
636 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 4, APRIL 1993

Area-Efficient Architectures for the Viterbi
Algorithm-Part I: Theory

C. Bernard Shung, Horng-Dar Lin, Robert Cypher, Paul H. Siegel, and Hemant K. Thapar

Abstract-The Viterbi algorithm has been widely applied to
many decoding and estimation applications in communications
and signal processing. A state-parallel implementation is usually
used in which one add-compare-select (ACS) unit is devoted to
each state in the trellis. In this paper we present a systema-
tic approach of partitioning, scheduling, and mapping the N
trellis states to P ACS’s, where N > P . The area saving of
our architecture comes from the reduced number of both the
ACS’s and interconnection wires. The design of the ACS, path
metric storage, and routing network is discussed in detail. The
proposed architecture creates internal parallelism due to the ACS
sharing, which can be exploited to increase the throughput rate
by pipelining. Consequently, the area-efficient architecture offers
a favorable (smaller) area-time product, compared to a state-
parallel implementation. These results will be demonstrated by
application examples in the accompanying paper.

I. INTRODUCTION
HE Viterbi algorithm [8], [13] has been widely applied T to many decoding and estimation applications in com-

munications and signal processing. It can be used to perform
maximum likelihood decoding for convolutional codes, or
maximum likelihood estimation of the transmitted sequence
over a channel with intersymbol interference (ISI) [7]. Re-
cently, it was also applied to hidden Markov model based
continuous speech recognition [111.

The Viterbi algorithm is defined in terms of a trellis dia-
gram. In decoding, the algorithm attempts to reconstruct
the actions of the encoder based on the transmission of its
outputs over a noisy channel. Specifically, it assigns a value,
called the path metric, to each node in the trellis. For each
incoming branch, the path metric of the node from which the
branch originated is added to a branch metric which gives
the likelihood that the corresponding state transition occurred,
based on the value received over the noisy channel. The sums
calculated for each of the incoming branches are compared and
the largest one (corresponding to the most likely transition) is
selected.’ This selected sum is used as the new path metric

Paper approved by the Editor for VLSI in Communications of the IEEE
Communications Society. Manuscript received August 29, 1990; revised April
14, 1991. This paper was presented in part at the Global Telecommunications
Conference, San Diego, CA, December 1990.

C. B. Shung is with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, Republic of China.

H. D. Lin is with AT&T Bell Laboratories, Holmdel, NJ, 07733.
R. E. Cypher and P. H. Siegel are with the IBM Research Division, Almaden

H. K. Thaper is with the IBM Storage Systems Products Division, San Jose,

IEEE Log Number 9209473.
‘Alternately, The distance or inverse likelihood can used as metric. In this

Research Center, San Jose, CA, 95120-6099.

CA, xxxxx.

case, the most likely transition corresponds to the smallest sum.

for the node. The calculation of the path metrics is often
implemented by an Add-Compare-Select (ACS) unit.

Because of the feedback loop, the ACS is generally con-
sidered to be the most critical part in the implementation of
the Viterbi algorithm. Most implementations employ a state-
parallel approach in which one ACS is devoted to each state in
the trellis. The speed bottleneck in such implementations is the
delay of the ACS. In continuous speech recognition in which
the number of states is large and the sampling rate is low, a
state-serial approach is often used. All the states share one (or
a few) ACS sequentially. In this paper, we study the general
problem of partitioning and scheduling the states in sharing
the ACS’s. The proposed area-efficient architecture is shown
to provide favorable area-time tradeoffs in practical examples.

Several architectures have been proposed to address the
speed/area tradeoff of the ACS. Fettweis and Meyr [3] (and,
independently, Lin and Messerschmitt [101 and Thapar and
Cioffi [12]) proposed a technique to trade area for speed, in
which speed beyond the ACS bottleneck was achieved by
using a parallel implementation that operates on the M-Step
trellis. Gulak and Shwedyk [6] observed that the state-parallel
implementation with a de Bruijn graph trellis results in an
interconnection network defined by a shuffle-exchange graph.
Based on the VLSI grid model, they applied the work on
optimum layout of shuffle-exchange graphs to reduce the
wiring area. Gulak and Kailath [SI proposed three types
of locally connected processor arrays-cascade, linear, and
mesh-for trellises with a de Bruijn graph structure. The
idea was to further reduce wiring area by limiting each ACS
to communicate only with its neighbors. In linear and mesh
arrays, N ACS’s are required for a trellis of N states. In
a cascade array, logN butterfly processors are required for
a trellis of N states. However, each of the ZogN processors
serves all N states in sequence with complex switches used
among the processors for timing alignment.

In this paper, we propose a new area-efficient architecture
model that trades speed for area. One unique feature of our
scheme is that each ACS is shared by a fixed subset of the
states. The novelty of our architecture is best illustrated by the
area-time diagram (AT diagram) in Fig. 1. The state-parallel
implementation of a particular trellis corresponds to a fixed
point in the AT diagram. It can be seen that the high-speed
techniques [3], [lo], [12] and the area-efficient techniques can
be used to explore the design space in two different directions.

0090-6778/93$03.00 0 1993 IEEE

SHUNG et al.: AREA-EFFICIENT ARCHITECTURES FOR THE VITERBI ALGORITHM-PART I: THEORY 637

Area ,
High-speed technique

! results in area overhead
AT=mnst 1%

Time

Fig. 1. Area-time (AT) diagram. AT = const is used as the reference line.
The area-efficient technique (solid curve) can be used to trade speed for
area saving, while the high-speed technique (dashed curve) can be used to
trade area for speed. Comparing with the reference, it can be seen that the
area-efficient technique improves throughput, while the high-speed technique
results in area overhead.

