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Abstract

Until the Repeat Accumulate codes of Divsalar,et al. [4], few people would have
guessed that simple rate-1 codes could play a crucial role in the construction of “good”
codes. In this paper, we will construct “good” linear block codes at any rater < 1 by
serially concatenating an arbitrary outer code of rater with a large number of rate-1 inner
codes through uniform random interleavers. We derive the average output weight enumer-
ator for this ensemble in the limit as the number of inner codes goes to infinity. Using a
probabilistic upper bound on the minimum distance, we prove that long codes from this
ensemble will achieve the Gilbert-Varshamov bound with high probability. Finally, by nu-
merically evaluating the probabilistic upper bound, we observe that it is typically achieved
with a small number of inner codes.

1 Introduction

The introduction of turbo codes by Berrou, Glavieux, and Thitimajshima [3] is remarkable
because it combined simple components together to set a new standard for error-correcting
codes. Since then, iterative “turbo” decoding has made it practical to consider a whole new
world of concatenated codes while the use of “random” interleavers and recursive convolu-
tional encoders has given us a starting point for choosing new code structures. Many of these
concatenated code structures fit into a class that Divsalar, Jin, and McEliece call “turbo-like”
codes [4]. This class includes their Repeat Accumulate (RA) codes which consist only of a rep-
etition code, an interleaver, and an accumulator. Still they prove that, for sufficiently low rates
and any fixed Eb/N0 greater than a threshold, these codes have vanishing word error probabil-
ity as the block length goes to infinity. This shows that powerful error-correcting codes may be
constructed from extremely simple components.

In this paper we consider the serial concatenation of an arbitrary outer code of rater < 1
with m identical rate-1 inner codes where, following the convention of turbo coding literature,
we use the term serial concatenation to mean serial concatenation through a “random” inter-
leaver. Any real system must, of course, choose a particular interleaver. Our analysis, however,
will make use of theuniform random interleaver(URI) [2] which is equivalent to averaging
over all possible interleavers. We analyze this system using a probabilistic bound on the min-
imum distance and show that, in the limit as the number of inner codesm goes to infinity, the
minimum distance is bounded by an expression that resembles the Gilbert Bound (GB) [5].

∗This work was supported in part by the National Science Foundation (NSF) under grant NCR-9612802 and
by the National Storage Industry Consortium (NSIC).
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Figure 1: Our system consists of any rater < 1 code followed bym rate-1 codes.

Our work is largely motivated by [4] and by the results of Öberg and Siegel [10]. Both
papers consider the effect of a simple rate-1 “Accumulate” code in a serially concatenated
system. In [4] a coding theorem is proved for RA codes, while in [10] the “Accumulate” code
is analyzed as a precoder for the dicode magnetic recording channel. Benedetto,et al. also
investigated the design and performance of Double Serially Concatenated Codes in [1].

If the outer code consists of multiple independent copies of a short block code and the
inner code is a cascade ofm interleaved “Accumulate” codes, we will refer to these codes
as Generalized Repeated Accumulated (GRAm) codes. McEliece has analyzed the maximum
likelihood decoding performance of these codes form = 1 [9], and we focus on the minimum
distance of these codes form ≥ 1.

The outline of the paper is as follows. In Section 2 we review theweight enumerator(WE)
of linear block codes and the union bound on the probability of error for maximum likelihood
decoding. We also review the average weight enumerator for the serial concatenation of two
linear block codes through a URI, and relate serial concatenation to matrix multiplication using
a normalized form of each code’sinput output weight enumerator(IOWE). In Section 3 we
introduce our system, shown in Figure 1, and we compute its average output WE. In Section
4 we derive a probabilistic bound on the minimum distance of any code, taken from a random
ensemble, in terms of the ensemble’s average WE. Applying this bound to the WE from Section
3 gives an expression very similar to the GB, and examining the bound as the block length
goes to infinity produces the Gilbert-Varshamov Bound (GVB). In Section 5 we numerically
evaluate our bound on minimum distance for various GRAm codes and observe that 3 or 4
“Accumulate” codes seem to be sufficient to achieve the bound corresponding to asymptotically
largem. Finally, in Section 6 we discuss some conclusions and directions for future work.

