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Abstract—We study the performance of LDPC codes over
the cascaded BSC-BAWGN channel. This channel belongs to a
family of binary-input, memoryless, symmetric-output channels,
one that we call the{CBMSC(p, σ)} family. We analyze the belief
propagation (BP) decoder over this channel by characterizing
the decodable region of an ensemble of LDPC codes. We then
give inner and outer bounds for this decodable region based on
existing universal bounds on the performance of a BP decoder.
We numerically evaluate the decodable region using density
evolution. We also propose other message-passing schemes of in-
terest and give their decodable regions. The performance ofeach
proposed decoder over the CBMS channel family is evaluated
through simulations. Finally, we explore capacity-approaching
LDPC code ensembles for the{CBMSC(p, σ)} family.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes [1], [2] have been
shown to achieve performance close to capacity over binary-
input, memoryless, symmetric-output (BMS [3]) channels like
the binary erasure channel (BEC) [4], the binary symmetric
channel (BSC) [5] and the binary-input additive white Gaus-
sian noise channel (BAWGNC) [5], [6], [7]. We consider a
class of channels which belong to the same BMS channel fam-
ily as the BEC, BSC and BAWGNC. Owing to this similarity,
much of the terminology and notation used in this paper are
reminiscent of the analysis of LDPC ensemble performance in
[3]. However, the channels under consideration exhibit certain
differences from the BMS channels in [3] because of their
multidimensional channel space.

This paper is organized as follows. In Section II, we
introduce the CBMS(p, σ) channel family and discuss some
characteristics of this family of channels. We then consider
coding over this channel using LDPC codes and analyze the
belief propagation (BP) decoder in Section III. On similar
lines, we propose and analyze two other message-passing
schemes in Section IV. We give experimental results for
the performance of the three message-passing decoders in
Section V. In Section VI, we explore good LDPC codes for
the CBMS(p, σ) channel. We conclude by summarizing our
findings in Section VII.

II. T HE CHANNEL MODEL

A. Cascaded channels

A cascaded channel is one where the output of one channel
is fed as input to another. The constituent channels of a
cascaded channel are calledsubchannels. The input of the
cascaded channel is the input to its first subchannel, and the

output is the output of the last subchannel in the cascade.
The outputs (resp. inputs) of all subchannels other than the
last (resp. first) are inaccessible. Note that from the definition,
it follows that two subchannels can be cascaded only if the
output alphabet of the first is the same as the input alphabet of
the next. We will assume that the cascaded channel consists of
only two subchannels. A generalization to an arbitrary number
of subchannels is straightforward.

Further, we will call a cascaded channel acascaded BMS
(CBMS) channel if it is a cascade of a BMS channel with
a memoryless, symmetric channel. It is easy to see that any
CBMS channel is symmetric and memoryless. Since the input
to a CBMS channel is binary, CBMS channels belong to
the family of BMS channels. However, unlike simple BMS
channels1, CBMS channels are parameterized by the fidelities
of both the constituent subchannels.

We note here that a CBMS channel could be a degraded
BMS channel belonging to the same channel family as the first
subchannel [8], e.g. a BAWGN channel followed by another
AWGN channel will give a CBMS channel which is also a
BAWGN channel with a larger noise variance. In this case the
CBMS channel is in the same family as the first subchannel.
However, a BAWGN channel followed by a Laplace channel
is also a CBMS channel, one not belonging to the family of
BAWGN channels.

B. Cascaded BSC-BAWGN channel

The cascaded BSC-BAWGN channel, as the name sug-
gests, is a CBMS channel where the first subchannel is a
BSC with crossover probabilityp and the second subchannel
is a BAWGNC with noise varianceσ2. It is denoted as
CBMSC(p, σ) and is depicted in Figure 1. Note that the

Fig. 1. The CBMS(p, σ) channel.

channel spacefor this channel is given asS = [0, 1/2]×R
+.

The family of channels overS is denoted{CBMSC(p, σ)}.
The capacity of cascaded channels has been considered

under certain cases of interest in [9], [10], [11], [12]. Since

1We will refer to BMS channels parameterized by a single variable as
simpleBMS channels.



the CBMS(p, σ) channels are BMS channels, the capacity of
the family of these channels can be numerically evaluated
[3]. Figure 2 shows the contours of equal capacity2 in a
subset ofS . Though we write the parameters of the channel
as the ordered pair(p, σ) in accordance with the order of
the subchannels, all figures in this paper are depicted with
p as the ordinate for convenience. Note that the extremal

Fig. 2. Contours of CapacityC(p, σ) of the family {CBMSC(p, σ)} in bits
per channel use.

channels in this family correspond to the families{BSC(p)}
and{BAWGNC(σ)} whenσ = 0 andp = 0 respectively.