We choose A T = constant to be the reference curve.’ The
complexity of the M-step ACS in [3] introduces area overhead
in the high-speed techniques. On the other hand, our area-
efficient techniques provide throughput increase, by virtue
of the introduction of internal parallelism. Furthermore, the
area-efficient techniques based on locally connected processor
arrays [5] suggest discrete design choices in the AT diagram.
On the contrary, our technique provides a continuous means of
trading speed for area. It is therefore easier to find an optimal
design solution for particular area or speed constraints.

The paper is organized as follows. In Section 11, we intro-
duce our area-efficient architecture model. We define several
criteria that we use in the paper to evaluate the architecture. In
Section 111, trellis partitioning and scheduling are described.
In Section IV, we discuss the design of the local memory
where the path metrics are stored. Design techniques to achieve
higher throughput rate with a pipelined ACS are discussed in
Section V. The area-time analysis is provided in Section VI.
Applications examples of the area-efficient architectures will
be shown in the accompanying paper.

11. ARCHITECTURAL MODEL FOR AREA-EFFICIENT
IMPLEMENTATION

Fig. 2 illustrates our architectural model for area-efficient
implementation of the Viterbi algorithm. It consists of P
ACS’s with associated local memories and a routing network.
We assume that the N trellis states are evenly partitioned into
the P ACS’s, where P divides N.3 We call the implementation
time-efficient if no ACS is idle at any time, so it takes (N I P)
time units to finish all N trellis states. We define the i-
degree, d; , of a trellis state as the number of incoming edges

21n Fig. 1, both area and time axes are in a logarithmic scale, therefore,
AT = constant is represented by a straight line.

’If P does not divide N , then P [N / P] - N ACS’s will be idle in one of
[NIP1 time units, assuming one time unit is required for one ACS to process
one state.

I I - - I

I Y Acs2 MEZH
I -- I I ‘ 1

Fig. 2. The architecture model for the area-efficient implementation.

to that state. We define the 0-degree, do, of a trellis state
as the number of outgoing edges from that state. We call
a trellis homogeneous if for all states, di = do = d, and
we call d the degree of the trellis. We will concentrate on
homogeneous trellises, as nonhomogeneous trellises can be
made homogeneous by adding dummy branches.

The local memory of each ACS is divided into two
banks-one storing the (d N / P) old path metrics (the inputs to
the ACS), and the other storing the (N I P) new path metrics
(the outputs of the ACS). The two local memory banks are
referred to as the input local memory and the output local
memory. The input local memory has d read ports and d
write ports, and the output local memory has d read ports
and 1 write port. In Section V, we will discuss alternative
design techniques for the local memories to avoid the need
for multiport memories.

For a homogeneous trellis of N states and degree d, the P
ACS’s together require Pd old path metrics at any one time.
We are interested in finding an implementation in which the
Pd old path metrics which enter the routing network at a given
time are evenly distributed among the P local memories. In
such a case, only d wires are required from each local memory
to the routing network. We call such a design bandwidth-
efficient as the bandwidth of the routing network is reduced
from Nd (in a state-parallel implementation) to Pd.

In a bandwidth-efficient implementation, the routing net-
work routes Pd old path metrics to the input local memory
of the P ACS’s at each time unit. In general, the required
routing (permutation) is different in each time unit, and hence
a dynamic routing network has to be used. We will discuss
the use of a multistage interconnection network (MIN) [14]
in this case. If the required routing is the same in each
time unit, the routing network degenerates to Pd wires. We
call this the jixed-interconnection case. In Section IV, we
discuss partitioning and scheduling techniques for both fixed-
interconnection and MIN routing networks.

Based on the architectural model, the goal is to find a
time-efficient and bandwidth-efficient implementation for a

638 IEEE l"SACXI0NS ON COMMUNICATIONS, VOL. 41, NO. 4, APRIL 1993

particular trellis diagram. It will be shown in Section IV that
bandwidth-efficiency can always be achieved by our partition-
ing, scheduling, and architecture mapping techniques. It will
be shown in Section VI that time efficiency can always be
achieved if interleaved independent data sources are allowed.
We will also show that the sharing of an ACS allows additional
pipelining of the states which can be exploited to improve
the throughput rate. This, plus the area reduction enabled by
reducing the number of ACS's and interconnections, produces
a favorable area-time tradeoff for the proposed architecture. Fig. 3. A 6-state degree-2 trellis for Example 1.

111. TRELLIS PARTITIONING AND SCHEDULING

In this section we discuss how to partition the N trellis
states into P ACS's and schedule the (N I P) states within
each ACS, where P is chosen depending upon the amount of
area saving desired. We will begin by assuming the existence
of a MIN routing network, and we will show that any trellis
can be implemented in a bandwidth-efficient manner. We will
then give the criterion which a trellis must meet in order for the
MIN routing network to be replaced by a fixed-interconnection
network.

A. Partitioning, Scheduling, and Communication Requirements
The partitioning of the N trellis states into the P ACS's,

and the scheduling of the (NIP) states within each ACS, have
a major impact on the design of the routing network and the
ACS local memories. The matrix S = { s i j } will represent the
partitioning and scheduling of the trellis states. Specifically, let
s i j be the state that is assigned to the ith ACS and scheduled to
be processed at the j th time unit, 0 5 i < P, 0 5 j < (N I P) .