2 Weight Enumerators and Serial Concatenation
2.1 The Union Bound

In this section, we review the weight enumerator of a linear block code and the union bound on
error probability for maximum likelihood decoding. The IOWEAw,h of an(n, k) block code
is the number of codewords with input weightw and output weighth, and the WEAh is the
number of codewords with output weighth and any input weight. Using these definitions, the
probability of word error is upper bounded by

Pw ≤
n∑
h=1

k∑
w=1

Aw,hz
h,

and the probability of bit error is upper bounded by

Pb ≤
n∑
h=1

k∑
w=1

w

k
Aw,hz

h.

The termzh represents an upper bound on the pairwise error probability, between any two
codewords differing inh positions, for the channel of interest. The constantz is defined for
many memoryless channels [7, Section 5.3], and for the AWGN channel it isz = e−(k/n)(Eb/N0).
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2.2 Serial Concatenation through a Uniform Interleaver

In this section, we review the serial concatenation of codes through a uniform random inter-
leaver. The introduction of URI in the analysis of turbo codes by Benedetto and Montorsi
[2] has made the analysis of complex concatenated coding systems relatively straightforward,
and using the URI for analysis is equivalent to averaging over all possible interleavers. The
important property of the URI is that the distribution of output sequences is a function only
of the weight distribution of input sequences. More precisely, an input sequence of weightw
produces all possible output sequences of weightw, each with equal probability.

Consider any(n, k) block code with IOWEAw,h preceded by a URI. We will refer to such a
code as auniformly interleaved code(UIC). The probability of the combined system mapping
an input sequence of weightw to an output sequence of weighth is

Pr (w→ h) =
Aw,h(
k
w

) . (1)

We can now consider an(n, k) block code formed by first encoding with an(n1, k) outer
code with IOWEA(o)

w,h, then permuting the output bits with a URI, and finally encoding again

with an (n, n1) inner code with IOWEA(i)
w,h. The average number of codewords with input

weightw and output weighth is then given by

Aw,h =
n1∑
h1=0

A
(o)
w,h1

Pr (h1 → h)

=
n1∑
h1=0

A(o)
w,h1

A
(i)
h1,h(
n1

h1

) . (2)

The average IOWE for the serial concatenation of two codes may also be written as the
matrix product of the IOWE for the outer code and a normalized version of the IOWE for the
inner code. Let us define, for any code, theinput output weight transition probability(IOWTP)
Pw,h as the probability that a uniform random input sequence of weightw is mapped to an
output sequence of weighth. From (1), we can see that

P
(i)
w,h =

A
(i)
w,h(
k
w

) . (3)

Substituting (3) into (2), we have

Aw,h =
n1∑
h1=0

A(o)
w,h1

P (i)
h1,h

= A(o)P(i).

whereA(o) is the matrix representation of the outer code IOWE andP(i) is the matrix represen-
tation of the inner code IOWTP. By inductively applying this to multiple inner code IOWTP
matrices, one can see that matrix multiplication computes the overallAw,h for an arbitrary
number of serial concatenations. It is also clear from (3) that IOWTP matrices are stochastic
(i.e. all rows sum to 1).

2.3 A Simple Example

In this section, we will compute the IOWE and IOWTP of the rate-1 “Accumulate” code [4].
The “Accumulate” code is a block code formed by truncating the simplest recursive convo-
lutional code possible, having generator matrixG(D) = 1/(1 ⊕ D), aftern symbols. The
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Input Sequence 000 001 010 100 011 101 110 111
Input Weight 0 1 1 1 2 2 2 3

Output Sequence 000 001 011 111 010 110 100 101
Output Weight 0 1 2 3 1 2 1 2

Table 1: Input-output sequences and weight mappings forn = 3 “Accumulate” code.

generator matrix for this block code is ann×n matrix with all 1’s in the upper triangle and all
0’s elsewhere. In the example, we will look at the casen = 3. The generator matrix is

G =

 1 1 1
0 1 1
0 0 1

 .
Using Table 1, we see that a uniform random input of weight 1 maps to output weights 1, 2,
and 3 with equal probability, and cannot be mapped to output weight 0. So thew = 1 row of
the IOWTP matrix is

[
0 1/3 1/3 1/3

]
. Filling in the rest of the entries, we give both the

IOWEAw,h and the associated IOWTPPw,h in matrix form:

Aw,h =


1 0 0 0
0 1 1 1
0 2 1 0
0 0 1 0


w,h

, Pw,h =


1 0 0 0
0 1/3 1/3 1/3
0 2/3 1/3 0
0 0 1 0


w,h

.

