
Application of Distance Spectrum Analysis to Turbo

Code Performance Improvement

Mats �Oberg� and Paul H. Siegel

Department of Electrical and Computer Engineering

University of California, San Diego

La Jolla, California 92093-0407

E-mail: moberg@ucsd.edu, psiegel@ucsd.edu

Abstract

We present a simple method to improve the performance of turbo codes. Dis-
tance spectrum analysis is used to identify information bit positions a�ected by
low-distance error events, which are few in number due to the sparseness of the
spectrum. A modi�ed encoder inserts dummy bits in these positions, resulting in
a lower and steeper error
oor in the bit-error-rate (BER) performance curve. For
su�ciently large interleaver size, the only cost is a very slight reduction in the code
rate. We illustrate the method using a rate 1/2 turbo code, with interleaver length
N = 10000: The proposed method improves the BER by an order of magnitude at
Eb=N0 = 2:5 dB, with a rate loss of only 0.4%.

1 Introduction and Background

Turbo codes { parallel concatenated convolutional codes connected by an interleaver {

were �rst introduced in 1993 by Berrou et. al [1], and are now widely recognized as a

landmark development in error control coding. Two characteristic features of turbo code

performance are the small bit-error-rate (BER) achieved even at very low signal-to-noise

ratio (SNR) and the
attening of the error-rate curve { the so-called "error
oor" { at

moderate and high values of SNR.

Recently Perez et. al. [2] analyzed the codeword weight distribution and multiplicity

{ the distance spectrum { of turbo codes and o�ered an explanation for both of these

phenomena. By considering input sequences of length equal to the interleaver size N ,

they derived a maximum-likelihood (ML) bound for the BER performance of turbo codes,

Pb �

2(�+N)X
d=dfree

Nd~!d

N
Q

 r
d
2REb

N0

!
(1)

where Nd is the multiplicity of weight-d codewords, ~!d is the average weight of the

information sequences causing weight-d codewords, R is the code rate, and � is the

�This research is supported by the Royal Swedish Academy of Sciences and the Center for Wire-

less Communications at UCSD. The material in this paper was presented in part at the International

Symposium on Turbo Codes & Related Topics, Brest, France, September 3-5, 1997.

memory of the constituent convolutional code. Although the iterative decoding procedure

utilized in turbo codes is sub-optimal [3], its performance has been found to be very close

to that of an optimal ML decoder. Thus the bound in (1) can be used to evaluate turbo

code performance.

At moderate to high SNR, the BER bound is dominated by the free-distance term,

and the performance approaches the free-distance asymptote, Pfree, given by

Pfree =
Nfree~!free

N
Q

 r
dfree

2REb

N0

!
; (2)

where dfree denotes the free distance of the code, with corresponding multiplicity Nfree

and average information weight ~!free:

In [2], Perez, et al. studied a turbo code based upon a particular pseudo-random

interleaver with size N = 65536: The code was found to have dfree = 6, Nfree = 3, and

~wfree = 2. The simulated BER performance was shown to approach the free-distance

asymptote, which had a shallow slope as a result of the relatively small free-distance

of the turbo code. The observed error
oor could therefore be interpreted as simply a

manifestation of the relative
atness of the asymptote.

For this particular turbo code, the free distance codewords all have information weight

2, as well as a very small e�ective multiplicity,

Nfree

N
=

3

65536
;

resulting in a small error coe�cient in the expression (2) for the free-distance asymptote

Pfree. The small error coe�cient accounts for the fact that, despite the small free-distance

of this turbo code, the error
oor appears at a rather low error rate (BER � 10�6 at

SNR=1 dB).

The analysis of \average" turbo codes in [2] shows that this is the typical situation and,

moreover, the unusually small multiplicity extends to low-weight codewords in general.

This \spectral sparseness" [2], which is not found in conventional convolutional codes,

can be attributed to the parallel concatenated convolutional code structure of turbo

codes and the properties of pseudo-random interleavers. A consequence of this spectral

sparseness is that the free-distance asymptote dominates the error-rate bound even at

very low SNR. This fact, along with the small e�ective multiplicity for free-distance

codewords, accounts for the remarkable performance of turbo codes in the SNR region

close to the Shannon limit.