Given the partitioning and scheduling matrix S and the trel-
lis which is being used, we can define two additional matrices,
X and Y, which capture the communication requirements.
Matrix X is the Pd-by-(NIP) matrix created by making
d copies of each row of S. Specifically, xij = S k j , where
IC = Li/d]. Thus, if d copies are made of each ACS output,
xi j represents the ith output from the array of ACS's at the
j th time unit. Matrix Y is the Pd-by-(NIP) matrix created
by replacing each entry s i j E S with a column of d entries
giving the d old path metrics which are needed in order to
calculate si?. Specifically, {yij I Li/d_l = IC} is the set of d old
path metrics that are needed to calculate the new path metric
for state s k j . Thus, yij represents the ith input that is required
by the array of ACS's at the j th time unit.

Example 1: A 6-state degree-2 homogeneous trellis is shown
in Fig. 3. The S , X, and Y matrices of a particular partitioning
and scheduling are shown below.

0 4 2

s = (; ; ;) .=(; ; ;)

y j 5 2 0 4 ' 1)

3 1 5
0 4 2

3 1 5

Because the outputs of the array of ACS's are created in
the pattern defined by X, and the inputs to the array of ACS's
are required in the pattern defined by Y , the architecture must
support the mapping of the matrix X into the matrix Y. A
permutation which accomplishes this mapping from X to Y
will be called a matrix permutation for the given trellis. This
matrix permutation will be implemented in the routing network
and/or the local memories of the ACS's.

The next subsection presents a general technique for divid-
ing a matrix permutation into a number of smaller, independent
permutations. This general technique will then be used to
obtain a bandwidth-efficient implementation of an arbitrary
matrix permutation on our architectural model. Therefore, an
arbitrary partitioning and scheduling matrix S can be chosen.
However, we will show later that the choice of S in a fixed-
interconnection implementation can be difficult.

B. Matrix Permutations

In this subsection we will show that any matrix permutation
can be divided into three successive permutations-the first
and third of which only rearrange elements within rows, and
the second of which only rearranges elements within columns.
We will need the following definitions.

Definitions: M is the set of Pd-by-(NIP) matrix permu-
tations. Thus, each member of M is a function which takes
as input a Pd-by-(NIP) matrix, and creates as output another
Pd-by-(NIP) matrix which is obtained by rearranging the
elements of the input matrix. R is the set of matrix within-
rows-permutations, and C is the set of matrix within-columns-
permutations. Thus, each member of R (C) is a function which
takes as input a Pd-by-(NIP) matrix, and creates as output
another Pd-by-(N / P) matrix which is obtained by rearranging
the elements in each row (column) of the input matrix. The
permutation obtained by applying permutation A1 and then
applying permutation A2 will be denoted A2 o A I .

The following theorem is due to Benes [l].
Theorem 1: For each permutation M E M , there exist

permutations AI, A2, and A3 such that A I E R, A2 E C, A3 E
R, and M E A3 o A2 o A I .

Example 2: Here is a simple 4-by-4 example of Theorem 1.
The permutation can be defined by a matrix of numbers from
0 through 15 giving the destination of each item. The input
matrix I and the output matrix 0 are

SHUNG et aL: AREA-EFFICIENT ARCHITECTURES FOR THE VITERBI ALGORITHM-PART I: THEORY 639

/ 1 13 2 6 \ / o 1 2 3 \

I = [; 9 11 0 15 8 12 3 J O = (; l"o
7 14 4 12 13 14 15

The required matrix permutation can be decomposed as fol-
lows, where A1 and AJ are within-rows-permutations and A2
is a within-columns-permutation:

/ 6 13 1 2 \

/ 3 0 1 2 \

\ 1 4 13 12 15)
/ o 1 2 3 \

\ 1 2 13 14 1 5 1

C. MIN Implementation

In this subsection we will describe a general architecture that
provides a bandwidth-efficient implementation for any homo-
geneous trellis. Given the trellis, first select any matrix per-
mutation for the trellis. This matrix permutation will permute
the items in a Pd-by-(NIP) matrix. Next, use Theorem 1 to
divide the matrix permutation into a within-rows-permutation,
followed by a within-columns-permutation, followed by a
within-rows-permutation. This division of the matrix permu-
tation can be found in O(Ndlog(Nd) log(N/P)) time on
a sequential computer or in O(log2(Nd) log(N/P)) time
on a shared memory parallel computer with Nd processors
[9]. Then, use random-access memory for both banks of
each ACS's local memory. This allows both within-rows-
permutations to be performed by simply using the correct
addressing patterns.

Finally, use a MIN to implement the within-columns-
permutation. In particular, use a P d input Benes network [2]
to perform the within-columns-permutation. A Benes network
with P d inputs consists of 2log(Pd) - 1 stages, where each
stage has (Pd/2) switches (Fig. 4). Each switch takes 2 inputs
and creates 2 outputs. The switch can be set to pass the inputs
to the outputs either with or without swapping them. It has
been shown that a Benes network can implement any desired
permutation of its inputs by correctly setting its switches [2] .
Thus, a P d input Benes network can be used to implement the
within-columns-permutation by shifting each column of P d
items into the network and setting the switches correctly. If it
takes more than a single cycle to perform a pass through the
Benes network, it can be pipelined so that multiple columns
can be present in the network at a time.

Thus, the use of random-access memory and a Benes
network results in a general architecture which can sup-
port any communication requirements. Of course, there is a
cost associated with this generality. In particular, the use of

Switch Unit I N 1 4-E OUT1 C = O : O U T I = I N I . O U T Z = I N 2 (pass)
C = O : O U T I = I N 2 . O U T Z = I N I (cross)

OUT 2 (su) IN2 ,.::: ::..

