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Area-Efficient Architectures for the Viterbi 
Algorithm-Part I: Theory 

C. Bernard Shung, Horng-Dar Lin, Robert Cypher, Paul H. Siegel, and Hemant K. Thapar 

Abstract-The Viterbi algorithm has been widely applied to 
many decoding and estimation applications in communications 
and signal processing. A state-parallel implementation is usually 
used in which one add-compare-select (ACS) unit is devoted to 
each state in the trellis. In this paper we present a systema- 
tic approach of partitioning, scheduling, and mapping the N 
trellis states to P ACS’s, where N > P .  The area saving of 
our architecture comes from the reduced number of both the 
ACS’s and interconnection wires. The design of the ACS, path 
metric storage, and routing network is discussed in detail. The 
proposed architecture creates internal parallelism due to the ACS 
sharing, which can be exploited to increase the throughput rate 
by pipelining. Consequently, the area-efficient architecture offers 
a favorable (smaller) area-time product, compared to a state- 
parallel implementation. These results will be demonstrated by 
application examples in the accompanying paper. 

I. INTRODUCTION 
HE Viterbi algorithm [8], [13] has been widely applied T to many decoding and estimation applications in com- 

munications and signal processing. It can be used to perform 
maximum likelihood decoding for convolutional codes, or 
maximum likelihood estimation of the transmitted sequence 
over a channel with intersymbol interference (ISI) [7]. Re- 
cently, it was also applied to hidden Markov model based 
continuous speech recognition [ 111. 

The Viterbi algorithm is defined in terms of a trellis dia- 
gram. In decoding, the algorithm attempts to reconstruct 
the actions of the encoder based on the transmission of its 
outputs over a noisy channel. Specifically, it assigns a value, 
called the path metric, to each node in the trellis. For each 
incoming branch, the path metric of the node from which the 
branch originated is added to a branch metric which gives 
the likelihood that the corresponding state transition occurred, 
based on the value received over the noisy channel. The sums 
calculated for each of the incoming branches are compared and 
the largest one (corresponding to the most likely transition) is 
selected.’ This selected sum is used as the new path metric 
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case, the most likely transition corresponds to the smallest sum. 

for the node. The calculation of the path metrics is often 
implemented by an Add-Compare-Select (ACS) unit. 

Because of the feedback loop, the ACS is generally con- 
sidered to be the most critical part in the implementation of 
the Viterbi algorithm. Most implementations employ a state- 
parallel approach in which one ACS is devoted to each state in 
the trellis. The speed bottleneck in such implementations is the 
delay of the ACS. In continuous speech recognition in which 
the number of states is large and the sampling rate is low, a 
state-serial approach is often used. All the states share one (or 
a few) ACS sequentially. In this paper, we study the general 
problem of partitioning and scheduling the states in sharing 
the ACS’s. The proposed area-efficient architecture is shown 
to provide favorable area-time tradeoffs in practical examples. 

Several architectures have been proposed to address the 
speed/area tradeoff of the ACS. Fettweis and Meyr [3] (and, 
independently, Lin and Messerschmitt [ 101 and Thapar and 
Cioffi [12]) proposed a technique to trade area for speed, in 
which speed beyond the ACS bottleneck was achieved by 
using a parallel implementation that operates on the M-Step 
trellis. Gulak and Shwedyk [6] observed that the state-parallel 
implementation with a de Bruijn graph trellis results in an 
interconnection network defined by a shuffle-exchange graph. 
Based on the VLSI grid model, they applied the work on 
optimum layout of shuffle-exchange graphs to reduce the 
wiring area. Gulak and Kailath [SI proposed three types 
of locally connected processor arrays-cascade, linear, and 
mesh-for trellises with a de Bruijn graph structure. The 
idea was to further reduce wiring area by limiting each ACS 
to communicate only with its neighbors. In linear and mesh 
arrays, N ACS’s are required for a trellis of N states. In 
a cascade array, logN butterfly processors are required for 
a trellis of N states. However, each of the ZogN processors 
serves all N states in sequence with complex switches used 
among the processors for timing alignment. 