Based upon this analysis of turbo code distance spectrum properties, two modi�-

cations to the turbo code design that would improve overall code performance were

suggested in [2]. The error
oor can be lowered, without a slope change, by increasing

the interleaver size N , while maintaining the free distance and corresponding multiplic-

ity. Alternatively, the slope of the error
oor can be increased (negatively) by choosing

constituent convolutional codes that increase the free distance of the turbo code, while

keeping the corresponding multiplicity small.

In this paper, we will propose another approach to modifying the turbo code that

does not require any change of the interleaver size or the constituent convolutional codes.

By examining the interplay between the constituent convolutional codes and the pseudo-

random interleaver, we derive a list of the non-zero bit positions in the information frames

that produce minimum-weight turbo codewords. A modi�ed encoder places dummy bits

in these positions, and after the turbo decoding is completed, the contents of these

positions in the decoded frame are discarded. This process e�ectively removes the con-

tribution to the BER of the free-distance error events, resulting in a lowering of the error

oor and a change in its slope. By determining bit positions that correspond to other

low-weight codewords, we can further improve code performance by applying this same

procedure to those frame positions. The small multiplicity of low-weight codewords in the

turbo code implies that the rate loss incurred by this encoder modi�cation is negligible

for large interleaver size.

The remainder of the paper is organized as follows. In Section 2, we discuss properties

of the constituent convolutional encoders that play a role in the analysis of turbo code

performance. In Section 3, we investigate the e�ect of the interleaver on the distance

spectrum and, in particular, the set of low-weight codewords. Section 4 provides the

details of the new method for improving the turbo code performance, as well as BER

simulation results that con�rm the expected gains. Section 5 summarizes our results.

2 Properties of the Constituent Encoders

A turbo encoder consists of two or more recursive systematic convolutional (RSC) en-

coders in parallel concatenation, along with interleavers which permute the input bits of

the �rst encoder before applying them to the inputs of the other encoders. Input bits

in a frame of length N are encoded by the �rst RSC, producing what we call the �rst

dimension codeword. The same information frame is permuted by the interleaver and

encoded by the second encoder, generating the second dimension sequence. A similar

procedure is followed with any additional encoders. Since the constituent encoders are

systematic, only the �rst information frame need be transmitted, along with the parity

bits from each encoder. In this paper, we will consider only the case of two identical,

rate 1/2 RSC encoders. To increase the overall rate of the encoder from 1/3 to 1/2, we

follow the usual practice of puncturing every other parity bit in each dimension.

Berrou, et al. [4] proved a property of RSC encoders that plays an important role in

the characterization of minimum-distance error events in turbo encoders. They showed

that if h(D) is the feedback polynomial of a RSC encoder, and if h(D) is a divisor of

1 + D
L, then h(D) is also a divisor of 1 + D

pL for any integer p � 1. Let 0i denote a

run of 0's of length i. The result implies that an input stream 1 0Lp�1 1, where the two

ones are separated by pL�1 zeros, for any integer p � 1, will generate a trellis path that

diverges from the all-zero path and then remerges after pL+1 trellis steps. The encoder

will leave the all-zero state in response to the �rst 1, and then will return to that state

in response to the second 1.

Example 1 Consider the memory-4, RSC encoder with parity-check polynomials h0(D) =

1 +D +D
2 +D

3 +D
4 (octal 37) and h1(D) = 1 +D

4 (octal 21) [2]. The feedback poly-

nomial h0(D) divides 1 +D
5. Therefore, any binary sequence 1 05p�1 1; p � 1, will force

the encoder to leave the all-zero state at the appearance of the �rst 1, and return to that

state 5p + 1 steps later, in response to the second 1. Fig. 1 illustrates the codeword

corresponding to the case p = 1 . Note that the weight of the resulting codeword is 6.

Example 2 For an encoder with the same feedback polynomial h0(D) as in Example

1, any binary sequence h0(D)r; r � 1, will force the encoder to leave the all-zero state at
the �rst 1, and return at the �nal 1. When r = 1, one gets the length-5 sequence 1 1 1 1 1,

which generates a weight-7 codeword.