C. Motivation

The motivation for considering the CBMS(p, σ) channel
family comes from a new-generation magnetic recording me-
dia called bit patterned media(BPM). BPM is claimed to
surpass conventional magnetic recording media in storage
capacities owing to its structure. The superparamagnetic effect
that makes it difficult to reduce the size of bit cells in conven-
tional media is avoided by storing bits on magnetic islands
isolated by non-magnetic material. However, this structure
brings to fore the challenge of good timing and positional
synchronization of the write head during the write process.
There is therefore a possibility of writing data erroneously
on the disk [13]. We model thiswrite channelas a BSC,
which is followed by a memorylessread channelmodelled
as a BAWGNC. The CBMS(p, σ) channel therefore serves as
a first-order approximation of the BPM channel – the (coded)
information Xn (See Figure 1) gets written onto the disk
as Wn, which is then read asYn. A more realistic model
would be a similar write and read channel cascade where the
subchannels have memory, which is a subject for future work.

2Throughout the paper, we will assume that information theoretic quantities
like entropy and capacity are measured in terms of bits.

The CBMS(p, σ) channel can also model other scenarios
like an earth-satellite-earth link with a simplistic hard-decision
decoder on the satellite and a more powerful soft-decision
decoder at the receiver on the earth. In general, all memoryless
(multihop) relay channels with thresholding at intermediate
nodes can be modeled as CBMS(p, σ) channels.

D. Coding for the CBMS(p, σ) channel

Owing to the asymptotically close-to-optimal performance
of LDPC codes over the subchannels of the CBMS(p, σ)
channel, we will consider coding for the CBMS(p, σ) chan-
nel using LDPC codes and the performance of these codes
with iterative message-passing decoders with emphasis on the
asymptotically bit-optimal BP decoder.

Note that since message-passing schemes are in general
hypothesized on some channel model, estimation of channel
parameters plays a key role in decoding. In this case, this
translates to the availability of good estimates forp and the
SNR (defined in dB as SNR:= −20 logσ) of the constituent
subchannels of the CBMS(p, σ) channel, which will be as-
sumed.

III. T HE BELIEF PROPAGATION DECODER

Since the CBMS(p, σ) channel is a BMS channel, the Log-
Likelihood Ratio (LLR) of the channel output is a sufficient
statistic for decoding [3]. The BP decoding scheme thus
remains the same as in the case of simple BMS channels,
except for the initial channel LLR density. Hence, the analysis
of the BP decoder over the CBMS(p, σ) channel can be
performed using the standard density evolution [3], [6], [8]
of the LLR of the channel output, i.e. the convergence to the
tree channel, the restriction to the all-zero codeword and the
concentration around the ensemble average arguments [3] can
be carried forward to this case. In this case, we have the LLR
l to be

l = ln

[

(1 − p)el̃ + p

(1 − p) + pel̃

]

(1)

where l̃ = 2y/σ2, a function of the channel outputy. Note
that in case of a BAWGNC,̃l gives the actual LLR (which
can be readily seen by settingp = 0).

We fix a code ensemble [3](λ, ρ), and define thedecodable
region of the ensemble as

R(λ,ρ) :=
{

(p, σ) : P
(p,σ)
(λ,ρ) = 0

}

(2)

where P
(p,σ)
(λ,ρ) denotes the probability that the message on a

random edge of the Tanner graph of a code in the ensemble
(λ, ρ) is in error, averaged over the ensemble, in the limit of
infinite blocklength and infinite rounds of message-passing.
The boundary of the decodable region is analogous to the
thresholdvalue of simple BMS channels [3], [8].

Whereas in the case of simple BMS channels the chan-
nel families are totally ordered by degradation [8], the
{CBMSC(p, σ)} channel family is onlypartially orderedby
degradation. We therefore devote attention to characterizing
and bounding the decodable region of an LDPC code ensemble



for the family of CBMS(p, σ) channels. For completeness, we
revisit the definition of degradation.

