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Abstract—A Write Once Memory (WOM) is a storage device
that consists of cells that can take on q possible linearly-ordered
values, with the added constraint that rewrites can only increase
a cell’s value. In the binary case, each cell can change from the
level zero to the level one only once. Examples of WOMs include
punch cards, optical disks, and more recently flash memories.
A length-n, t-write WOM-code is a coding scheme that allows t
messages to be stored in n cells. If in the i-th write we write one
of Mi messages, then the rate of the i-th write is the ratio of the
number of bits written to the WOM to the total number of cells
used, i.e., log2(Mi)/n. The rate of the WOM-code is the sum of
all individual rates in all writes.

In this paper, we review a recent construction of binary two-
write WOM-codes. The construction is generalized for two-write
WOM-codes with q levels per cell. Then, we show how to use
such a code with ternary cells in order to construct three and
four-write WOM-codes. This construction is used recursively in
order to generate a family of t-write WOM-codes for all t. An-
other generalized construction is given which provides us with
more ways to construct families of WOM-codes. Finally, we give
a comparison between our codes and the best known WOM-
codes in order to show that the WOM-codes constructed here
outperform all previously known WOM-codes for 3 6 t 6 10.

I. INTRODUCTION

Write-Once Memory, or WOM, is a type of memory with
cells that can be written, but not erased. In the binary case,
cells can be changed from the ’0’ state to the ’1’ state, but
cannot be returned to the ’0’ state. Examples of write-once
memories include punch cards, optical discs, and more re-
cently, flash memories. WOM-codes were first introduced by
Rivest and Shamir in [11]. These codes allow us to write
several times to the WOM without erasing any cells.

A binary [n, M1, M2, ..., Mt, t] WOM-code can write t
messages on n binary cells, where during the i-th write,
1 6 i 6 t, we write one of Mi possible messages. During
each write, a 0 can be changed to a 1, but a 1 cannot be
changed to a 0. The rate of the i-th write is the ratio between
the number of bits that can be written during that write to the
total number of cells used,

Ri =
log2 Mi

n
.

The total rate of the WOM-code is the sum of the rates for
each write,

R =
t

∑
i=1
Ri =

∑
t
i=1 log2 Mi

n
.

Note that there are two different problems we can address
when searching for WOM-codes: we either require all Mi, for
i = 1, . . . , t, to be the same, or we allow them to be different.
In this paper, we consider only the second case.

It is proved in [3] and [6] that the capacity region of a
binary t-write WOM code is

Ct =
{
(R1, . . . ,Rt) | R1 6 h(p1),R2 6 (1− p1)h(p2), . . . ,

Rt−1 6
( t−2

∏
i=1

(1− pi)
)

h(pt−1),Rt 6
t−1

∏
i=1

(1− pi),

where 0 6 p1, . . . , pt−1 6 1/2
}

.

It is also proved that the maximum achievable rate for a binary
WOM-code with t writes is log2(t + 1).

The first WOM-code construction, presented by Rivest and
Shamir, was designed for the storage of two bits twice using
only three cells [11]. In their work, Rivest and Shamir also
reported on more WOM-code constructions, including tabular
WOM-codes and “linear” WOM-codes. Merkx constructed
WOM-codes based on projective geometry [10]. In [2], using
binary linear codes, Cohen et al. introduced a “coset-coding”
technique that is used to construct WOM-codes, and in [5],
an improvement to one of the constructions in [2] was given
by Godlewski. Recently, position modulation codes were in-
troduced by Wu and Jiang in order to construct multiple-write
WOM-codes [17]. Wu found WOM-codes for two writes
in [16] which improved the best rate previously known.
In [18], inspired by the coset coding technique of Cohen et
al. and Wu’s work, a family of two-write WOM-codes was
found which further improved the best rate known and was
proved to be capacity-achieving.

Wolf et al. discussed the WOM-codes problem from its
information-theoretic point of view [13]. The WOM model
has been generalized for the multi-level case in [4]. Hee-
gard studied the capacity of a WOM and a noisy WOM
in [6], and Fu and Han-Vinck found the capacity of a
non-binary WOM [3]. Error-correcting WOM-codes were
first studied in [14], [15] and more constructions were re-
cently given in [19]. Jiang discussed in [7] the generalization
of error-correcting WOM-codes for the flash/floating codes
model [8], [9].