00 11 01 00 00 01 11 00

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

Branch labels

S
ta

te
s

Input weight 2 trellis diagram for a 37/21 constituent RSC encoder

Figure 1: Response of a octal (37,21) RSC encoder with input pattern 0100001000.

The linearity of RSC encoders permits the interpretation of these observations in terms

of error events. In the case of the feedback polynomial in the preceding examples, any

pair of code sequences a(D) and b(D) that di�er from another by e(D) = 1+D
5p
; p � 1;

or e(D) = h0(D)r; r � 1; will correspond to trellis paths whose state sequences are

distinct during the course of an error event of length equal to the degree of e(D).

For a RSC encoder, one might expect that low-weight code sequences would be gen-

erated in response to low-weight input sequences that correspond to short error events in

the trellis. In particular, the weight-2 input sequences discussed in Example 1, in which

the non-zero bits are separated by a small multiple of the code constraint length L = 5,

are good candidates for producing minimum-weight code sequences. For the rate 1/2,

octal (37,21) code, the free distance is dfree = 6, and Fig. 1 depicts a minimum distance

code sequence that is generated in response to a weight-2 input sequence in which the

non-zero bit separation is one constraint length.

As discussed in [2], for the constituent convolutional code, the multiplicity of free-

distance error events, Nfree, will be roughly proportional to the frame length N , since

there are few restrictions on the frame positions where the event may begin. In the next

section, we will see that the introduction of an interleaver in a parallel concatenated RSC

coding structure will dramatically restrict the possible starting positions of free-distance

error events.

3 The E�ect of the Interleaver

The remarkable power of turbo codes comes from the combination of the parallel con-

catenated RSC codes and the permutation of the information frame by the interleaver.

The interleaver permutes the frame of information bits in the �rst dimension prior to

their encoding by the encoder in the second dimension. Loosely speaking, the e�ect of

this permutation is to ensure that low-weight error events occur in only one dimension.

Depending on the choice of the permutation, the interleaver can a�ect both the distances

and the multiplicities of error events.

Low-weight turbo codewords arise when the interleaver maps low-weight information

frames that produce low-weight parity in the �rst dimension into frames that produce

low-weight parity in the second dimension. In view of the discussion in the previous

section, therefore, the interleaver should avoid certain permutations of bit positions as

much as possible. Speci�cally, de�ne the polynomial b(D) by

b(D) =

p�X
n=0

bnD
n = h0(D)p; (3)

and let Mp denote the indices of non-zero coe�cients of b(D),

Mp = fnjbn 6= 0g: (4)

Then, the interleaver should avoid the following mappings of subsets of bit positions:

fi; i+ Lpg 7�! fj; j + Lrg (5)

fi; i+ Lp; j; j + Lrg 7�! fk; k + Lu;m;m+ Lvg (6)

fi+Mpg 7�! fj +Mrg (7)

where L is the parameter in the divisibility condition of the previous section; i; j; k and

m are positive integers � N ; � is the memory length of the constituent RSC encoder;

and r; s; u and v are integers small enough that the corresponding information sequences

produce low parity weight at the encoder output. Note that, in the mappings in (7)

above, we require that jMpj = jMrj:

Remark: Permutations that map unions of the various subsets above to other unions

of these subsets having equal information weight should also be avoided.

Analysis of random interleavers shows that an \average interleaver" can accomplish

these desired objectives fairly well [5], and pseudo-randomly generated interleavers have

been found to be generally superior to other structured interleavers. The superior per-

formance does not typically arise from a large free distance, however. Rather, the best

performing interleavers appear to gain their advantage through drastic reduction of the

low-distance error event multiplicity. This \spectral thinning" is the property demon-

strated through example and analysis in [2], and lies at the heart of the technique for

improving turbo code performance as described in the next section.

We analyzed the distance spectrum of a turbo code based upon the aforementioned

rate 1/2 constituent code and a particular pseudo-random interleaver of size N = 10000.