In this paper, we propose a new area-efficient architecture 
model that trades speed for area. One unique feature of our 
scheme is that each ACS is shared by a fixed subset of the 
states. The novelty of our architecture is best illustrated by the 
area-time diagram (AT diagram) in Fig. 1. The state-parallel 
implementation of a particular trellis corresponds to a fixed 
point in the AT diagram. It can be seen that the high-speed 
techniques [3], [lo], [12] and the area-efficient techniques can 
be used to explore the design space in two different directions. 
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Fig. 1. Area-time (AT) diagram. AT = const is used as the reference line. 
The area-efficient technique (solid curve) can be used to trade speed for 
area saving, while the high-speed technique (dashed curve) can be used to 
trade area for speed. Comparing with the reference, it can be seen that the 
area-efficient technique improves throughput, while the high-speed technique 
results in area overhead. 

We choose A T  = constant to be the reference curve.’ The 
complexity of the M-step ACS in [3]  introduces area overhead 
in the high-speed techniques. On the other hand, our area- 
efficient techniques provide throughput increase, by virtue 
of the introduction of internal parallelism. Furthermore, the 
area-efficient techniques based on locally connected processor 
arrays [5]  suggest discrete design choices in the AT diagram. 
On the contrary, our technique provides a continuous means of 
trading speed for area. It is therefore easier to find an optimal 
design solution for particular area or speed constraints. 

The paper is organized as follows. In Section 11, we intro- 
duce our area-efficient architecture model. We define several 
criteria that we use in the paper to evaluate the architecture. In 
Section 111, trellis partitioning and scheduling are described. 
In Section IV, we discuss the design of the local memory 
where the path metrics are stored. Design techniques to achieve 
higher throughput rate with a pipelined ACS are discussed in 
Section V. The area-time analysis is provided in Section VI. 
Applications examples of the area-efficient architectures will 
be shown in the accompanying paper. 

11. ARCHITECTURAL MODEL FOR AREA-EFFICIENT 
IMPLEMENTATION 

Fig. 2 illustrates our architectural model for area-efficient 
implementation of the Viterbi algorithm. It consists of P 
ACS’s with associated local memories and a routing network. 
We assume that the N trellis states are evenly partitioned into 
the P ACS’s, where P divides N.3 We call the implementation 
time-efficient if no ACS is idle at any time, so it takes ( N I P )  
time units to finish all N trellis states. We define the i- 
degree, d; ,  of a trellis state as the number of incoming edges 

21n Fig. 1, both area and time axes are in a logarithmic scale, therefore, 
AT = constant is represented by a straight line. 

’If P does not divide N ,  then P [ N / P ]  - N ACS’s will be idle in one of 
[NIP1 time units, assuming one time unit is required for one ACS to process 
one state. 
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Fig. 2. The architecture model for the area-efficient implementation. 

to that state. We define the 0-degree, do, of a trellis state 
as the number of outgoing edges from that state. We call 
a trellis homogeneous if for all states, di = do = d,  and 
we call d the degree of the trellis. We will concentrate on 
homogeneous trellises, as nonhomogeneous trellises can be 
made homogeneous by adding dummy branches. 

The local memory of each ACS is divided into two 
banks-one storing the ( d N / P )  old path metrics (the inputs to 
the ACS), and the other storing the ( N I P )  new path metrics 
(the outputs of the ACS). The two local memory banks are 
referred to as the input local memory and the output local 
memory. The input local memory has d read ports and d 
write ports, and the output local memory has d read ports 
and 1 write port. In Section V, we will discuss alternative 
design techniques for the local memories to avoid the need 
for multiport memories. 

For a homogeneous trellis of N states and degree d,  the P 
ACS’s together require Pd old path metrics at any one time. 
We are interested in finding an implementation in which the 
Pd old path metrics which enter the routing network at a given 
time are evenly distributed among the P local memories. In 
such a case, only d wires are required from each local memory 
to the routing network. We call such a design bandwidth- 
efficient as the bandwidth of the routing network is reduced 
from Nd (in a state-parallel implementation) to Pd. 

In a bandwidth-efficient implementation, the routing net- 
work routes Pd old path metrics to the input local memory 
of the P ACS’s at each time unit. In general, the required 
routing (permutation) is different in each time unit, and hence 
a dynamic routing network has to be used. We will discuss 
the use of a multistage interconnection network (MIN) [14] 
in this case. If the required routing is the same in each 
time unit, the routing network degenerates to Pd wires. We 
call this the jixed-interconnection case. In Section IV, we 
discuss partitioning and scheduling techniques for both fixed- 
interconnection and MIN routing networks. 