- IY I

Bem Network of lapnt she M

Fig. 4. The Benes multistage interconnection network (MIN). Each 2 x 2
switch unit (SU) can be set to puss or cross. A Benes MIN with 2 log M - 1
stages (each with M / 2 SU's) can perform any permutations of s u e M .

random-access memory has two drawbacks: 1) the read and
write addressing patterns for each ACS have to be stored, and
2) a multiport memory is required to read and write d metrics
at a time. We will discuss local memory design in more detail
in Section V, and will present a less costly implementation.
Also, the Benes network is not needed in all cases. In the next
section, we will consider cases in which the Benes network
can be replaced by a fixed-interconnection network.

D. Fixed Interconnection Implementation
In order to obtain a fixed-interconnection solution, the

second permutation, A2, must be a special type of within-
columns-permutation, namely, one in which the permutation
that is performed in each of the (N I P) columns is identical.
In other words, the second permutation can be viewed as
permuting the row vectors. Such permutations will be called
row-reordering-permutations. We will use C to denote the set
of row-reordering-permutations.

Note that a similar three-part division of the matrix permu-
tation was used in the preceding subsection in order to obtain a
MIN implementation. However, in the MIN implementation,
the first, and third permutations were required to be within-
rows-permutations. This is unnecessarily restrictive, as a block
of d consecutive rows is stored locally in each ACS. As
a result, we will allow the first and third permutations to
be within-blocks-permutations, denoted by B, where the P d
rows are viewed as forming P blocks of d rows each. This
greater flexibility in selecting the first and third permutations
will increase our ability to find a three-part division of the
matrix permutation in which the second permutation is a
row-reordering-permutation.

Unfortunately, not all matrix permutations can be di-
vided into a within-blocks-permutation, followed by a
row-reordering-permutation, followed by a within-blocks-
permutation. Furthermore, the problem of deciding whether or
not such a division exists can be very difficult. In other words,

640 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 4, APRIL 1993

‘I

, 5 1 ~, , i & ~ W 1 ~ , , 7 4 5‘ ~

IN {*k OUT SEU1 SEU I SEU 0 SEUz SEU
M/2

(b) (a)

Fig. 5. (a) The shift exchange unit (SEU). A SEU of size K (SEUK) contains 2 multiplexers and h- latches. In the shift mode, the two multiplexers select
the input denoted by the asterisks. In the exchange mode, they select the other pair of inputs. SEUK is capable of exchanging any pair of inputs that are
separated in h’ stages. (b) The sequential permutation network (SPN). An SPN of size M contains 2 log M - 1 SEU’s of size 1 , 2 , 4 , . . . , M / 2 , . . . , 4 , 2 , 1 ,
respectively, and is capable of performing any permutation of size M in a sequential manner.

it can be very difficult to select a partitioning and scheduling
matrix S in a fixed-interconnection implementation. We will
now present a different approach to the problem which can
provide more insight.

Definitions: Suppose G = (VG, E G) and H = (V H , EH)
are t re l l i se~ .~ A function f : VH -+ VG is an emulation of H by
G if, for every edge (hl, h ~) E E H , (f(hl), f (h2)) E EG. The
emulation f is totally uniform if, for each vertex g E VG, there
are exactly IVH I/~VG I vertices h E VH such that f (h) = g,
and for each edge (g1,gZ) E EG, there are exactly \ V H ~ / ~ V G ~
edges (h l , hz) E EH such that f (h l) = g1 and f(hz) = 92.’

The following theorem shows that the problem of finding
a fixed-interconnection realization is equivalent to finding a
homogeneous trellis with P states which can emulate the
homogeneous trellis with N states in a totally uniform manner.
The proof is given in the Appendix A.

Theorem 2: Let H be a homogeneous trellis with N states
and degree d. Then there exists a matrix permutation M E M
which is valid for HAand permutations AI, Az, and A3 such
that AI E B,Az E C,A3 E B, and M A3 o A2 o AI, if
and only if there exists a homogeneous trellis G with P states
which emulates H in a totally uniform manner.

A computer search program can be constructed to find a
P-state homogeneous trellis that can emulate the original N-
state trellis in a totally uniform manner. For arbitrary trellises
with large N, this can be very computationally expensive. For
several kinds of trellises of practical interest (which will be
described in Section I1 of the accompanying (Part 11) paper),
we have found the emulation solution. For small trellises,
manual analysis is possible, taking advantage of any regularity
or symmetry in the trellis.

In summary, fixed-interconnection implementations are de-
sirable and possible for many practical trellises. However,
the authors do not know a way to search for the solution
efficiently for arbitrary trellises. Nevertheless, area-efficient
implementations in a bandwidth-efficient manner using a MIN

Self-loops (vertices which point to themselves) and multiple edges between
the same pair of vertices are allowed in both G and H .

5The terminology and definitions are taken from [4].

routing network can always be guaranteed, in which case an
arbitrary partitioning and scheduling matrix can be used.

IV. LOCAL MEMORY DESIGN

In this section we discuss the design of the local memory.
In previous sections, a multiport, random-access memory was
assumed. Although conceptually simple, it is not an ideal
implementation because of its complexity.

The local memory must meet a pair of conflicting goals. On
the one hand, it has to be regular in order to allow pipelining.
As will be seen in the following sections, pipelining has an
important role in the area-efficient architectures. On the other
hand, it has to perform the within-rows-permutation or the
within-blocks-permutation. We propose a novel architecture,
called the sequential permutation network (SPN), which can
meet both goals. The idea is to allow some reordering in the
pipeline such that the output ordering is made different from
the input ordering.