Table I summarizes the best previously known WOM-code
rates for 2 6 t 6 10. The second column shows the rate of
the best previously known construction, as well as a reference
to the paper where it was first presented. The third column
gives the general upper bound on the achievable rate, log2(t +
1), derived in [6] and [3]. The reference next to each rate
indicates the paper where the code was presented. Note that
a t-write WOM-code can serve also for a higher number of
writes by simply writing no messages on the last writes. That
explains the similar rates for four, five, and six writes.
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TABLE I
LOWER AND UPPER BOUNDS ON WOM-CODE RATES

Number of Writes Previous Best Rate Upper Bound
2 1.4928 [18] log2 3 = 1.5850
3 1.530 [11] log2 4 = 2
4 1.7524 [10] log2 5 = 2.3219
5 1.7524 [10] log2 6 = 2.5850
6 1.7524 [10] log2 7 = 2.8074
7 1.8232 [10] log2 8 = 3
8 1.8824 [17] log2 9 = 3.1699
9 1.9535 [17] log2 10 = 3.3219

10 2.0144 [17] log2 11 = 3.4594

In this work, we present WOM-code constructions which
reduce the gaps between the upper and lower bounds on the
rates of WOM-codes for 3 6 t 6 10. In Section III, we gen-
eralize the two-write WOM-code construction from [18] for
non-binary cells. Then, in Section IV, we show how to use
these non-binary two-write WOM-codes in order to construct
binary multiple-write WOM-codes. We start with specific con-
structions for three and four writes, and then show a general
code design approach that works for an arbitrary number of
writes. In Section V, we introduce another general construc-
tion based upon concatenating WOM-codes. Finally, in Sec-
tion VI we compare our codes to the best WOM-codes known
previously.

II. PRELIMINARIES

In this section, we briefly repeat the definition of WOM-
codes from [18]. The memory-state vectors are all the binary
vectors of length n, {0, 1}n. For two memory-state vectors
c, c′ ∈ {0, 1}n, we say that c > c′ if and only if ci > c′i for
all 1 6 i 6 n.

Definition. An [n, M1, . . . , Mt, t] t-write WOM-Code C is a
coding scheme which consists of n binary cells and t pairs of
encoding and decoding maps, denoted by Ei andDi for 1 6 i 6
t. The t-write WOM-code C satisfies the following properties:

1) E1 : {1, . . . , M1} → {0, 1}n,
2) For 2 6 i 6 t,

Ei : {1, . . . , Mi} × {0, 1}n → {0, 1}n,

such that, for all (m, c) ∈ {1, . . . , Mi} × {0, 1}n,

Ei(m, c) > c.

3) For 1 6 i 6 t,

Di : {0, 1}n → {1, . . . , Mi},

such that D1(E1(m)) = m for all m ∈ {1, . . . , M1},
and for 2 6 i 6 t, Di(Ei(m, c)) = m for all (m, c) ∈
{1, . . . , Mi} × {0, 1}n.

The rate of a t-write WOM-code C is defined to be

R =
∑

t
i=1 log2 Mi

n
.

As noted in [18], we assume that both the encoder and de-
coder know the write number when encoding new information

or decoding the memory state vector. This knowledge does not
affect the achievable rates of the codes.

The definition of WOM-codes can be generalized for non-
binary cells, where each cell has q levels and on each program-
ming operation the cell level can only increase its value. In the
next section, we consider a special type of non-binary WOM-
code where each cell is programmed at most once. Although
these codes are not efficient WOM-codes for non-binary cells,
they are useful in constructing efficient multiple-write WOM-
codes for binary cells.

III. TWO-WRITE WOM-CODES

In [18], a construction of binary two-write WOM-codes
based on linear codes was given. These codes are completely
determined by the choice of a linear code C with parity
check matrix H. In this section, we extend the construction
to non-binary WOM-codes. As the construction of the binary
two-write WOM-code is a special case of the non-binary
construction, we do not review the binary WOM-code con-
struction from [18] and simply present the construction of
the non-binary WOM-codes.