Based on the architectural model, the goal is to find a 
time-efficient and bandwidth-efficient implementation for a 
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particular trellis diagram. It will be shown in Section IV that 
bandwidth-efficiency can always be achieved by our partition- 
ing, scheduling, and architecture mapping techniques. It will 
be shown in Section VI that time efficiency can always be 
achieved if interleaved independent data sources are allowed. 
We will also show that the sharing of an ACS allows additional 
pipelining of the states which can be exploited to improve 
the throughput rate. This, plus the area reduction enabled by 
reducing the number of ACS's and interconnections, produces 
a favorable area-time tradeoff for the proposed architecture. Fig. 3. A 6-state degree-2 trellis for Example 1. 

111. TRELLIS PARTITIONING AND SCHEDULING 

In this section we discuss how to partition the N trellis 
states into P ACS's and schedule the ( N I P )  states within 
each ACS, where P is chosen depending upon the amount of 
area saving desired. We will begin by assuming the existence 
of a MIN routing network, and we will show that any trellis 
can be implemented in a bandwidth-efficient manner. We will 
then give the criterion which a trellis must meet in order for the 
MIN routing network to be replaced by a fixed-interconnection 
network. 

A. Partitioning, Scheduling, and Communication Requirements 
The partitioning of the N trellis states into the P ACS's, 

and the scheduling of the (NIP) states within each ACS, have 
a major impact on the design of the routing network and the 
ACS local memories. The matrix S = { s i j }  will represent the 
partitioning and scheduling of the trellis states. Specifically, let 
s i j  be the state that is assigned to the ith ACS and scheduled to 
be processed at the j th  time unit, 0 5 i < P, 0 5 j < ( N I P ) .  

Given the partitioning and scheduling matrix S and the trel- 
lis which is being used, we can define two additional matrices, 
X and Y, which capture the communication requirements. 
Matrix X is the Pd-by-(NIP) matrix created by making 
d copies of each row of S. Specifically, xij  = S k j ,  where 
IC = Li/d]. Thus, if d copies are made of each ACS output, 
xi j  represents the ith output from the array of ACS's at the 
j th  time unit. Matrix Y is the Pd-by-(NIP) matrix created 
by replacing each entry s i j  E S with a column of d entries 
giving the d old path metrics which are needed in order to 
calculate si?. Specifically, {yij I Li/d_l = IC} is the set of d old 
path metrics that are needed to calculate the new path metric 
for state s k j .  Thus, yij represents the ith input that is required 
by the array of ACS's at the j th  time unit. 

Example 1:  A 6-state degree-2 homogeneous trellis is shown 
in Fig. 3. The S ,  X, and Y matrices of a particular partitioning 
and scheduling are shown below. 

0 4 2  

s = ( ;  ; ;) .=(; ; ;) 

y j 5  2 0 4 '  1) 

3 1 5  
0 4 2  

3 1 5  

Because the outputs of the array of ACS's are created in 
the pattern defined by X, and the inputs to the array of ACS's 
are required in the pattern defined by Y ,  the architecture must 
support the mapping of the matrix X into the matrix Y. A 
permutation which accomplishes this mapping from X to Y 
will be called a matrix permutation for the given trellis. This 
matrix permutation will be implemented in the routing network 
and/or the local memories of the ACS's. 

The next subsection presents a general technique for divid- 
ing a matrix permutation into a number of smaller, independent 
permutations. This general technique will then be used to 
obtain a bandwidth-efficient implementation of an arbitrary 
matrix permutation on our architectural model. Therefore, an 
arbitrary partitioning and scheduling matrix S can be chosen. 
However, we will show later that the choice of S in a fixed- 
interconnection implementation can be difficult. 

B. Matrix Permutations 

In this subsection we will show that any matrix permutation 
can be divided into three successive permutations-the first 
and third of which only rearrange elements within rows, and 
the second of which only rearranges elements within columns. 
We will need the following definitions. 

Definitions: M is the set of Pd-by-(NIP) matrix permu- 
tations. Thus, each member of M is a function which takes 
as input a Pd-by-(NIP) matrix, and creates as output another 
Pd-by-(NIP) matrix which is obtained by rearranging the 
elements of the input matrix. R is the set of matrix within- 
rows-permutations, and C is the set of matrix within-columns- 
permutations. Thus, each member of R ( C )  is a function which 
takes as input a Pd-by-(NIP) matrix, and creates as output 
another Pd-by-( N /  P )  matrix which is obtained by rearranging 
the elements in each row (column) of the input matrix. The 
permutation obtained by applying permutation A1 and then 
applying permutation A2 will be denoted A2 o A I .  