Definition 1 (Degraded channels):A channelZ|X is out-
put degraded with respect toY |X if X → Y → Z, i.e. X , Y
andZ form a Markov chain.

A. Characterization ofR(λ,ρ)

The following can be deduced directly from the channel
degradation argument of [8].

Lemma 1 (Monotonicity inσ): If (p, σ) ∈ R(λ,ρ), then
(p, σ) ∈ R(λ,ρ) ∀ σ ≤ σ.

In order to prove a similar monotonicity in the parameterp,
we construct a channel that is equivalent to the CBMS(p, σ)
channel, but is degraded with respect to BAWGNC(σ). Note
that it is not immediately obvious that the CBMS(p, σ)
channel, as in Figure 1, is output degraded with respect to
BAWGNC(σ).

Definition 2 (Input-distorted channels):Let X → Y be a
BSC with crossover probabilityp, and letY → Z be any BMS
channel with transition probabilityfZ|Y . Then the channel
Z|X is said to be input-distorted with respect to the channel
Z|Y .

Note that any CBMS channel with its second subchannel
being a BMS channel itself is an input-distorted channel by
definition.

Theorem 1 (Equivalence of input-distortion & degradation):
Any input-distorted channelX → Y → Z is degraded with
respect to the channelY → Z.

Proof: By definition, we haveX ∈ X = {±1}, Y ∈
Y = X , fY |X(y|x) = (1 − p)δ(y − x) + pδ(y + x) for some

p ∈ [0, 1/2], whereδ(x) =

{

1 x = 0

0 else
, andfZ|Y (−z|−y) =

fZ|Y (z|y). Then,

fZ|X(z|x) =
∑

y∈Y

fY,Z|X(y, z|x)

=
∑

y∈Y

fY |X(y|x)fZ|Y (z|y)

=
∑

y∈Y

{(1 − p)δ(y − x) + pδ(y + x)}fZ|Y (z|y)

= (1 − p)fZ|Y (z|x) + pfZ|Y (z| − x)

= (1 − p)fZ|Y (z|x) + pfZ|Y (−z|x) (3)

Consider the channel systemY → Z → W where the channel
Y → Z is given as before, and the channelZ → W satisfies
W ∈ W = Z andfW |Z(w|z) = (1−p)δ(w−z)+pδ(w+z).
Then

fW |Y (w|y) =

∫

z∈Z

fZ,W |Y (z, w|y)dz

=

∫

Z

fZ|Y (z|y)fW |Z(w|z)dz

= (1 − p)fZ|Y (w|y) + pfZ|Y (−w|y) (4)

From (3) and (4), we havefZ|X = fW |Y . Since the channel
Y → Z degrades toY → W , we conclude thatY → Z
degrades toX → Z.

From Theorem 1 and the channel degradation argument of
[8], we have the following lemma

Lemma 2 (Monotonicity inp): If (p, σ) ∈ R(λ,ρ), then
(p, σ) ∈ R(λ,ρ) ∀ p ≤ p.

A consequence of Lemmas 1 and 2 is that if a point(p, σ)
is found to be inR(λ,ρ), then we can conclude that all channel
points with a smallerσ and a smallerp (points to the left and
below (p, σ) in the channel spaceS ) are also guaranteed to
belong toR(λ,ρ).

B. Bounds forR(λ,ρ)

We now give inner and outer bounds for the decodable
region of a code ensemble based on existing universal bounds
on the performance of the BP decoder.

Proposition 1 (Bhattacharyya outer bound):Let
B̄(λ,ρ) =

{

(p, σ) ∈ S : B(p, σ) < B
∗
(λ,ρ)

}

, whereB(p, σ) is
the Bhattacharyya constant [3]associated with the channel
CBMSC(p, σ) andB∗(λ,ρ) := inf{b̄(x) : b̄(x) ≥ x, x ∈ (0, 1]},
with

b̄(x) =
x

λ

(

∑

k ρk

√

1 − (1 − x2)
k−1

) .

Then,R(λ,ρ) ⊂ B̄(λ,ρ).

DiscussionThis follows from the universal upper bound on
the Bhattacharyya constant given in [14], [15]. First, any
BMS channel is expressed as a convex combination of BSCs
of crossover probabilities ranging from0 to 1/2. Noting
that the check node processing for a density corresponding
to a BSC gives the smallest Bhattacharyya constant for the
output density, the above upper bound on the Bhattacharyya
parameter can be obtained.