In Fig. 5(a), a shift exchange unit (SEU) is illustrated. Note
that an SEU of size K has K + 1 pipeline registers. For each of
the two pipeline stages which has two inputs (the remaining
ones all have one input), a multiplexer is inserted in front.
When there is no exchange, the multiplexers choose the input
from their left neighbors. When there is an exchange, the
multiplexers choose the other pair of inputs, thus swapping
the two values in the two pipeline registers that are K stages
apart. The two multiplexers are controlled by the same control
signal, with which we can perform an exchange between any
pair of input values that are separated by K stages.

An SPN of size M [see Fig. 5(b)] is composed of 2 log M-
1 SEU’s of sizes 1,2,~~~,(M/4),(M/2),(M/4),~~~,2,1.6
It can be shown that an SPN of size M can support any
permutations of the same size. In particular, the 2 log M - 1
SEU’s correspond to the 2 log M- 1 stages in a Benes network.
The M values shifted out of each SEU correspond to the M
outputs of the (M / 2) switches of the corresponding stage in

6Without loss of generality, we assume M = 2‘. If, in fact, M # 2‘,
then we can replace it with M’ which is the smallest integer greater than
M , M’ = 2’.

SHUNG et al.: AREA-EFFICIENT ARCHITECTURES FOR THE VITERBI ALGORITHM-PART I: THEORY 641

the Benes network. Therefore, we can view the SPN as a
sequential Benes network.’

Within-row-permutations can be implemented by SPN’s
directly. The input and output local memories associated with
each ACS require d SPN’s of size (N I P) . The d SPN’s of
the output local memory all take as input the output of the
corresponding ACS. Within-blocks-permutations, on the other
hand, can be implemented by a combination of SPN’s and
MIN’s. To see this, recall that a within-blocks-permutation is
also a matrix permutation of size d by (N I P) . Therefore, it
can be implemented by 2 MIN’s of size d and d SPN’s of
size

There are two other advantages to implementing a pipelined
local memory with an SPN. First, the circuit between any two
pipeline stages is very simple (at most a multiplexer), and
hence will not constitute the timing bottleneck in the pipeline.
Second, note that the signall wires do not intersect, and hence
the layout of an SPN is straightforward and compact.

One drawback of the SPN is its length, or latency, which is

3
K + 1 = - M + 2 l o g M - 1 21 ; M . c 2

K = 1 , 2 , 4 , . . . , ~ , . . . , 4 , 2 , 1

However, for particular codes, the within-rows-permutations
often can be implemented with a special-purpose SPN with
a considerably smaller length. Moreover, the within-blocks-
permutations can sometimes be simplified to use one SPN
with multiple tap points. These simplifications will be shown
to be effective in the accompanying paper.

V. ACS PIPELINING
In the previous two sections, we have seen that the SPN

and MIN can introduce significant latency. In this section,
we consider the use of ACS pipelining to combat the latency
problem.

Pipelining the ACS’s has been proposed to increase the
throughput rate by interleaving a number of independent data
sources. In this case, the parallelism can be thought of as
being externally created, so we will call it external parallelism.
As mentioned earlier, when the channel has memory or
intersymbol interference, the external parallelism is no longer
applicable. In our architecture model, however, additional
parallelism is created internally by allowing several trellis
states to share an ACS. We call this internal parallelism.
Therefore, even when the channel has memory or intersymbol
interference, in an area-efficient design ACS pipelining can
still be applied to take advantage of the internal parallelism.
On the other hand, if the channel is memoryless, the internal
parallelism can be exploited in additional to the external
parallelism. ACS pipelining exploiting the internal parallelism

7We choose not to call an SPN a sequential Benes network because 1)
at each stage the SEU can manipulate a value more than once due to its
sequential nature, and 2) the architecture of an SPN can support other types
of MIN’s [14].

*From Theorem 1 it is obvious that there exists another decomposition
in which A1 and AB are within-columns-permutations, and A2 is a within-
rows-permutation. This decomposition is less costly for the within-blocks-
permutation because d < (N/P).

is the key reason for the favorable area-time tradeoff in our
area-efficient architectures.

The ACS for a degree-d trellis contains d adders and d - 1
comparators and selectors. Compared to the multiplexers in an
SPN or the switches in the MIN, the ACS is more complex and
hence can accommodate more pipeline stages. Even though
adding pipeline stages in the ACS increases the total latency
in the feedback loop, this effect is additive, while the speedup
effect by pipelining is multiplicative. Therefore, the overall
effect of ACS pipelining is positive. We will show in the next
section that it is advantageous to have as many ACS pipeline
stages as possible. However, we cannot put too many such that
the pipeline delays within the ACS are smaller than those in the
SPN and the MIN. Consequently, the optimal ACS pipelining
is achieved when the pipeline delays within the ACS are equal
to those in the SPN and MIN.

VI. AREA-TIME ANALYSIS

With (N / P) states sharing one ACS, a linear scale solution
demands that the speed of the area-efficient architecture be
(N I P) times slower. In this section, we will show that, with
the help of ACS pipelining, our area-efficient architecture can
achieve a throughput rate which is higher than that of a linear
scale solution. In other words, the area-efficient technique not
only allows the exploration of the design space by trading
speed for area saving, but also achieves a smaller area-time
product than the state-parallel implementation.

be
the total number of pipeline stages in the SPN and MIN, and
y be a overhead factor. The condition for our area-efficient
architecture to perform better than the linear scale solution is

Let (Y be the number of pipeline stages in the ACS,

(1)
f f + P < 1 N

a l + y P ‘
The numerator on the left-hand side of (1) indicates the total
number of pipeline stages (latency) in the feedback loop. The
left-hand side of (1) indicates the effective slow-down of the
area-efficient architecture, compared to a nonpipelined state-
parallel implementation. The right-hand side of (1) indicates
the effective area saving. Equation (1) means that if the
effective slow-down is smaller than the effective area saving,
then the area-time tradeoff is favorable for the area-efficient
architecture.