(In the analysis, we assume that, at the end of the information frame, the encoders in

both dimensions are driven to the all-zero state by appending appropriate tails of length

�.) The free distance of the turbo code is dfree = 6; with free-distance multiplicity

Nfree = 4. As was the case for the N = 65536 turbo code discussed in [2], all of the free-

distance codewords correspond to weight-2 information sequences. We also determined

the codewords of weight 16 or less that are generated by weight-2 inputs where the

non-zero information bit positions in both dimensions are separated by a small multiple

of the constituent code constraint length. In our search for mappings of bit patterns

corresponding to powers of the feedback polynomial that mapped into a bit pattern

corresponding to a power of the feedback polynomial, we found none which would result

in codeword weight 16 or less.

Table 1 describes in more detail the search results for codewords of weight 10 or less.

The table speci�es the positions of the non-zero bits in information frames of weight 2

that generate code sequences with weight 6, 8, or 10. For each bit pair, the bit separation

in the �rst dimension and the bit separation in the second dimension after permutation

by the interleaver are indicated in the column labeled \Mapping". The bit separation is

Mapping Bit pairs for d = 6 (dimension 1) (wH(P1); wH(P2))

1 7! 1 (1979; 1984)(5861; 5866) (2; 2)(2; 2)

1 7! 2 (785; 790)(1383; 1388) (2; 2)(2; 2)

Mapping Bit pairs for d = 8 (dimension 1) (wH(P1); wH(P2))

1 7! 2 (5117; 5122)(5827; 5832)(9014; 9019) (2; 4)(2; 4)(2; 4)

1 7! 3 (449; 454)(1280; 1285)(5566; 5571) (2; 4)(2; 4)(2; 4)

2 7! 1 (4253; 4263) (4; 2)

2 7! 2 (1163; 1173) (4; 2)

3 7! 1 (3518; 3533)(7132; 7147) (4; 2)(4; 2)

3 7! 2 (5804; 5819)(9136; 9151) (4; 2)(4; 2)

4 7! 2 (3132; 3152) (4; 2)

Mapping Bit pairs for d = 10 (dimension 1) (wH(P1); wH(P2))

1 7! 6 (1982; 1987) (2; 6)

2 7! 2 (3785; 3795) (4; 4)

2 7! 4 (3026; 3036) (2; 6)

3 7! 2 (2368; 2383)(5265; 5280)(8061; 8076) (4; 4)(4; 4)(4; 4)

3 7! 3 (2528; 2543)(4925; 4940)(9944; 9959) (4; 4)(4; 4)(4; 4)

3 7! 4 (2040; 2055) (4; 4)

4 7! 1 (4053; 4073)(6393; 6413) (6; 2)(6; 2)

4 7! 2 (4823; 4843)(9406; 9426) (6; 2)(4; 4)

5 7! 1 (4398; 4423)(7542; 7567)(8793; 8818)(9000; 9025) (6; 2)(6; 2)(6; 2)(6; 2)

6 7! 1 (7648; 7678) (6; 2)

Table 1: Weight-2 inputs generating turbo codewords of weights 6, 8, and 10.

given in terms of the number of constraint lengths L = 5 that it spans. The table also

shows the weight of the parity bits in the �rst and second dimensions. The total number

of non-zero information bit positions in the calculated codewords of weights 6, 8, 10, 12,

14, and 16 are 8, 26, 38, 34, 24, and 8, respectively.

For weight-6 codewords, the list is complete and our simulation results indicate that

that is the case also for weight-8 and weight-10 codewords. Note that these free-distance

codewords correspond to input frames of weight 2 where the bit separation in the �rst

dimension is one constraint length, and the corresponding bit separation in the second

dimension is either one or two constraint lengths.

4 Improving BER by Discarding Spectral Lines

Fig. 2 shows the simulated BER as a function of SNR for the N = 10000 turbo code

of the previous section. Also shown are the free-distance asymptote and the weight-8

asymptote corresponding to the codewords listed in Table 1.