Suppose now that each cell has q levels, where q is a prime
number or a power of a prime number. We start by choosing a
linear code C[n, k] over GF(q) with a parity check matrix H
of size (n− k)× n. For a vector v of length n over GF(q),
let H(v) be the matrix H with zero columns replacing the
columns that correspond to the positions of the non-zero val-
ues in v. Then we define

V(q)
C = {v ∈ (GF(q))n | rank(H(v)) = n− k}. (1)

Next, we construct a non-binary two-write WOM-code
[n, |V(q)

C |, qn−k, 2] in a similar manner to the construction
in [18].

Theorem 1. Let C[n, k] be a linear code with parity check ma-
trix H over GF(q) and let V(q)

C be the set defined in (1). Then
there exists a q-ary [n, |V(q)

C |, qn−k, 2] two-write WOM-code of
rate

log2 |V
(q)
C |+ (n− k) log2 q

n
.

Proof: The code is characterized by its encoding and de-
coding maps. We define {v1, v2, . . . , v

|V(q)
C |
} to be an arbitrary

ordering of the set V(q)
C .

1) On the first write, a symbol from an alphabet of
size |V(q)

C | is written. The encoding and decod-
ing maps E1,D1 are defined as follows. For each
m ∈ {1 . . . , |V(q)

C |},

E1(m) = vm and D1(vm) = m.

2) On the second write, a vector s2 of length n− k over
GF(q) is written. Let v1 be the programmed vector on
the first write and s1 = H · v1, then

E2(s2, v1) = v1 + v2,

1063



where v2 is a solution of the equation

H(v1) · v2 = −s1 + s2.

For the decoding map D2, if c is the vector of pro-
grammed cells, then the decoded value of the n− k sym-
bols over GF(q) is given by

D2(c) = H · c = H · v1 +H · v2 = s1− s1 + s2 = s2.

The success of the second write results from the condition that
for every vector v ∈ VC , rank(H(v)) = n− k.

There is no restriction on the choice of the linear code C or
the parity check matrix H. Every such code/matrix generates a

WOM-code. For a linear code C we defineR1(C) = log2 |V
(q)
C |

n
and R2(C) = (n−k) log2 q

n so the rate of the generated WOM-
code is R1(C) + R2(C). Next, we show that the capacity
region of the achievable rates by this construction is

C2 =
{
(R1,R2)|∃p ∈ [0,

q− 1
q

],R1 6 h(p) + p log2(q− 1),

R2 6 (1− p) log2(q)
}

.

The proof is very similar to the one presented in [18] for the
binary case and we repeat it here for our non-binary construc-
tion.

Theorem 2. For any (R1,R2) ∈ C2 and ε > 0, there exists a
linear code C satisfyingR1(C) > R1 −ε,R2(C) > R2 −ε.

Proof: Let p ∈ [0, q−1
q ] be such that R1 6 h(p) +

p log2(q− 1) and R2 6 (1− p) log2 q. Let k = dnpe for
n large enough and let us choose uniformly at random an
(n− k)× n matrix H over GF(q). The matrix H is the par-
ity check matrix of the linear code C used in our construction.
For every vector v ∈ (GF(q))n, define the indicator random
variable Xv to be

Xv =

{
1 if v ∈ V(q)

C
0 otherwise

where V(q)
C is defined in (1). The number of vectors in V(q)

C
is X = ∑v∈(GF(q))n Xv, and

E[X] = ∑
v∈(GF(q))n

E[Xv] = ∑
v∈(GF(q))n

Pr{Xv = 1}. (2)

The value of Pr{Xv = 1} depends on v only through its
weight, wt(v), and therefore (2) simplifies to

E[X] =
n

∑
i=0

(
n
i

)
(q− 1)i Pr{Xv:wt(v)=i = 1}

=
k

∑
i=0

(
n
i

)
(q− 1)i Pr{Xv:wt(v)=i = 1},

since if wt(v) > k + 1, then Xv = 0.
It remains to determine the value of Pr{Xv = 1} for a

vector v such that wt(v) = i, 0 6 i 6 k. By the definition
of V(q)