3 Multiple Rate-1 Serial Concatenations
3.1 The Input Output Weight Enumerator

In this section, we will consider a code formed by encodingm + 1 times. The first (outer)
encoder is for an(n, k) block code with IOWEA(o)

w,h. The nextm (inner) encoders are for

identical rate-1 UICs of block lengthn with IOWE A
(i)
w,h. If we let P be the IOWTP matrix

associated withA(i)
w,h, then we can write the average IOWEAw,h for this code as

Aw,h =
n∑

h1=0

A
(o)
w,h1

[Pm]h1h
. (4)

The linearity of the code guarantees that the matrixP will be block diagonal with at least
two blocks because inputs of weight 0 will always be mapped to outputs of weight 0 and inputs
of weight greater than 0 will always be mapped to outputs of weight greater than 0. So let the
first block be the1×1 submatrix associated withw = h = 0, and let the second blockQ be the
n× n submatrix formed by deleting the first row and column ofP. Writing Pmas the product
of block diagonal matrices, we see that

Pm =

[
1 0
0 Qm

]
.

3.2 Stationary Distributions and Markov Chains

In this section, we will discuss the stationary distributions of a Markov Chain (MC) and how
they relate to the stationary weight distributions of a rate-1 UIC. This discussion is based on
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the observation that ifP is a finite dimensional stochastic matrix, then there is an associated
MC with state transition matrixP. Applying this to the IOWTP matrix of any UIC, we see that
all UICs have an associated MC.

A MC, with state transition matrixP, has a stationary distributionπ = [π0, . . . , πn] if
πP = π and

∑
πi = 1. Accordingly, a rate-1 UIC has a stationary weight distributionπ if π

is a stationary distribution of the code’s associated MC. Recall that a MC isirreducibleif there
is a path from any state to any other state with a finite number of steps. Using these definitions,
we can draw upon some well-known results from the theory of non-negative matrices and MCs
[11].

THEOREM 1. An irreducible Markov Chain has a unique stationary distribution.

We define a rate-1 UIC to beirreducible if the Q submatrix of its IOWTP matrixP can be
associated with an irreducible MC. Similarly, this implies that there is a path from any weight to
any other weight in a finite number of encodings. We now apply Theorem 1 to theQ submatrix
of an irreducible rate-1 UIC. Since the matrixQ does not include inputs and outputs of weight
0, we must assumeπ0 = 0 to make the following stationary weight distribution unique.

PROPOSITION1. The unique stationary weight distributionπ = [π0, . . . , πn] of an irreducible
rate-1 UIC withπ0 = 0 is

πh =

(
n
h

)
2n − 1

for 1 ≤ h ≤ n.

The example from Section 2.3 is irreducible, and applying Proposition 1 gives

[
0 3

7
3
7

1
7

] 
1 0 0 0
0 1/3 1/3 1/3
0 2/3 1/3 0
0 0 1 0

 =
[

0 1+2
7

1+1+1
7

1
7

]
.

An irreducible MC isprimitive if its state transition matrix has a unique eigenvalue of
maximum modulus. Accordingly, we define an irreducible rate-1 UIC to beprimitive if the
MC associated with theQ submatrix of the IOWTP matrix is primitive. The following theorem
from the theory of MCs [11] will allow to examine the asymptotic behavior of (4) asm goes
to infinity.

THEOREM 2. A primitive Markov Chain with state transition matrixP and unique stationary
distributionπ satisfies the limit

lim
m→∞

Pm =

 π...
π

 .
The example from Section 2.3 is also primitive, and applying Theorem 2 gives

lim
m→∞


1 0 0 0
0 1/3 1/3 1/3
0 2/3 1/3 0
0 0 1 0


m

=


1 0 0 0
0 3/7 3/7 1/7
0 3/7 3/7 1/7
0 3/7 3/7 1/7

 .
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3.3 Asymptotic Behavior for Many Concatenations

In this section, we use (4) and Theorem 2 to compute the average WE of any rater < 1 outer
code serially concatenated withm primitive rate-1 UICs, in the limit asm goes to infinity.
The intriguing part of this result is that the WE is independent of the particular outer code and
primitive rate-1 UIC chosen. We note that this is essentially a new construction for a uniform
random ensemble of linear codes.

