011, pp. 1995-1999.

T. M. Cover and J. A. Thomas, Elements of Information Theory.
New York, NY, USA: Wiley, 2012.

A. Berman and Y. Birk, “Constrained flash memory programming,” in
Proc. IEEE ISIT, 2011, pp. 2128-2132.

Y. Polyanskiy, H. V. Poor, and S. Verdd, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307-2359, May 2010.

J. Scarlett, A. Martinez, and A. Guillén i Fabregas, “Mismatched Decod-
ing: Finite-Length Bounds, Error Exponents and Approximations,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2647-2666, May 2014.

J. Y. N. Hui, “Fundamental issues of multiple accessing,” Ph.D. disser-
tation, Dept. Elect. Eng. Comput. Sci., Mass. Inst. Technol., Cambridge,
MA, USA, 1983.

I. Csiszar and J. Korner, “Graph decomposition: A new key to coding
theorems,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 5-12, Jan. 1981.

N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai Shitz, “On information
rates for mismatched decoders,” IEEE Trans. Inf. Theory, vol. 40, no. 6,
pp- 1953-1967, Nov. 1994.

A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2148-2177,
Oct. 1998.

V. B. Balakirsky, “A converse coding theorem for mismatched decoding
at the output of binary-input memoryless channels,” IEEE Trans. Inf.
Theory, vol. 41, no. 6, pp. 1889-1902, Nov. 1995.

M. Alsan and E. Telatar, “Polarization as a novel architecture to boost the
classical mismatched capacity of B-DMCs,” in Proc. IEEE ITW, 2014,
pp. 366-370.

E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1,
no.2. Belmont, MA, USA: Athena Scientific, 1995.

Y. Wang, B. O’Donoghue, and S. Boyd, “Approximate dynamic program-
ming via iterated Bellman inequalities,” Int. J. Robust Nonlinear Control,
vol. 25, no. 10, pp. 1472-1496, Jul. 2015.

T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of
the threshold voltage distributions of sub-20 nm NAND flash memory,”
in Proc. IEEE GLOBECOM, 2014, pp. 2351-2356.

Borja Peleato (S’ 12-M’13) received the B.S. degree
in telecommunications and mathematics from Uni-
versitat Politecnica de Catalunya, Barcelona, Spain,
in 2007, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford, CA,
USA, in 2009 and 2013, respectively. In 2006, he was
a Visiting Student with the Massachusetts Institute
of Technology, and in 2013, he was a Senior Flash
Channel Architect with Proton Digital Systems. He
is currently a Visiting Assistant Professor with the
Department of Electrical and Computer Engineering,

Purdue University. His research interests include signal processing and coding
for nonvolatile storage, convex optimization, and communications. He received
a “La Caixa” Graduate Fellowship in 2006.

Rajiv Agarwal (S’12) received the B.Tech. degree
from Indian Institute of Technology, Kanpur, India,
in 2003 and the M.S. and Ph.D. degrees from
Stanford University, Stanford, CA, USA, in 2005 and
2008, respectively, all in electrical engineering. He
is currently a Research Scholar with the Department
of Electrical and Computer Engineering, Stanford
University, Stanford, CA, USA, and Director of Data
Science at Sojern, Inc. His research interests include
nonvolatile storage, signal processing, and wireless
communications.

PELEATO et al.: ADAPTIVE READ THRESHOLDS FOR NAND FLASH

John M. Cioffi (S*77-M’78-SM’90-F’96) received
the B.S. degree in electrical engineering from
the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 1978, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1984. From 1978 to 1984,
he was with Bell Laboratories and from 1984 to
1986, with IBM Research. Since 1986, he has been a
Professor (currently Professor Emeritus) of electrical
engineering with Stanford University. In 1991, he
founded Amati Com. Corp. (purchased by TI in
1997) and was the Officer/Director from 1991 to 1997. He is currently with
the Board of Directors of ASSIA (Chairman and CEO), Alto Beam, and the
Marconi Foundation. He is also an Adjunct Professor of computing/information
technology with King Abdulaziz University. He is the author of over 600 papers
and a holder of over 100 patents, of which many are heavily licensed, including
key necessary patents for the international standards in ADSL, VDSL, DSM,
and WiMAX. His research interests include the area of high-performance
digital transmission. He received the IEEE Communication Magazine Best
Paper Awards in 1991 and 2007, IEEE Alexander Graham Bell and Millennium
Medals in 2000 and 2010, the IEE JJ Thomson Medal in 2000, the IEEE
Kobayashi and Kirchmayer Awards in 2001 and 2014, the Economist Magazine
Innovations Award in 2010, and numerous conference best paper awards. He
has been a member of the U.S. National Academy of Engineering since 2001,
an International Marconi Fellow since 2006, a member of the U.K. Royal
Academy of Engineering in 2009, and a member of the Internet Hall of Fame
since 2014.

Minghai Qin (S’11) received the B.E. degree in
electronic and electrical engineering from Tsinghua
University, Beijing, China, in 2009, and the Ph.D.
degree in electrical engineering from the University
of California, San Diego, CA, USA, in 2014. From
2010 to 2014, he was associated with the Center
for Magnetic Recording Research. He is currently
a Research Principal Engineer in storage architec-
ture at HGST. His research interests include cod-
ing and signal processing for nonvolatile memory
devices, polar-code implementation, and coding for

distributed storage.

3081

Paul H. Siegel (M’82-SM’90-F’97) received the
S.B. and Ph.D. degrees in mathematics from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 1975 and 1979, re-
spectively. He held a Chaim Weizmann Postdoc-
toral Fellowship at the Courant Institute, New York
University. From 1980 to 1995, he was with the
IBM Research Division, San Jose, CA, USA. Since
July 1995, he has been with the University of
California, San Diego, CA, where he is currently
a Professor of electrical and computer engineering
with the Jacobs School of Engineering. He is affiliated with the Center for
Magnetic Recording Research where he holds an Endowed Chair and served
as Director from 2000 to 2011. He holds several patents in the area of
coding and detection, and was named a Master Inventor at IBM Research
in 1994. His main research interests include information theory and commu-
nications, particularly coding and modulation techniques, with applications
to digital data storage and transmission. He served as a Co-Guest Editor
for the May 1991 Special Issue on “Coding for Storage Devices” of the
IEEE TRANSACTIONS ON INFORMATION THEORY. He served the same
Transactions as an Associate Editor for Coding Techniques from 1992 to
1995, and as Editor-in-Chief from July 2001 to July 2004. He was also
Co-Guest Editor of the May/September 2001 two-part issue on “The Turbo
Principle: From Theory to Practice” of the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS. He was co-recipient, with R. Karabed, of the
1992 IEEE Information Theory Society Paper Award and shared the 1993
IEEE Communications Society Leonard G. Abraham Prize Paper Award with
B. H. Marcus and J.K. Wolf. With J. B. Soriaga and H. D. Pfister, he received the
2007 Best Paper Award in Signal Processing and Coding for Data Storage from
the Data Storage Technical Committee of the IEEE Communications Society.
He is a member of the National Academy of Engineering. He was a member of
the Board of Governors of the IEEE Information Theory Society from 1991 to
1996 and again from 2009 to 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