C , we know that v ∈ V(q)
C if and only if the sub-matrix

of size (n− k)× (n−wt(v)) is full rank. According to [1],
the probability that an (n − k) × (n − i) uniformly random
matrix is full rank is ∏

n−i
j=k−i+1(1− q− j). Note that

n−i

∏
j=k−i+1

(1− q− j) >
∞
∏
j=1

(1− q− j)

> (1− 1
q
)(1−

∞
∑
j=2

q− j) =
q− 1

q
· q2 − q− 1

q(q− 1)

=
q2 − q− 1

q2 >
1
q2 ,

where the last inequality holds for q > 2. Hence, for all v
such that 0 6 wt(v) 6 k

Pr{Xv = 1} =
n−i

∏
j=k−i+1

(1− q− j) >
1
q2 ,

and we get

E[X] =
k

∑
i=0

(
n
i

)
(q− 1)i

n−i

∏
j=k−i+1

(1− q− j)

>
1
q2

k

∑
i=0

(
n
i

)
(q− 1)i .

According to Lemma 4.8 in [12],
k

∑
i=0

(
n
i

)
(q− 1)i >

1
n + 1

2nh( k
n )+n k

n log2(q−1)

and therefore

E[X] >
1
q2 ·

k

∑
i=0

(
n
i

)
(q− 1)i >

2nh( k
n )+n k

n log2(q−1)

q2(n + 1)

= 2nh( k
n )+n k

n log2(q−1)−log2(q2(n+1)).

We conclude that there exists a parity check matrix H of a
linear code C, such that the size of the set V(q)

C is at least
2nh( k

n )+n k
n log2(q−1)−log2(q2(n+1)) and so

R1(C) > h
(

k
n

)
+

k
n

log2(q− 1)−
log2(q2(n + 1))

n

> h(p) + p log2(q− 1)−
log2(q2(n + 1))

n
> R1 −ε

R2(C) =
log2 qn−k

n
> (1− p− 1

n
) log2 q > R2 −ε

for n large enough.
The next Corollary provides the best achievable rate of the
construction.

Corollary 3. For any q-ary WOM-code generated using our
construction, the best achievable rate is log2(2q− 1).

Proof: First, note that

h(p) + p log2(q− 1) + (1− p) log2 q

= p log2

( q− 1
p

)
+ (1− p) log2

( q
1− p

)
,
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and since the function f (x) = log2 x is a concave function

p log2
q− 1

p
+ (1− p) log2

q
1− p

6 log2

(
p · q− 1

p
+ (1− p)

q
1− p

)
= log2(2q− 1).

Also, for p = q−1
2q−1 , the total achievable rate is log2(2q− 1).

Therefore, there exists a WOM-code produced by our con-
struction with achievable rate log2(2q− 1).

On the other hand, any WOM-code resulting from our con-
struction satisfies the property that every cell is programmed
at most once. This model was studied in [3] and the maximum
achievable rate was proved to be log2(2q− 1). Therefore, our
construction cannot produce a WOM-code with a rate that ex-
ceeds log2(2q− 1).

Remark 1. This construction does not achieve high rates for
non-binary two-write WOM-codes in general. While the best
achievable rate of the construction is log2(2q− 1), the upper
bound on the rate is log2 (q+1

2 ); see [3]. The decrease in the
rate in our construction results from the fact that cells cannot
be programmed twice. That is, if a cell was programmed on
the first write, it cannot be reprogrammed on the second write
even if it did not reach its highest level. In fact, it is possible
to find non-binary two-write WOM-codes with better rates.
However, our goal in this paper is not to find efficient non-
binary WOM-codes. Rather, as shown in the next section, the
non-binary codes that we have constructed can be used in the
design of multiple-write binary WOM-codes.

The WOM-codes we use in the next section are WOM-codes
over GF(3). We ran a computer search to find such a ternary
WOM-code of rate 2.22, and we will use this code in order
to construct specific multiple-write WOM-codes.