The following theorem is due to Benes [l]. 
Theorem 1: For each permutation M E M ,  there exist 

permutations AI,  A2, and A3 such that A I  E R, A2 E C, A3 E 
R, and M E A3 o A2 o A I .  

Example 2: Here is a simple 4-by-4 example of Theorem 1. 
The permutation can be defined by a matrix of numbers from 
0 through 15 giving the destination of each item. The input 
matrix I and the output matrix 0 are 
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/ 1  13 2 6 \  / o  1 2 3 \  

I = [ ;  9 11 0 15 8 12 3 J  O = ( ;  l"o 
7 14 4 12 13 14 15 

The required matrix permutation can be decomposed as fol- 
lows, where A1 and AJ are within-rows-permutations and A2 
is a within-columns-permutation: 

/ 6  13 1 2 \  

/ 3  0 1 2 \  

\ 1 4  13 12 15) 
/ o  1 2 3 \  

\ 1 2  13 14 1 5 1  

C. MIN Implementation 

In this subsection we will describe a general architecture that 
provides a bandwidth-efficient implementation for any homo- 
geneous trellis. Given the trellis, first select any matrix per- 
mutation for the trellis. This matrix permutation will permute 
the items in a Pd-by-(NIP) matrix. Next, use Theorem 1 to 
divide the matrix permutation into a within-rows-permutation, 
followed by a within-columns-permutation, followed by a 
within-rows-permutation. This division of the matrix permu- 
tation can be found in O(Ndlog(Nd) log(N/P)) time on 
a sequential computer or in O(log2(Nd) log(N/P))  time 
on a shared memory parallel computer with Nd processors 
[9]. Then, use random-access memory for both banks of 
each ACS's local memory. This allows both within-rows- 
permutations to be performed by simply using the correct 
addressing patterns. 

Finally, use a MIN to implement the within-columns- 
permutation. In particular, use a P d  input Benes network [2] 
to perform the within-columns-permutation. A Benes network 
with P d  inputs consists of 2log(Pd) - 1 stages, where each 
stage has (Pd/2) switches (Fig. 4). Each switch takes 2 inputs 
and creates 2 outputs. The switch can be set to pass the inputs 
to the outputs either with or without swapping them. It has 
been shown that a Benes network can implement any desired 
permutation of its inputs by correctly setting its switches [2 ] .  
Thus, a P d  input Benes network can be used to implement the 
within-columns-permutation by shifting each column of P d  
items into the network and setting the switches correctly. If it 
takes more than a single cycle to perform a pass through the 
Benes network, it can be pipelined so that multiple columns 
can be present in the network at a time. 

Thus, the use of random-access memory and a Benes 
network results in a general architecture which can sup- 
port any communication requirements. Of course, there is a 
cost associated with this generality. In particular, the use of 

Switch Unit I N 1  4-E ........................ OUT1 C = O :  O U T I = I N I .  O U T Z = I N 2  (pass) 
C = O :  O U T I = I N 2 .  O U T Z = I N I  (cross) 

OUT 2 (su) IN2 ,.::: ..... ::.. 

- IY I 

Bem Network of lapnt she M 

Fig. 4. The Benes multistage interconnection network (MIN). Each 2 x 2 
switch unit (SU) can be set to puss or cross. A Benes MIN with 2 log M - 1 
stages (each with M / 2  SU's) can perform any permutations of s u e  M .  

random-access memory has two drawbacks: 1) the read and 
write addressing patterns for each ACS have to be stored, and 
2) a multiport memory is required to read and write d metrics 
at a time. We will discuss local memory design in more detail 
in Section V, and will present a less costly implementation. 
Also, the Benes network is not needed in all cases. In the next 
section, we will consider cases in which the Benes network 
can be replaced by a fixed-interconnection network. 

D. Fixed Interconnection Implementation 
In order to obtain a fixed-interconnection solution, the 

second permutation, A2, must be a special type of within- 
columns-permutation, namely, one in which the permutation 
that is performed in each of the ( N I P )  columns is identical. 
In other words, the second permutation can be viewed as 
permuting the row vectors. Such permutations will be called 
row-reordering-permutations. We will use C to denote the set 
of row-reordering-permutations. 