Both p and y are trellis dependent. Let p = ,& + ,&,
where is the number of pipeline stages in the SPN and
p2 is the number of pipeline stages in the MIN. For arbitrary
codes ,& = S (N / P) , & = 210g Pd - 1 . For specific codes,
however, the routing latency can be substantially smaller with
special-purpose SPN’s. The y factor is to account for the
overhead related to the routing network, pipeline registers,
etc., which depends strongly on the particular codes. Note
that the reduced number of interconnection wires (bandwidth-
efficiency) contributes to the area saving and also partially
compensates the overhead.

Note that a + p 2 (N I P) because each ACS needs at least
(N I P) stages to store the path metrics of all the states sharing
it. The excessive pipeline stages (of size (Y + p - (N I P))
are so-called pipeline bubbles which render the architecture

642 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 4, APRIL 1993

time-inefficient.’ Fortunately, the internal parallelism can be
exploited to speedup the architecture by a factor of a. From
the above equation, it is clear that the ACS pipelining has an
additive effect on the total latency and a multiplicative effect
on the throughput. Hence, it is advantageous to have cy as large
as possible. On the other hand, as explained in the previous
section, CY is also constrained by the fact that the pipeline
delays in the ACS cannot be smaller than those in SPN and
MIN. Therefore, the optimum CY (denoted by 5) occurs when
the pipeline delay in the ACS is the same as the rest of the
architecture (SPN and MIN).

VII. CONCLUSION
In this paper, we propose a new class of area-efficient

architectures for the Viterbi algorithm that allows a number
of trellis states to share one ACS. A systematic approach
for partitioning, scheduling, and mapping the N trellis states
to P ACS’s is presented. Based on the matrix permutation
techniques, the partition and schedule of the trellis can be
mapped to an area-efficient architecture with a multistage
interconnection network (MIN). For trellises where emulation
by a smaller trellis is possible, further area saving can be
achieved with a fixed-interconnection realization.

We proposed a novel technique for path metric storage,
by using a sequential permutation network (SPN) to reorder
the path metrics. This technique results in a pipelined local
memory which is faster and smaller than a multiport imple-
mentation.

A major advantage of our area-efficient architectures is the
internal parallelism, which is created by ACS sharing. Pipelin-
ing the SPN and MIN introduces latency to the architecture,
but pipelining the ACS is found to be an effective way to
combat the latency problem. Detailed area-time analysis of
our architectures is provided.

The favorable area-time tradeoff will be demonstrated by
application examples in an accompanying paper. These include
convolutional codes, matched-spectral-null (MSN) codes, and
Ungerboeck codes. Applications to trellises with very large
numbers of states and time-varying codes will also be dis-
cussed. The area-efficient architecture also makes it possible
to design a programmable Viterbi decoder due to the extensive
amount of programmability in the SPN and MIN.

APPENDIX A
PROOF OF THEOREM 2

Theorem 2: Let H be a homogeneous trellis with N states
and degree d. Then there exists a matrix permutation M E M
which is valid for H,-and permutations A l , A2, and A3 such
that A1 E B,A2 E C,A3 E B, and M = A3 o A2 o A I , if
and only if there exists a homogeneous trellis G with P states
which emulates H in a totally uniform manner.

Proof: First we will assume that G exists, and we will
show that suitable permutations AI ,,A2, and A3 must exist.
Number the vertices in G with 0 through P - 1. Because
G emulates H in a totally uniform manner, there exists a

9 0 f course, if external parallelism is applicable, then the pipeline bubbles
can be eliminated, and the area-efficient architecture will be time-efficient.

mapping f which sends (N I P) vertices in H to each vertex
in G, and (N I P) edges in H to each edge in G. We will
use this mapping function f to create the matrix permutations
M , A l , A 2 , and A3.

Label each vertex in H with a pair of the form [i , j] , O 5
i < P.0 5 j < (N / P) , indicating that it is the j th vertex in
H which f maps to vertex i in G. Define a partitioning and
scheduling matrix S (see Section 111-A), such that sij = [i , j]
for all i and j , 0 5 i < P, 0 5 i < (N / P) . Create the matrix
X by forming d copies of each row in S (see Section 111-
A). Thus, for all i and j , 0 5 i < Pd,O 5 j < (N / P) ,
xij = [Li/dJ, j] . Create the matrix Y by replacing each entry
s,j with a column of d entries giving the d old path metrics
which are needed in order to calculate s i j (see Section 111-A).
Specifically, for all i and j , 0 5 i < Pd,O 5 j < (N / P) ,
y i j = [a , b] if the (i mod 4 t h incoming edge to node [l i / dJ , j]
in H comes from node [a, b] in H . Finally, let M be a matrix
permutation defined by X and Y.

We will now show how M can be decomposed into per-
mutations A l , A 2 , and A3 of the desired types. Label each
edge in H with a triple of the form (i , j , k) , 0 5 i < P, 0 5
j < d,O 5 k < (N / P) , indicating that it is the kth edge in
H which f maps to the j th outgoing edge from node i in G.
Note that the outgoing edges leaving any node [a , b] in H have
labels of the form (a , j , k) , because f maps the node [a , b] to
node a in G, and f maps all of the edges which leave [a , b] to
edges which leave a. Permutation A1 is defined to send each
item xTc, 0 5 r < Pd, 0 5 c < (N / P) , to row id + j and
column k if the (r mod d)th outgoing edge of node [[r / d J , c]
is labeled { i , j , k) . It was just shown that Lr/d] must equal
i , so each item will remain within the same block of d rows,
and A I E B.