IV. MULTIPLE-WRITE WOM-CODES

In this section, we look at a method for generating binary
multiple-write WOM-codes. We start with three- and four-
write WOM-codes before generalizing to t-write constructions.

A. Three-Write WOM-Codes
We start with a construction for binary three-write WOM-

codes. The construction uses the codes we found in the
previous section over GF(3).

Theorem 4. Let C3 be an [n, 2nR1 , 2nR2 , 2] two-write WOM-
code over GF(3) constructed as in Section III. Then, there
exists a [2n, 2nR1 , 2nR2 , 2n, 3] three-write WOM-code of rate
R1+R2+1

2 .
Proof: We denote by E3,1 and E3,2 the encoding maps of

the first and second writes, and by D3,1 and D3,2 the decoding
maps of the first and second writes of the code C3, respectively.
The 2n cells of the three-write WOM-code we construct are
divided into n two-cell blocks, so the memory-state vector is of

the form ((c1,1, c1,2), (c2,1, c2,2), . . . , (cn,1, cn,2)). In this con-
struction we also use a map φ : GF(3) 7→ (GF(2), GF(2))
defined as follows:

φ(0) = (0, 0),
φ(1) = (1, 0),
φ(2) = (0, 1).

The map φ extends naturally to ternary vectors v =
(v1, . . . , vn) ∈ GF(3)n using the rule

φ(v) = (φ(v1), . . . ,φ(vn)).

On the pairs (c, c′) in the image of φ, we define φ−1(c, c′) to
indicate the inverse function. The map φ−1 is extended simi-
larly to work over vectors of such bit pairs. We are now ready
to describe the encoding and decoding maps of the constructed
three-write WOM-code.

1) On the first write, a message m from the set {1, . . . , 2nR1}
is written in the 2n cells:

E1(m) = φ(E3,1(m)).

The decoding map is defined similarly, where c is the
memory-state vector:

D1(c) = D3,1(φ−1(c)).

2) On the second write, a message m from the set
{1, . . . , 2nR2} is written in the 2n cells as follows. Let
c be the programmed vector on the first write. Then,

E2(m, c) = φ(E3,2(m,φ−1(c))).

That is, first the memory-state vector c is converted to
a ternary vector. Then, it is encoded using the encoding
map E3,2 and the new message, producing a new ternary
memory-state vector. Finally, the last vector is converted
to a 2n-bit vector. The decoding map is defined as on
the first write:

D2(c) = D3,2(φ−1(c)).

According to the construction of the code C3, no ternary
cell is programmed twice and therefore each of the n
pairs of bits is programmed at most once.

3) On the third write, an n-bit vector v is written.
Let c = ((c1,1, c1,2), . . . , (cn,1, cn,2)) be the current
memory-state vector. Then,

E3(v, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2))

is a vector, defined as follows. For 1 6 i 6 n,
(c′i,1, c′i,2) = (1, 1) if vi = 1 and otherwise (c′i,1, c′i,2) =
(ci,1, ci,2). It is always possible to program the pair of
bits to be (1, 1) since at most one cell in each pair was
previously programmed. The decoding map D2(c) is
defined to be

D2(c) = (c1,1 · c1,2, . . . , cn,1 · cn,2).

That is, the decoded value of each pair of bits is one if
and only if the value of both of them is one.
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Corollary 5. The best possible three-write WOM-code that is
achievable using this construction is (log2 5 + 1)/2 ≈ 1.66.

Proof: Given a two-write WOM-code C3 over GF(3) with
rates (R1,R2), the constructed binary three-write WOM-code
has rates (R1/2,R2/2, 1/2) and its total rate is R = (R1 +
R2 + 1)/2. This rate is maximized when R1 +R2 is maxi-
mized. But R1 +R2 is the total rate of the two-write WOM-
code over GF(3), which was proven in Corollary 3 to be max-
imized at log2 5. Then the maximum achievable rate of the
constructed binary three-write WOM-code is

log2 5 + 1
2

≈ 1.66.

Using the construction of WOM-codes over GF(3) pre-
sented in the previous section, we can construct a three-write
WOM-code of rate (2.22 + 1)/2 = 1.61.