Note that a similar three-part division of the matrix permu- 
tation was used in the preceding subsection in order to obtain a 
MIN implementation. However, in the MIN implementation, 
the first, and third permutations were required to be within- 
rows-permutations. This is unnecessarily restrictive, as a block 
of d consecutive rows is stored locally in each ACS. As 
a result, we will allow the first and third permutations to 
be within-blocks-permutations, denoted by B, where the P d  
rows are viewed as forming P blocks of d rows each. This 
greater flexibility in selecting the first and third permutations 
will increase our ability to find a three-part division of the 
matrix permutation in which the second permutation is a 
row-reordering-permutation. 

Unfortunately, not all matrix permutations can be di- 
vided into a within-blocks-permutation, followed by a 
row-reordering-permutation, followed by a within-blocks- 
permutation. Furthermore, the problem of deciding whether or 
not such a division exists can be very difficult. In other words, 
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Fig. 5. (a) The shift exchange unit (SEU). A SEU of size K (SEUK) contains 2 multiplexers and h- latches. In the shift mode, the two multiplexers select 
the input denoted by the asterisks. In the exchange mode, they select the other pair of inputs. SEUK is capable of exchanging any pair of inputs that are 
separated in h’ stages. (b) The sequential permutation network (SPN). An SPN of size M contains 2 log M - 1 SEU’s of size 1 , 2 , 4 , .  . . , M / 2 , .  . . , 4 , 2 , 1 ,  
respectively, and is capable of performing any permutation of size M in a sequential manner. 

it can be very difficult to select a partitioning and scheduling 
matrix S in a fixed-interconnection implementation. We will 
now present a different approach to the problem which can 
provide more insight. 

Definitions: Suppose G = (VG, E G )  and H = ( V H ,  EH) 
are t re l l i se~ .~  A function f : VH -+ VG is an emulation of H by 
G if, for every edge (hl, h ~ )  E E H ,  (f(hl), f (h2)) E EG. The 
emulation f is totally uniform if, for each vertex g E VG, there 
are exactly IVH I/~VG I vertices h E VH such that f (h) = g, 
and for each edge (g1,gZ) E EG, there are exactly \ V H ~ / ~ V G ~  
edges (h l ,  hz) E EH such that f ( h l )  = g1 and f(hz) = 92.’ 

The following theorem shows that the problem of finding 
a fixed-interconnection realization is equivalent to finding a 
homogeneous trellis with P states which can emulate the 
homogeneous trellis with N states in a totally uniform manner. 
The proof is given in the Appendix A. 

Theorem 2: Let H be a homogeneous trellis with N states 
and degree d. Then there exists a matrix permutation M E M 
which is valid for HAand permutations AI,  Az, and A3 such 
that AI E B,Az E C,A3 E B, and M A3 o A2 o AI,  if 
and only if there exists a homogeneous trellis G with P states 
which emulates H in a totally uniform manner. 

A computer search program can be constructed to find a 
P-state homogeneous trellis that can emulate the original N- 
state trellis in a totally uniform manner. For arbitrary trellises 
with large N, this can be very computationally expensive. For 
several kinds of trellises of practical interest (which will be 
described in Section I1 of the accompanying (Part 11) paper), 
we have found the emulation solution. For small trellises, 
manual analysis is possible, taking advantage of any regularity 
or symmetry in the trellis. 

In summary, fixed-interconnection implementations are de- 
sirable and possible for many practical trellises. However, 
the authors do not know a way to search for the solution 
efficiently for arbitrary trellises. Nevertheless, area-efficient 
implementations in a bandwidth-efficient manner using a MIN 

Self-loops (vertices which point to themselves) and multiple edges between 
the same pair of vertices are allowed in both G and H .  

5The terminology and definitions are taken from [4]. 

routing network can always be guaranteed, in which case an 
arbitrary partitioning and scheduling matrix can be used. 

IV. LOCAL MEMORY DESIGN 

In this section we discuss the design of the local memory. 
In previous sections, a multiport, random-access memory was 
assumed. Although conceptually simple, it is not an ideal 
implementation because of its complexity. 

The local memory must meet a pair of conflicting goals. On 
the one hand, it has to be regular in order to allow pipelining. 
As will be seen in the following sections, pipelining has an 
important role in the area-efficient architectures. On the other 
hand, it has to perform the within-rows-permutation or the 
within-blocks-permutation. We propose a novel architecture, 
called the sequential permutation network (SPN), which can 
meet both goals. The idea is to allow some reordering in the 
pipeline such that the output ordering is made different from 
the input ordering. 