Fig. 3 shows a histogram of the cumulative number of errors that occurred at each bit

position in the information frame for SNR=2 dB. A total of 2,177,440,000 information

bits were encoded and 3501 bits were decoded in error, yielding a BER of 1:61�10�6. Of

these bit errors, 2907 occurr at positions associated with the codewords listed in Table

1, and another 52 errors are associated with d = 12, d = 14 and d = 16 codewords found

in our search. Speci�cally, 1676 bit errors correspond to d = 6 codewords, 952 to d = 8,

279 to d = 10, 44 to d = 12, 8 to d = 14, and 0 to d = 16.

0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Simulated BER
Free Distance Asymptote

Distance 8 Asymptote

SNR /dB
B

E
R

Turbo coding (37,21,10000), Simulated and Analytical

Figure 2: Simulated BER and asymptotes for distances 6 and 8.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

E

rr
or

s

Figure 3: Cumulative bit errors per bit position in frame.

The fact that the distance spectrum analysis pinpointed the non-zero information bit

positions involved in all possible free-distance error events suggests a simple modi�cation

to the turbo encoder that will improve BER performance. Speci�cally, the encoder is

modi�ed so that it does not write information in those bit positions, but inserts randomly

chosen dummy bits. If a free-distance error event occurs during decoding, only these

positions in the information frame will be a�ected, so the actual information bits remain

uncorrupted.

If we decompose the asymptotic performance bound into spectral lines as in [2], it is

clear that the spectral line corresponding to dfree = 6 has the greatest impact on the

performance. By avoiding the bit positions that can be a�ected by free-distance error

events, the modi�ed encoder e�ectively removes the contribution to the BER represented

by the free-distance spectral line. The observed decoded BER should therefore be reduced

by the amount re
ected in the asymptote.

Fig. 4 compares the simulated BER curve of Fig. 2 to the BER curve obtained when

the bit positions corresponding to free-distance codewords are ignored. The simulated

BER is reduced by a factor of about 2 relative to the original BER. Also shown is the

distance-8 asymptote re
ecting the weight-8 codewords listed in Table 1. The plot shows

0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Simulated BER
Free Dist Errors removed

Free Distance Asymptote
Distance 8 Asymptote

SNR /dB

B
E

R

Turbo coding (37,21,10000), Simulated and Analytical

Figure 4: Simulated BER with distance-6 events removed.

the expected changes to the error
oor, namely a lowering and change in slope.

The modi�ed encoder incurs a rate loss through this introduction of dummy bit posi-

tions. However, the impact is slight for large interleaver size. For the length N = 10000

interleaver studied in this paper, the loss is 8 information bits out of 10000, implying

a reduction in rate of approximately .04 percent. If applied to the N = 65536 turbo

code in [2], the modi�ed encoding procedure would discard only 6 information bits out

of 65536, causing a decrease in the code rate amounting to less than one hundredth of

one percent.

Given a characterization of bit positions a�ected by other low-distance error events,

the encoder can be further modi�ed to avoid writing information into those locations,

thereby providing additional improvement to the BER performance. By referring to Table

1, we modi�ed the encoder to avoid positions corresponding to error events of weight 8, in

addition to those of weight 6. The performance improvement resulting from this further

modi�cation is shown in Fig. 5. The simulated BER is reduced by an additional factor

of about 3, yielding a total reduction factor of approximately 7 relative to the original

BER. The �gure also shows the distance-10 asymptote re
ecting the contributions of the

weight-10 codewords in Table 1. The rate loss incurred in achieving this reduced BER

was slight, amounting to only 34 information bits per frame, or about 0.17 percent.

Finally, the encoder was modi�ed to successively avoid all of the positions a�ected by

the error events with distance 16 or less that we found in our search. Fig. 6 shows the

progressive reduction in the error
oor, culminating in a BER improvement that is about

an order of magnitude at an SNR of 2.5 dB. Note that there is no signi�cant improvement

after the removal of the bits corresponding to the distance-10 events. This is due to the

existence of distance-12 events not uncovered in the search. The rate penalty incurred by

the removal of all of the events of distance 10 or less amounts to only 72 information bits

out of 10000, or a reduction of about 0.36 percent. The removal of all of the events of

distance 16 or less uncovered in the search amounts to eliminating only 138 information

bits out of 10000, for a rate reduction of about 0.7 percent.