B. Four-Write WOM-Codes
We next present a construction for four-write binary

WOM-codes.

Theorem 6. Let C3 be an [n, 2nR3,1 , 2nR3,2 , 2] two-write
WOM-code over GF(3) constructed as in Section III. Let C2
be an [n, 2nR2,1 , 2nR2,2 , 2] binary two-write WOM-code. Then,
there exists a [2n, 2nR3,1 , 2nR3,2 , 2nR2,1 , 2nR2,2 , 4] four-write
WOM-code of rate R3,1+R3,2+R2,1+R2,2

2 .

Proof: The proof is very similar to the one used for three-
write WOM-codes. We denote by E3,1, E3,2 the encoding maps
of the first and second writes, and by D3,1,D3,2 the decoding
maps of the first and second writes of the code C3, respec-
tively. Similarly, the encoding and decoding maps of the code
C2 for the first and second writes are denoted by E2,1, E2,2
and D2,1,D2,2, respectively. Using the encoding and decod-
ing maps of C3, we define the first and second writes of our
constructed four-write WOM-code as we did the first and sec-
ond writes of the three-write WOM-codes. The third and fourth
writes are defined in a similar way, as follows.

1) On the third write, a message m from the set
{1, . . . , 2nR2,1} is written. Let E2,1(m) = v =
(v1, . . . , vn) and let c = ((c1,1, c1,2), . . . , (cn,1, cn,2))
be the current memory-state vector. Then,

E3(m, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2)),

where for 1 6 i 6 n, (c′i,1, c′i,2) = (1, 1) if vi = 1 and,
otherwise, (c′i,1, c′i,2) = (ci,1, ci,2). The decoding map
D3(c) is defined to be

D3(c) = D2,1(c1,1 · c1,2, . . . , cn,1 · cn,2).

2) On the fourth write, a message m from the set
{1, . . . , 2nR2,2} is written. Let

E2,2(m, (c1,1 · c1,2, . . . , cn,1 · cn,2)) = v = (v1, . . . , vn),

where c = ((c1,1, c1,2), . . . , (cn,1, cn,2)) is the current
memory-state vector. Then,

E4(m, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2)),

where for 1 6 i 6 n, (c′i,1, c′i,2) = (1, 1) if vi = 1 and,
otherwise, (c′i,1, c′i,2) = (ci,1, ci,2). The decoding map
D4(c) is defined, as before, by

D4(c) = D2,2(c′1,1 · c′1,2, . . . , c′n,1 · c′n,2).

Remark 2. The last theorem requires both the binary two-
write and ternary two-write WOM-codes to have the same
number of cells, n. However, we can construct a four-write
binary WOM-code using any two such codes, even if they do
not have the same number of cells. Suppose we have a WOM-
code over GF(3) with n1 cells and binary WOM-code with
n2 cells. Both codes can be extended to use lcm(n1, n2) cells.
Then the construction above will give a four-write WOM-code.

Corollary 7. The best possible four-write WOM-code that is
achievable using this construction is (log2 5 + log2 3)/2 ≈
1.95.

Proof: According to Corollary 3, the maximum value of
R3,1 + R3,2 is log2 5 and the maximum value of R2,1 +
R2,2 is log2 3. Therefore, the maximum rate of the constructed
four-write WOM-codes is

log2(5) + log2(3)
2

≈ 1.95.

If we use the WOM-code over GF(3) of rate 2.22 found in
the previous subsection as the WOM-code C3 and the binary
two-write WOM-code of rate 1.4928 found in [18] as the
WOM-code C2, then there exists a four-write WOM-code of
rate (2.22 + 1.4928)/2 = 1.8564.

C. Multiple-Write WOM-Codes
The construction for three and four writes can be easily

generalized to an arbitrary number of writes. We state the
following theorem and skip its proof since it is very similar
to the proofs of the corresponding theorems for three- and
four-write WOM-codes.