THEOREM 3. Consider a rate-1 code formed by serially concatenatingm primitive rate-1
UICs. For non-zero input weights and in the limit asm goes to infinity, the output weight
distribution is independent of the input weight distribution and is

πh =

(
n
h

)
2n − 1

.

COROLLARY. The ensemble averaged WE for non-zero output weights for any rater < 1 code
serially concatenated withm primitive UICs, in the limit asm goes to infinity, is

Ah =
rn∑
w=1

n∑
h1=1

A
(o)
w,h1

[Pm]h1h

=

(
rn∑
w=1

n∑
h1=1

A
(o)
w,h1

) (
n
h

)
2n − 1

= (2rn − 1)

(
n
h

)
2n − 1

. (5)

4 Bounds on the Minimum Distance
4.1 A General Bound on the Distribution ofdmin from Ah

In this section, we derive an upper bound on the probability that a randomly chosen code from
some ensemble hasdmin < d. This upper bound can be computed using only the average WE
of the ensemble. A similar bound was used by Gallager to bound the minimum distance of
Low Density Parity Check Codes [6].

THEOREM 4. The probability that a code, randomly chosen from an ensemble with average
WEAh, hasdmin < d is bounded by

Pr(dmin < d) ≤
d−1∑
h=1

Ah.

Proof. Let an ensemble of linear codes with average WEAh be defined by a set of WEs{
A

(1)
h , A

(2)
h , . . . , A

(M)
h

}
each chosen with equal probability. Further, letd

(i)
min be the minimum

distance of the code associated withA(i)
h . We can upper bound the probability of choosing a

code withdmin < d from this ensemble. First we define an indicator function

I(condition) =

{
0 if condition false
1 if condition true

and we note that for all non-negative integersx,

I(x > 0) ≤ x. (6)
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First counting the number of codes withdmin < d, and then substituting an equivalent condition
in the indicator function we have

Pr(dmin < d) =
1

M

M∑
i=1

I(d
(i)
min < d) =

1

M

M∑
i=1

I

((
d−1∑
h=1

A
(i)
h

)
> 0

)
.

Upper bounding the indicator function with (6) and then summing overi gives

Pr(dmin < d) ≤ 1

M

M∑
i=1

d−1∑
h=1

A
(i)
h =

d−1∑
h=1

Ah.

4.2 An Application of the Bound

We now apply Theorem 4 to the WE in (5). This leads to a statement that, for a given block
lengthn and rater, upper bounds the probability of picking a code with minimum distance less
than some threshold. Letd∗(n, r, ε) be the largestd which satisfies

d−1∑
h=0

(
n

h

)
≤ 2n − 1

2rn − 1
ε+ 1 (7)

for block lengthn, rater, and0 ≤ ε ≤ 1. For thisd∗, we can rearrange terms to get

d∗−1∑
h=0

(
n

h

)
− 1 ≤ 2n − 1

2rn − 1
ε.

Changing the lower limit of the sum and rearranging we have

d∗−1∑
h=1

2rn − 1

2n − 1

(
n

h

)
≤ ε.

Substituting for the expression of the WEAh given in (5), we have

d∗−1∑
h=1

Ah ≤ ε

which, when combined with Theorem 4, implies that

P (dmin < d∗) ≤ ε. (8)

So with probability at least1− ε, a randomly chosen code from this ensemble will have mini-
mum distance at leastd∗(n, r, ε).

The Gilbert Bound (GB) for binary codes [5] says that there exists at least one code with
block lengthn, rater, and minimum distanced if

2rn
d−1∑
h=0

(
n

h

)
≤ 2n. (9)
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Figure 2: Encoder for a GRAm Code with the block size indicated at each stage.

If we substituteε = (2(1−r)n − 1)(2rn − 1)/(2n − 1) into (7), then we have an expression
identical to (9). Since thisε is strictly less than one, it follows from (8) that there exists at least
one code in our ensemble withdmin ≥ d. So we have qualitatively the same result as the GB.