Proposition 2 (Entropy outer bound):Let H̄(λ,ρ) =
{

(p, σ) ∈ S : H(p, σ) < H
∗
(λ,ρ)

}

, where H(p, σ) is
the entropy (channel equivocation) [3], [8], [16]
associated with the channel CBMSC(p, σ) and
H
∗
(λ,ρ) := inf{h̄(x) : h̄(x) ≥ x, x ∈ (0, 1/2]}, with

h̄(x) =
h2(x)

λ
(

∑

k ρkh2

(

1+(1−2x)k−1

2

)) ,

whereh2(·) is the binary entropy function. Then,R(λ,ρ) ⊂
H̄(λ,ρ).

DiscussionThis follows from the best case of the “extremes of
information combining” [16]. As in Proposition 1, the smallest
entropy of the output density is obtained for input densities
corresponding to BSC at the check node and BEC at the
variable node. Using these best case densities, we obtain the
upper bound for the entropy.

Proposition 3 (Capacity outer bound):Let C̄(λ,ρ) :=
{(p, σ) ∈ S : C(p, σ) > r(λ, ρ)} whereC(p, σ) is the capacity

of the channelCBMSC(p, σ) andr(λ, ρ) = 1 −
R

1

0
ρ(x)dx

R

1

0
λ(x)dx

is

the design rateof the code. ThenR(λ,ρ) ⊂ C̄(λ,ρ).
Proof: Since the asymptotic (in blocklength) actual rate

r of a code is equal to its design rater [3], the result follows
from the channel coding theorem.



Proposition 4 (Degradation outer bound):Let D̄(λ,ρ) =
{

(p, σ) ∈ S : σ < σ∗
(λ,ρ), p < p∗(λ,ρ)

}

, where σ∗
(λ,ρ) is the

threshold for the (λ, ρ) code ensemble over the family
{BAWGNC(σ)}, andp∗(λ,ρ) is that over the family{BSC(p)}.
Then,R(λ,ρ) ⊂ D̄(λ,ρ).

Proof: Suppose to the contrary thatP(p,σ)
(λ,ρ) = 0 for

some σ > σ∗
(λ,ρ). Then, since BAWGNC(σ) degrades to

CBMSC(p, σ), we haveP
(σ,0)
(λ,ρ) = 0 ⇒ (σ, 0) ∈ R(λ,ρ) which

contradicts the assumption thatσ∗
(λ,ρ) is the threshold for the

BAWGN channel family. A similar argument holds forp∗(λ,ρ).
This bound is more easily stated as the contrapositive of the

claims made in Lemmas 1 and 2.
Figure 3 shows the outer bounds discussed here for two code

ensembles. The set̄B(λ,ρ)∩H̄(λ,ρ)∩C̄(λ,ρ)∩D̄(λ,ρ) is therefore
an outer bound for the decodable region. We have observed
that the Bhattacharyya bound and the entropy bound have
been strictly looser than the capacity bound in all cases we
considered, with the Bhattacharyya bound being the loosest.

Proposition 5 (Bhattacharyya inner bound):Let B(λ,ρ) =
{

(p, σ) ∈ S : B(p, σ) < B
′

(λ,ρ)

}

, whereB
′

(λ,ρ) := inf{b(x) :

b(x) ≥ x, x ∈ (0, 1]}, with

b(x) =
x

λ (1 − ρ(1 − x))
.

Then,B(λ,ρ) ⊂ R(λ,ρ).

DiscussionThis follows from the universal lower bound on
the Bhattacharyya constant of a BMS channel [14], [15]. In
this case, the lower bound is obtained as in Proposition 1,
by noting that the check node processing for a density corre-
sponding to a BEC gives the largest Bhattacharyya constant
for the output density.

Note that the above bound is tight for the BEC, in which case
the Bhattacharyya constant is given by the channel erasure
probability. The above definition ofB

′

(λ,ρ) therefore coincides
with the definition of the threshold for the BEC in [3], [8].