Theorem 8. Let C3 be an [n, 2nR3,1 , 2nR3,2 , 2] two-write
WOM-code over GF(3) constructed as in Section III. Let
C2 be an [n, 2nR2,1 , . . . , 2nR2,t−2 , t − 2] binary (t − 2)-write
WOM-code. Then, there exists a

[2n, 2nR3,1 , 2nR3,2 , 2nR2,1 , . . . , 2nR2,t−2 , t]

t-write WOM-code of rate

R3,1 +R3,2 + ∑
t−2
i=1 R2,i

2
.
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Theorem 8 implies that if there exists a (t− 2)-write WOM-
code of rate Rt−2 then there exists a t-write WOM-code of
rate

Rt =
log2 5 +Rt−2

2
.

The following corollary summarizes the possible achievable
rates of t-write WOM-codes.

Corollary 9. For t > 3, there exists a t-write WOM-code of
rate

Rt =


(2

t−1
2 −1)·log2 5+1

2
t−1

2
, t odd

(2
t−2

2 −1)·log2 5+log2 3

2
t−2

2
, t even.

If we use again the two-write WOM-code over GF(3) of
rate 2.22 and the binary two-write WOM-code of rate 1.4928
from [18], then for t > 3 we obtain a t-write WOM-code of
rate Rt, where

Rt =


(2

t−1
2 −1)·2.22+1

2
t−1

2
, t odd

(2
t−2

2 −1)·2.22+1.4928

2
t−2

2
, t even.

V. CONCATENATED WOM-CODES

The construction presented in the previous section provides
us with a family of WOM-codes for all t > 3. In this section,
we will show a general scheme to construct more families of
WOM-codes. In fact, the construction in the previous section
is a special case of this general scheme.

Theorem 10. Let C∗ be an [m, q1, . . . , qt/2, t/2] binary t/2-
write WOM-code where t is an even integer. For 1 6 i 6 t/2,
let Ci be an [n, 2nRi,1 , 2nRi,2 , 2] two-write WOM-code over
GF(qi), as constructed in Section III. Then, there exists an
[mn, 2nR1,1 , 2nR1,2 , . . . , 2nRt/2,1 , 2nRt/2,2 , t] binary t-write
WOM-code of rate

t/2

∑
i=1

Ri,1 +Ri,2

m
.

Proof: For 1 6 i 6 t/2, let E∗i ,D∗i be the encoding,
decoding maps on the i-th write of the WOM-code C∗, re-
spectively. The definition of E∗i ,D∗i for 1 6 i 6 t/2 extends
naturally to vectors by simply invoking the maps on each en-
try in the vector. Similarly, for 1 6 i 6 t/2, let us denote
by Ei,1 and Ei,2 the encoding maps of the first and second
writes, and by Di,1 and Di,2 the decoding maps of the first
and second writes of the WOM-code Ci, respectively. We will
present the specification of the encoding and decoding maps
of the constructed t-write WOM-code.

In the following definitions of the encoding decoding maps,
we consider the memory state vector c to have n symbols of m
bits each, i.e. c ∈ (GF(2m))n. For 1 6 i 6 t/2, the (2i− 1)-
st write and 2i-th write are implemented as follows.

1) On the (2i− 1)-st write, a message m1 ∈ {1, . . . , 2nRi,1}
is written to the memory-state vector c according to

E2i−1(m1, c) = E∗i (Ei,1(m1), c).

The memory-state vector c is decoded according to

D2i−1(c) = Di,1(D∗i (c)).

2) On the 2i-th write, a message m2 ∈ {1, . . . , 2nRi,2} is
written according to

E2i(m2) = E∗i (Ei,2(m2,D∗i (c)), c)

and the memory-state vector c is decoded according to

D2i(c) = Di,2(D∗i (c)).

We will demonstrate how this construction works in the
following example.

Example 1. We choose a [3, 4, 3, 2, 3] three-write WOM-code
as the code C∗. This code is described in Fig. 1 by its states
diagram for all three writes. The three-bit vector in each state
is the memory state and the number next to it is the decoded
value. We need to find three more two-write WOM-codes over
GF(4), GF(3), and GF(2). For the code C1 over GF(4), we
ran a computer search to find a two-write WOM-code over
GF(4) of rate 2.6793. As for the code C2 over GF(3), we
use the code of rate 2.22 which we found in Section III, and
we use the binary two-write WOM-code of rate 1.49 for the
code C3. Then, the rate of the six-write WOM-code is

2.6793 + 2.22 + 1.49
3

= 2.1297.