The Gilbert-Varshamov Bound (GVB) takes its name from the GB and from a related bound
due to Varshamov [5]. The GVB is the form of both bounds in the limit asn goes to infinity,
and it says that there is a code with rater and normalized minimum distanceδ = dmin/n if

H(δ) ≤ 1− r (10)

whereH(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.
If we let

δ∗(r, ε) = lim
n→∞

1

n
d∗(n, r, ε)

and examine (7) in the limit asn goes to infinity, we find that our bound says something even
stronger than the GVB. In fact, we find thatδ∗(r, ε) is equal to the largestδ that satisfies (10)
for anyε > 0. This implies that in the limit asn goes to infinity, almost all of our codes will
have a normalized minimum distanceδ satisfying (10). This makes our codes “good” in the
sense that, for a fixed rate as the block length goes to infinity, almost all of the codes in our
ensemble have a normalized minimum distance that is bounded away from zero. It should be
noted that this behavior is well-known for long random codes.

5 Generalized Repeated Accumulated (GRAm) Codes

In this section, we describe GRAm codes and apply Theorem 4 to some specific examples.
GRAm codes are formed by the serial concatenation of a simple outer code, which consists ofp
independent copies of a short(n, k) block code, andm interleaved rate-1 "Accumulate" codes.
The encoder for GRAm codes is shown in Figure 2. The performance of long GRA1 codes with
maximum likelihood decoding was reported in [9], but cases withm > 1 were not considered.
So we give results pertaining to the minimum distance GRAm codes using a few examples.

In order to apply Theorem 4 to a specific ensemble, we must compute its average WE and
choose anε. For the following results, we computed the average WEs numerically and chose
ε = 1/2. This means that at least half of the codes in our ensemble have a minimum distance at
least as large as the values shown in Figure 3. For the short block codes, we chose: a repeat by
2 (R2), a repeat by 4 (R4), a rate 7/8 single parity check (P8), and the(8, 4) extended Hamming
code (H8).

It is important to note that, at a fixed rate, a “good” code is defined by a minimum distance
which grows linearly with the block length. When examining these results, we will focus on
whether or not the minimum distance appears to be growing linearly with block length and
how close it is to the GB. Form = 1, it is known that the typical minimum distance grows
O(n(do−2)/do) wheredo is the minimum distance of the repeated outer code [8]. Examining
Figure 3 form = 1, we see that the minimum distance grows slowly for R4 and H8 and
not all for R2 and P8. While form = 2, the minimum distance growth of R4, H8, and R2
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Figure 3: Probabilistic lower bound on the minimum distance of various GRAm codes.

appears distinctly linear. It is difficult to determine the growth rate of P8 withm = 2 from
these results. Atm = 3, all of the codes appear to have a minimum distance growing linearly
with block length and the rates are very close to the GB. Finally, withm = 4, the bound on
minimum distance and the GB are almost indistinguishable. These results are very encouraging
and suggest that, over a wide range of rates, only a few “Accumulate” codes are sufficient to
approach the GB on minimum distance.

6 Conclusions and Future Work

In this paper, we began by showing the relationship between serial concatenation through a uni-
form random interleaver and matrix multiplication of input output weight transition probability
(IOWTP) matrices. We then introduced an ensemble of codes consisting of any rater < 1 outer
code followed by an infinite number of rate-1 primitive uniformly interleaved codes, and com-
puted the ensemble’s average weight enumerator. This was done by introducing a correspon-
dence between IOWTP matrices and Markov Chains (MCs), and drawing on some well-known
limit theorems from MC theory. Next, we derived a probabilistic bound on the minimum dis-
tance of codes from this ensemble and noted that this bound is almost identical to both the
finite block length Gilbert Bound (GB) and the infinite block length Gilbert-Varshamov Bound
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(GVB). This implies that the ensemble of codes is “good” because, for long block lengths and
fixed rate, almost all of the codes in our ensemble have a normalized minimum distance meet-
ing the GVB. Finally, by evaluating our bound on minimum distance for specific outer codes
and a small number of “Accumulate” codes, we observed that a small number of inner codes
may be sufficient to approach the bound for an infinite number.

We are currently evaluating the iterative decoding of GRAm codes and working to prove a
coding theorem similar to [4] for these codes.

Acknowledgement.The authors would like to express their gratitude to M. Öberg for posing
the initial question that led to this research and for helpful discussions along the way.
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