Proposition 6 (Entropy inner bound):Let H(λ,ρ) =
{

(p, σ) ∈ S : H(p, σ) < H
′

(λ,ρ)

}

, where H
′

(λ,ρ) :=

inf{h2(p), p ∈ (0, 1/2) : ∃ x ∈ (0, 1/2) : h(x, p) ≥ 0}, with

h(x, p) = 1 − h2(x) − ρ
(

1 − ĥ(λ, x, p)
)

,

ĥ(λ, x, p) =
∑

j

λj

j−1
∑

l=0

(

j − 1

l

)

xl(1 − x)j−1−lh̃(p, x, j, l),

and h̃(p, x, j, l) as in (5). Then,H(λ,ρ) ⊂ R(λ,ρ).

DiscussionThis follows from the worst case of the “extremes
of information combining” [16]. As in Proposition 2, the lower
bound is obtained by noting that the largest entropy of the
output density is obtained for input densities corresponding to
BEC at the check node and BSC at the variable node.

Proposition 7 (Degradation inner bound):Let D(λ,ρ) =
{

(p, σ) ∈ S : p ⋆ Q
(

1
σ

)

< p∗(λ,ρ)

}

where p∗(λ,ρ) is as in

Proposition 4,a ⋆ b = a(1 − b) + b(1 − a), ∀ a, b ∈ [0, 1/2]

D̄(λ,ρ)

C̄(λ,ρ)

B̄(λ,ρ)

H̄(λ,ρ)

σ

p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a) (3, 6) regular code ensemble –λ(x) = x2, ρ(x) = x5.
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(b) Rate-0.9 code ensemble optimized[5] for the BAWGNC –
λ(x) = 0.440212x14 +0.0529353x5 +0.126393x4 +0.231598x2 +
0.148861x, ρ(x) = 0.5x46 + 0.5x45, henceforth referred to as the
“Optimized rate-0.9 code ensemble.”

Fig. 3. Outer bounds for the decodable regionR(λ,ρ). The sets correspond
to the region under the curves marked in the figure.

andQ(·) is the Q-function of the standard normal distribution.
Then,D(λ,ρ) ⊂ R(λ,ρ).

Proof: Let X → Y → Z be the CBMS(p, σ) channel.
Consider the channelX → Y → Z → W , where W =

sgn(Z) =

{

+1, Z ≥ 0

−1, Z < 0
. We haveW ∈ W = {±1} = X ,

andpW |X(w|x) = (1 − p′)δ(w − x) + p′δ(w + x), with p′ =
p⋆Q

(

1
σ

)

. Thus,X → W is a BSC with crossover probability
p′. Thus, ifp′ < p∗(λ,ρ), the threshold for the family{BSC(p)},



h̃(p, x, j, l) = p log2

"

1 +
1 − p

p

„

x

1 − x

«j−1−2l
#

+ (1 − p) log2

"

1 +
p

1 − p

„

x

1 − x

«j−1−2l
#

. (5)

we haveP
p′

(λ,ρ) = 0. Since the channelX → Z degrades to

the channelX → W , P
p′

(λ,ρ) = 0 ⇒ P
(p,σ)
(λ,ρ) = 0. Hence, if

(p, σ) ∈ D(λ,ρ), then(p, σ) ∈ R(λ,ρ).
Proposition 8 (Soft bit inner bound):Let S(λ,ρ) =

{

(p, σ) ∈ S : S(p, σ) < 4p∗(λ,ρ)(1 − p∗(λ,ρ))
}

where S(p, σ)

is the Soft bit value[15] of the CBMS(p, σ) channel and
p∗(λ,ρ) is as in Proposition 4. Then,S(λ,ρ) ⊂ R(λ,ρ).

DiscussionThis follows from the one-dimensional non-
iterative bound based on theSoft bit valuegiven in [15].

Figure 4 shows the inner bounds for the two code ensembles
considered before. We note here that the degradation inner
bound and the soft bit inner bound are tight on thep-axis, i.e.
on thep-axis, theD andS bounds meet thēD bound. The set
B(λ,ρ)∪H(λ,ρ)∪D(λ,ρ)∪S(λ,ρ) is therefore an inner bound to
the decodable regionR(λ,ρ). Note that in the case of the(3, 6)
regular code ensemble, the soft bit inner bound is tighter than
all other inner bounds. This, however, is not true in the case
of the optimized rate-0.9 code ensemble (See Figure 4).