It is possible to construct a five-write WOM-code by writing
a vector of n bits in the last write so its rate is

2.6793 + 2.22 + 1
3

= 1.9664.

Note that if one of the codes in the general construction is
binary then we can actually use a WOM-code with more than
two writes. That is, in this construction we can use any binary
multiple-write WOM-code as the code C3. Therefore, we can
generate another family of codes for t > 5. Their maximum
achievable rates are given according to the following formula

Rt =
log2 7 + log2 5 +Rt−4

3
,

where Rt−4 is the maximum achievable rate for a (t − 4)-
write WOM-code. Similarly, the codes which we obtain using
the codes found above have rates

R′t =
2.6793 + 2.22 +R′t−4

3
,

where R′t−4 is the best rate of a (t − 4)-write WOM-code
which we can find. Table II summarizes these rates.

Note that the construction in Section IV is a special case
of the generalized concatenated WOM-codes construction in
which C∗ is chosen to be [2, 3, 2, 2] binary two-write WOM-
code.
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Fig. 1. A [3, 4, 3, 2, 3] three-write WOM-code.

TABLE II
RATES OF CONCATENATED WOM-CODES

Number Achieved Maximum
of Writes New Rate New Rate

5 1.9664 log2 7+log2 5+1
3 = 2.0431

6 2.1297 log2 7+log2 5+log2 3
3 = 2.2381

7 2.1697 log2 7+log2 5+(log2 5+1)/2
3 = 2.2634

8 2.2519 log2 7+log2 5+(log2 5+log2 3)/2
3 = 2.3609

9 2.2885 log2 7+log2 5+(log2 7+log2 5+1)/3
3 = 2.3908

10 2.343 log2 7+log2 5+(log2 7+log2 5+log2 3)/3
3 = 2.4588

VI. COMPARISON

Table III shows a comparison of the rates of the WOM-
codes presented in this paper and the best known rates previ-
ously for 3 6 t 6 10. The column labeled “Previous Best”
is the highest rate achieved by a previously reported t-write
WOM-code. The column “Achieved New Rate” gives the rates
that we actually obtained through application of the new tech-
niques. For three and four writes, we use the codes described
in Section IV, and for 5 6 t 6 10, we use the codes dis-
cussed in Section V. The column “Maximum New Rate” lists
the maximum possible rate that can be obtained using our
approach. Finally, the column “Upper Bound” gives the max-
imum possible rates for t-write WOM codes.

VII. CONCLUSION

We presented a new method for constructing multiple-write
binary WOM-codes. The method makes use of two-write
WOM-codes over GF(q), for which we describe a design
technique. While the non-binary codes we construct are not
capacity-achieving, they allow us to construct binary t-write

TABLE III
COMPARISON WITH KNOWN WOM-CODES

Number Previous Achieved Maximum Upper
of Writes Best New Rate New Rate Bound

3 1.53 1.61 1.6610 2
4 1.75 1.8564 1.9534 2.3219
5 1.75 1.9664 2.0431 2.5850
6 1.75 2.1297 2.2381 2.8074
7 1.82 2.1697 2.2634 3
8 1.88 2.2519 2.3609 3.1699
9 1.95 2.2885 2.3908 3.3219

10 2.01 2.343 2.4588 3.4594

WOM-codes for t > 3. We showed how to construct codes for
three and four writes, and then showed that a recursive algo-
rithm can be used to generate binary WOM-codes that support
any number of writes. We also described a general concate-
nation scheme to construct other families of WOM-codes.
Applying this scheme, we found another family of t-write
WOM-codes that gives the best known rates for 5 6 t 6 10.
We showed that our codes outperform all previously known
WOM-codes for 3 6 t 6 10. It is possible to show that these
codes also achieve the best known rates for t > 10 writes.
We believe that it is possible to find other interesting families
of codes using the concatenated WOM-codes construction.
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