Permutation A2 permutes the rows according to the pattern
of connections in G. More formally, permutation A2 sends
each item in row r and column c to row i d + j and column c
if the (r mod d)th outgoing edge from node Lr/dJ in G is also
the j th incoming edge to node i in G. It is clear that A2 keeps
the same set of items in each column, and that items which
start in the sameA row are sent by A2 to the same destination

The definition of permutation A3 is similar to the definition
of permutation A I , except that it is stated in terms of incoming
edges rather than outgoing edges. Label each edge in H with
a triple of the form (i , j , k) , 0 5 i < P,O 5 j < d,O 5
k < (N / P) , indicating that it is the kth edge in H which f
maps to the j th incoming edge to node i in G. Note that the
incoming edges entering any node [a, b] in H have labels of
the form (a , j , k) , because f maps the node [a,b] to node a
in G, and f maps all of the edges which enter [a , b] to edges
which enter a. Permutation A3 is defined to send each item
from row T and column c, 0 5 r < Pd,O 5 c < (N / P) , to
row i d + j and column k it the j th incoming edge to node
[i , k] is labeled (a,b,c), where a = Lr/dJ and b = r mod d.
It was just shown that [r/dJ must equal i , so each item will
remain within the same block of d rows, and A3 E B.

It has been shown that A I E D,A2 E C , and A3 E B,
but it still remains to be shown that M G A3 o A2 0 A I .
Consider an arbitrary item in row i d + j and column k of

TOW, SO A2 E C.

SHUNG et al.: AREA-EFFICIENT ARCHITECTURES FOR THE VITERBI ALGORITHM-PART I: THEORY 643

x, where 0 5 i < P,o 5 j < d, and 0 5 k < (N / P) .
From the definition of X , this item equals [i, k] . ~ ~ l l ~ ~ i ~ ~ the
application Of permutation A i , this item is located in TOW id+a

[6] P.G. Gulak and E. Shwedyk, “VLSI structures for Viterbi receivers:
Part I-general theory and applications,” IEEE J. Sekct. Areas Com-
mun., vol. SAC-4, pp. 142-154, Jan. 1986.

171 G. D. Fomev, Jr., “Maximum-likehood sequence estimation of digital _ .
and column b if the j th outgoing edge leaving node [i , k] is
labeled (i, a, b). Then, following the application of Permutation
A2, this item is located in row gd + h and column b if the ath

sequences in the presence of intersymbol ~ interference,” IEEE Trans.
Inform. Theory, vol. IT-18, pp. 363-378, May 1972.

Mar. 1973.
[8] -, ‘<The wterbi algorithm,” Proc. IEEE, vol. 61, pp. 268-278,

outgoing edge leaving node i in G is also the hth incoming
edge entering node in G. Finally, following the application
Of permutation A3, this item is located in row gd 4- u and
column o if the uth incoming edge entering node [g ,o] is
labeled (9, h, b). Note that the jth Outgoing edge leaving node
[i, I C] is the bth edge which is mapped by f to the ath outgoing

[9] G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm for
routing in permutation networks,” IEEE Trans. Computers, vol. C-30,
pp. 93-100, Feb. 1981.

[lo] H.-D. Lin and D.G. Messerschmitt, “Algorithms and architectures for
concurrent Viterbi decoding,” in Proc. Int. Con& Commun., Boston, MA,
June 1989, pp. 836-840.

[l l] J. Rabaey, T. Stoelzle, D. Chen, S. Narayanaswamy, R. Brodersen,
H. Murveit, and A. Santos, “A large vocabulary real time continuous

~~

edge leaving node i in G. M ~ ~ ,
edge entering node [g ,

that the uth incoming
is the bth edge, which is mapped by

speech recognition system,” in VLSISignalProcessing, III, R. Brodersen
and H. Moscovitz, Ed.

1121 H. Thaper and J. Cioffi, “A block processing method for designing high-
New York: IEEE Press, 1988.

- -
f to the hth incoming edge entering node g in G. But the ath
Outgoing edge leaving node in is the hth incoming
edge entering node g in G. Therefore, the j th outgoing edge

speed Viterbi detectors,” in Proc. h t . Conf Commun., Boston, MA, June

[13] :;9kterbi, “Error bounds for convolutional codes and asymptotically
outimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13,

leaving node [i, k] is also the uth incoming edge entering node
[g , From the definition of y, the item in row g d + 21 and

pp. 260-269, A;. 6 6 7 .
[14] C.-L. Wu and T.-Y. Feng, “On a class of multistage interconnection

networks,” IEEE Trans. Computers, vol. C-29, pp. 108-116, Aug. 1980.
column o of Y has the value [i, k] . It was just shown applying
permutations A i , A2, and A3 to X, the item in row gd + u and
column o has the value [i, k]. As a result, M A3 o A2 o AI.

Now we will assume that a matrix permutation M and
suitable permutations A I , A2, and A3 exist, and we will show
that a homogeneous trellis G with P states which emulates
H in a totally uniform manner must exist. The construction is
essentially the inverse of the previously described construction.
Let matrices S, X, and Y be as defined in Section 111-A, such
that the matrix permutation M maps matrix X into matrix Y.
Number the vertices in G with 0 through P - 1. Each vertex in
G will have exactly d outgoing and d incoming edges. Assign
to the ith outgoing edge, 0 5 i < d, from vertex j in G the
number j d + i. Construct G by making each outgoing edge
number k , 0 5 k < P d , the ith incoming edge to vertex j if
permutation A2 sends row IC to row j d + i. It is easily verified
that G emulates H in a totally uniform manner when vertex
i in H is mapped to vertex j in G and only if there exists an

0 entry s,, in S such that s,, = i and T = j.