C. Decodable region

The actual decodable region was found using density evolu-
tion. By fixing σ, we are guaranteed by Lemma 2 the existence
of a thresholdp∗σ – the largestp for which the decoder gives
a zero error. The boundary ofR(λ,ρ) is therefore estimated
by finding thep∗σ for a fixed set ofσ values within the range
[0, σ∗

(λ,ρ)], whereσ∗
(λ,ρ) is as in Proposition 4. This is shown

in Figure 5 for our example code ensembles. We conjecture
that the decodable region of a code ensemble, like most of the
bounds we have obtained, is aconvexsubset of the channel
spaceS .

IV. M ESSAGE-PASSING

In this section, we propose two alternative message-passing
schemes to the BP decoder. The schemes and the motivation
for considering them are discussed below.

A. Decoding schemes

Hard Decision decoder (HD):Here we threshold the output
of the CBMS(p, σ) channel and consider the channel to now
function as a BSC with crossover probabilityp′ = p ⋆ Q

(

1
σ

)

where⋆ and Q(·) are as defined in Proposition 7. We then
perform BP for this modified BSC. The rationale is that a
good code for the BSC should be able to tackle the written-in
errors well.

Gaussian Noise decoder (GN):In this case, we have a
decoder that ignores the first subchannel and performs BP
under the assumption that the channel is a simple BAWGN
channel. Analysing the performance of this decoder is useful,
e.g. in the case of magnetic recording, to understand the
penalty paid in naively assuming that the information written
on to a disk is error-free. Note that since we ignore the first
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(a) (3, 6) regular code ensemble.
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(b) Optimized rate 0.9 code ensemble.

Fig. 4. Inner bounds for the decodable regionR(λ,ρ).

subchannel here, the estimation ofp is not necessary, and
therefore the decoder is slightly less complex than the other
two decoders in this respect.

B. Decodable regions

The degradation inner boundD of the BP decoder gives the
decodable region for the HD decoder. This is true because the
construction in the proof of Proposition 7 is the same as the
operation performed in the HD decoder.



(a) (3, 6) regular code ensemble.

(b) Optimized rate 0.9 code ensemble.

Fig. 5. BP Decodable regionR(λ,ρ).

For the GN decoder, since the decoder assumes a wrong
channel model, we use density evolution with the LLR calcu-
lated asl = 2y/σ2, wherey is the channel output conditioned
on the transmission of a1 –

fY |X(y|1) =
1√

2πσ2

{

(1 − p) exp

(

− (y − 1)2

2σ2

)}

+

1√
2πσ2

{

p exp

(

− (y + 1)2

2σ2

)}

.

In this case, we can make no claim of the monotonicity inσ
of the decoder performance. The decodable region for the GN
decoder is found as in the case of the BP decoder, however

Fig. 6. Decodable regions for the BP, HD, and GN decoders for(3, 6)
regular code ensemble.

by using the modified LLR density.
In Figure 6, we give the decodable regions for the HD,

GN and BP decoders for the(3, 6) regular code ensemble.
We make two observations from this figure – first, the non-
monotonicity of the performance of the GN decoder apparent
from the shape of its decodable region, and second, the
similarity in the performance of the HD and BP decoders
for small σ (large SNR) and largep. Also note that the
decodable region of the GN decoder is another inner bound
to the decodable region of the BP decoder.

The non-monotonicity of the GN decoder inσ, for large
enoughp is because the decoder in this case is being fooled
into believing that the channel is reliable when it is not. For
largep and smallσ, the performance of the HD decoder and
the BP decoder coincide because the CBMS channel in this
case is very similar to the BSC, i.e. the behaviour of the
cascaded channel is dominated by the behavior of the first
subchannel. Also, as expected, the HD and the GN decoders
are as good as the BP decoder when the channel is dominated
by the BSC and the BAWGNC respectively.

V. EXPERIMENTAL RESULTS

In this section, we shall explore the performance of binary
LDPC codes on the CBMS(p, σ) channel with the three dif-
ferent message-passing schemes proposed in earlier sections.
A rate-1/2 binary LDPC code of blocklength4096 bits that
was randomly sampled (with multiple edges between nodes
avoided) from the Gallager(3, 6) regular ensemble was used
to estimate the decoder performance. The values used forp

ranged from1% through5%.
Since the CBMS(p, σ) channel is memoryless, all the de-

coding schemes have the same complexity and this complexity
scales asO(Ln(dvq + r̄dcq log2 q)) whereL is the maximum
number of iterations performed,n is the blocklength of the
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Fig. 7. Performance of the decoders for increasingp.
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Fig. 8. Performance comparison of the BP, HD, and GN decodersfor different p values.

code,dv and dc are the maximum variable and check node
degrees respectively in the Tanner graph of the code,r̄ is the
normalized redundancyof the code, given as̄r = 1−r where
r is the design rate.q is the size of the Galois field over which
the code is defined (q = 2).