We have investigated two variations of the performance improvement scheme proposed

above. In the �rst, we use dummy bits that are known to the decoder and therefore do

not need to be transmitted. For example, the dummy bits may be chosen to be all

0's, and the receiver then associates to their bit positions a strong indication that the

0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Simulated BER
Dist 6 & 8 Errors removed
Distance 8 Asymptote
Distance 10 Asymptote

SNR /dB

B
E

R

Turbo coding (37,21,10000), Simulated and Analytical

Figure 5: Simulated BER with distance-6 and distance-8 events removed.

0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Simulated BER
Dist 6 Errors removed
Dist <=8 Errors removed
Dist <=10 Errors removed
Dist <=12 Errors removed
Dist <=14 Errors removed
Dist <=16 Errors removed

SNR /dB

B
E

R

Turbo coding (37,21,10000), Simulated and Analytical

Figure 6: Simulated BER with information weight 2 events of distance 16 or less removed.

transmitted bits were all 0's. The simulation results for this enhanced decoder indicate

some improvement in performance, but the gain, only about 0.05 dB, is slight. This

approach can be further modi�ed to require that only one information bit position from

each information-weight 2 error event be treated as a known dummy bit position, thereby

reducing the rate loss.

In a second variation, we attempted to increase the minimum distance of the turbo

code by designing an interleaver that avoids the permutations described in (5)-(7). In

[6], we applied this criterion in the design of an \S-random" permutation, as introduced

by Divsalar and Pollara [7]. The BER results obtained with this constrained \S-random"

interleaver were comparable to those shown in Fig. 6. The implementation of this design

strategy is straightforward for long interleavers, but for short interleavers, one might

expect the constraint on the permutation to limit the \randomness" of the interleaver

and, therefore, negatively a�ect performance gains. It is possible that a combination of

the constrained interleaver approach and the dummy bit insertion technique presented

in this paper may further improve turbo code performance.

5 Conclusions

We have presented a new method to lower the error
oor of turbo codes with sparse

distance spectrum. The technique involves identi�cation of the bit positions associated

with low-weight codewords, and modifying the encoder to avoid writing information in

those locations. Simulation results for a particular turbo code using a pseudo-random

interleaver of length N = 10000 show an order of magnitude improvement in BER at

SNR=2.5 dB with a code rate penalty of less than 0.4 percent.

Note: The unequal error protection characteristic of turbo codes was recognized in-

dependently by Narayanan and St�uber [8]. They lowered the error
oor by protecting

error prone bit positions with an outer double-error correcting BCH code, achieving

performance improvements comparable to those presented in this paper.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, \Near Shannon limit error-correcting

coding and decoding: Turbo Codes," in Proc. 1993 IEEE International Conference

on Communication (ICC), Geneva, Switzerland, May 1993, pp. 1064{1070.

[2] L. Perez, J. Seghers, and D. J. Costello Jr., \A distance spectrum interpretation of

turbo codes," IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1698{

1709, November 1996.

[3] R. J. McEliece, E. R. Rodemich, and J. Cheng, \The turbo decision algorithm," in

Proc. 33 rd Annual Allerton Conference on Communication, Control, and Computing,
October 1995, p. 366.

[4] C. Berrou, S. Evano, and G. Battail, \Turbo-block-codes," in Turbo coding seminar,

Lund, Sweden, August 1996, pp. 1{8, Lund University.

[5] S. Benedetto and G. Montorsi, \Unveiling turbo codes: Some results on parallel

concatenated coding schemes," IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 409{428, March 1996.

[6] M. �Oberg, A. Vityaev, and P. H. Siegel, \The e�ect of puncturing in turbo encoders,"

in Proceedings of the International Symposium on Turbo Codes & Related Topics,

Brest, France, September 1997, pp. 184{187, ENST de Bretagne.

[7] D. Divsalar and F. Pollara, \Turbo codes for PCS applications," in Proc. 1995
IEEE International Conference on Communication (ICC), Seattle, WA, June 1995,

pp. 54{59.

[8] K. R. Narayanan and G. L. St�uber, \Selective serial concatenation of turbo codes',"

IEEE Communications Letters, vol. 1, no. 5, pp. 136{139, September 1997.