ACKNOWLEDGMENT

The authors wish to thank R. Brodersen and J. Hwang for
many helpful discussions.

REFERENCES

[l] V. E. Benes, “On rearrangeable three-stage connecting networks,” BeN
Syst. Tech. J., vol. 41, pp. 1481-1492, 1962.

[2] -, “Optimal rearrangeable multistage connecting networks,” Bell
Sysr. Tech. J., vol. 43, pp. 1641-1656, 1964.

[3] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation:
Breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. COM-37,
pp. 785-790, Aug. 1989.

[4] J.P. Fishburn and R.A. Finkel, “Quotient networks,” IEEE Trans.
Computers, vol. C-31, pp. 288-295, Apr. 1982.

[5] P. G. Gulak and T. Kailath, “Locally connected VLSI architecture for
the Viterbi algorithm,” IEEE J. Select. Areas Commun., vol. SAC-6,
pp. 527-537, Apr. 1988.

C. Bernard Shung received the B.S. degree in elec-
trical engineering from National Taiwan University
in 1981, and the M.S. and Ph.D. degrees in electrical
engineering from the University of California at
Berkeley in 1985 and 1988, respectively.

From 1988 to 1990 he was a Visiting Scientist at
IBM Research Division, Almaden Research Center,
San Jose, CA, where he was engaged in the devel-
opment of prototyping integrated circuits for pattern
recognition and magnetic recording. In 1990 he
joined the Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan, Republic of China, where
he is now an Associate Professor. His research interests include VLSI circuits
and systems for communications and signal processing, and computer-aided
design for integrated circuits.

Horng-Dar Lin received the B.S.E.E. degree from
the National Taiwan University in 1984, and the
M.S. and Ph.D. degrees from the University of Cal-
ifornia at Berkeley in 1988 and 1991, respectively.

Between 1984 and 1986 he served as a Tech-
nical Officer in Taiwan responsible for research
and engineering in communication electronics. He
worked on efficient ASIC pipelining at the IBM
Almaden Research Center between 1989 and 1990,
and on optical networks at the IBM T.J. Watson
Research Center in 1990. Between 1990 and 1991

he worked as the principle architect of an image compression encodeddecoder
chip at Teknekron Communications Inc., Berkeley, CA. Since 1991 he has
been with the AT&T Bell Labs and continued his VLSI resaarch. His
interests include algorithm-to-architecture mapping, power-efficient circuits,
parallel algorithms, application-specific memory structures, and high-speed
communications and signal processing.

Dr. Lin was elected a member of the Phi Tau Phi Scholastic Honor Society
in Taiwan in 1984.

644 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 4, APRIL 1993

Robert Cypher was born in Schenectady, NY, in
1959. He received the B.S. degree in mathematical
sciences from Stanford University in 1982 and the
M.S. and Ph.D. degrees in computer science from
the University of Washington in 1987 and 1989,
respectively.

He is currently a Research Staff Member of
the IBM Almaden Research Center and a Consult-
ing Assistant Professor in the Stanford University
Computer Science Department. He is interested in
both the theoretical and practical aspects of parallel

processing. He has done research in parallel algorithms for image processing,
computational geometry, sorting, and data routing. He is also interested in
VLSI, signal processing, fault-tolerance, and the design of interconnection
networks.

Paul H. Siegel was born in Berkeley, CA, in 1953.
He received the B.S. degree in mathematics in 1975
and the Ph.D. degree in mathematics in 1979, both
from the Massachusetts Institute of Technology. He
held a Chaim Weizmann fellowship during a year
of postdoctoral study at the Courant Institute, New
York University.

He joined the Research Staff at IBM in 1980. He
is currently Manager of the Signal Processing and
Coding Project at the IBM Almaden Research Cen-
ter in San Jose, CA. His primary research interest

in the mathematical foundations of signal processing and coding, especially
as applicable to digital data storage channels. He holds several patents in
the area of coding and detection for digital recording systems. He has taught
courses in information and coding at the University of California, Santa Cruz,
and at Santa Clara University, and was a Visiting Associate Professor at
the University of California, San Diego, while at the Center for Magnetic
Recording Research during the 1989- 1990 academic year.

Dr. Siegel was elected to Phi Beta Kappa in 1974. He is currently a member
of the Board of Governors of the IEEE Information Theory Society. He was
a Co-Guest Editor of the May 1991 Special Issue on Coding for Storage
Devices of the IEEE TRANSACTIONS ON INFORMATION THEORY.

Hemant K. Thapar received the Ph.D. degree in
electrical engineering from Purdue University, West
Lafayette, IN, in August 1979.

He worked at the Bell Telephone Laboratories,
Holmdel, NJ, from October 1979 to September
1984, first on the design method for AT&T’s Dy-
namic Non-Hierarchical Routing Network, and sub-
sequently on signal processing and coding methods
for high-speed data transmission. Since 1984 he
has been with IBM, San Jose, CA, where he is
a Manager in the Advanced Magnetic Recording

Laboratory. He is also an Adjunct Lecturer at Santa Clara University, where
he regularly teaches courses in communication theory, digital communication,
and signal processing. His primary interests are in communication signal
processing and VLSI design.

Dr. Thapar is a member of Tau Beta Pi and Eta Kappa Nu. He is the recipient
of the Interface 1984 Best Paper Award and the IEEE Communications
Society’s 1991 COMMUNICATION MAGAZINE Prize Paper Award.