Figure 7 shows the performance of each decoder over the
range ofp values. In Figure 8, we compare the three decoders
for different values ofp. We see from Figure 8 that the
BP decoder outperforms both the HD and the GN decoders,
as expected. However, with increasingp, the HD decoder
performs better than the GN decoder at high SNR values, i.e.
as the channel becomes more like the BSC (smallσ, large

p), the HD decoder handles the channel better than the GN
decoder. Note that beyond a certainp, the performance of the
GN decoder is non-monotonic inσ, e.g. whenp = 5%, the
BER first reduces and then increases with increasing SNR (See
Figure 7). Also notice that the gap between the BP and the HD
decoder (Figure 8) at a high SNR reduces asp increases, going
from ≈ 1.5 dB whenp = 1% to ≈ 0.8 dB whenp = 5%.
These agree with the observations made in Section IV-B from
the decodable regions of these decoders.

VI. GOOD CODES FOR THECBMS(p, σ) CHANNEL

From Figure 3(b), we see that the optimized rate-0.9 code
comes very close to achieving capacity on the BAWGNC –



with a threshold ofσ∗ ≈ 0.5089 while capacity isσC ≈
0.5113. However, it falls well short of the capacity on the
BSC. The threshold for this code on the BSC was observed
to be p∗ ≈ 0.0058 while a capacity of0.9 bits per channel
use was achieved by a channel withpC ≈ 0.01298. This
suggests that a code optimized for the BAWGNC might be
far from optimal on the BSC. In Figure 9, we show the
decodable regions of the BP decoder for two code ensem-
bles of rate0.75, one optimized for the BAWGNCCg =
(0.403522x14 +0.0007697x6 +0.0741103x5 +0.115054x4 +
0.000008x3+0.221315x2+0.185221x, 0.5x17+0.5x16) with
the decodable regionRg, and another optimized for the
BSC Cs = (0.419558x29 + 0.00213211x8 + 0.246425x6 +
0.0721407x5+0.147928x2+0.111817x, x23) with decodable
regionRs. These optimized codes were obtained from [17].
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Fig. 9. Decodable region estimates for the two optimized code ensembles
Cg andCs of rate0.75.

Also shown in the figure is the capacity outer bound for the
decodable region of a code of rate0.75. The ideal rate-0.75
code for the{CBMSC(p, σ)} family hasC̄(λ,ρ) as its decodable
region.

We see from Figure 9 that the code optimized for the
BSC performs better (is closer to the capacity bound) than
the code optimized for the BAWGNc except near theσ-
axis, i.e. the BAWGNC optimized code is superior only when
the channel is dominated by the BAWGN subchannel. This
suggests that a good strategy to obtain good codes for the
CBMS(p, σ) channel is to optimize a code for the BSC, rather
than optimizing for the BAWGNC. A better scheme would be
to optimize the degree distributions for a fixed rate code over
both the BAWGNC and BSC simultaneously, which is clearly
a more complex optimization problem.

VII. C ONCLUSION

We have introduced a new class of BMS channels that
model many scenarios including the BPM recording channel.

We analyzed the theoretical decodable regions of LDPC codes
under BP decoding over the family of CBMS(p, σ) channels by
giving inner and outer bounds to the decodable region based
on channel parameters like the entropy, the Bhattacharyya
constant, the Soft bit value and the capacity, and also based
on the channel ordering introduced by degradation. We also
numerically estimated the decodable regions for three pro-
posed message-passing decoders, including the BP decoder
using density evolution.

We conducted performance estimation for a rate-1/2 (3, 6)-
regular LDPC code of blocklength4096 bits with the three
proposed message-passing schemes and showed the decoder
characteristics suggested by theory. In particular, we showed
that ignoring the BSC (as in the GN decoder) can result in
a large penalty in performance, more so when the channel
SNR is high. By looking at codes optmized for the BSC
and BAWGNC, we noted that optimizing a code over the
BSC works better than optimizing for the BAWGNC. Both
these suggest that the first subchannel, the BSC, plays a
very key role in the CBMS(p, σ) channel, and any good
code construction for the channel should take into account
its effects.
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