In Fig. 5(a), a shift exchange unit (SEU) is illustrated. Note 
that an SEU of size K has K + 1 pipeline registers. For each of 
the two pipeline stages which has two inputs (the remaining 
ones all have one input), a multiplexer is inserted in front. 
When there is no exchange, the multiplexers choose the input 
from their left neighbors. When there is an exchange, the 
multiplexers choose the other pair of inputs, thus swapping 
the two values in the two pipeline registers that are K stages 
apart. The two multiplexers are controlled by the same control 
signal, with which we can perform an exchange between any 
pair of input values that are separated by K stages. 

An SPN of size M [see Fig. 5( b)] is composed of 2 log M- 
1 SEU’s of sizes 1,2,~~~,(M/4),(M/2),(M/4),~~~,2,1.6 
It can be shown that an SPN of size M can support any 
permutations of the same size. In particular, the 2 log M - 1 
SEU’s correspond to the 2 log M- 1 stages in a Benes network. 
The M values shifted out of each SEU correspond to the M 
outputs of the ( M / 2 )  switches of the corresponding stage in 

6Without loss of generality, we assume M = 2‘. If, in fact, M # 2‘, 
then we can replace it with M’ which is the smallest integer greater than 
M ,  M’  = 2’. 
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the Benes network. Therefore, we can view the SPN as a 
sequential Benes network.’ 

Within-row-permutations can be implemented by SPN’s 
directly. The input and output local memories associated with 
each ACS require d SPN’s of size ( N I P ) .  The d SPN’s of 
the output local memory all take as input the output of the 
corresponding ACS. Within-blocks-permutations, on the other 
hand, can be implemented by a combination of SPN’s and 
MIN’s. To see this, recall that a within-blocks-permutation is 
also a matrix permutation of size d by ( N I P ) .  Therefore, it 
can be implemented by 2 MIN’s of size d and d SPN’s of 
size 

There are two other advantages to implementing a pipelined 
local memory with an SPN. First, the circuit between any two 
pipeline stages is very simple (at most a multiplexer), and 
hence will not constitute the timing bottleneck in the pipeline. 
Second, note that the signall wires do not intersect, and hence 
the layout of an SPN is straightforward and compact. 

One drawback of the SPN is its length, or latency, which is 

3 
K + 1 = - M + 2 l o g M  - 1 21 ; M .  c 2 

K = 1 , 2 , 4 , . . . , ~ , . . . , 4 , 2 , 1  

However, for particular codes, the within-rows-permutations 
often can be implemented with a special-purpose SPN with 
a considerably smaller length. Moreover, the within-blocks- 
permutations can sometimes be simplified to use one SPN 
with multiple tap points. These simplifications will be shown 
to be effective in the accompanying paper. 

V. ACS PIPELINING 
In the previous two sections, we have seen that the SPN 

and MIN can introduce significant latency. In this section, 
we consider the use of ACS pipelining to combat the latency 
problem. 

Pipelining the ACS’s has been proposed to increase the 
throughput rate by interleaving a number of independent data 
sources. In this case, the parallelism can be thought of as 
being externally created, so we will call it external parallelism. 
As mentioned earlier, when the channel has memory or 
intersymbol interference, the external parallelism is no longer 
applicable. In our architecture model, however, additional 
parallelism is created internally by allowing several trellis 
states to share an ACS. We call this internal parallelism. 
Therefore, even when the channel has memory or intersymbol 
interference, in an area-efficient design ACS pipelining can 
still be applied to take advantage of the internal parallelism. 
On the other hand, if the channel is memoryless, the internal 
parallelism can be exploited in additional to the external 
parallelism. ACS pipelining exploiting the internal parallelism 

7We choose not to call an SPN a sequential Benes network because 1) 
at each stage the SEU can manipulate a value more than once due to its 
sequential nature, and 2) the architecture of an SPN can support other types 
of MIN’s [14]. 

*From Theorem 1 it is obvious that there exists another decomposition 
in which A1 and AB are within-columns-permutations, and A2 is a within- 
rows-permutation. This decomposition is less costly for the within-blocks- 
permutation because d < (N/P). 

is the key reason for the favorable area-time tradeoff in our 
area-efficient architectures. 

The ACS for a degree-d trellis contains d adders and d - 1 
comparators and selectors. Compared to the multiplexers in an 
SPN or the switches in the MIN, the ACS is more complex and 
hence can accommodate more pipeline stages. Even though 
adding pipeline stages in the ACS increases the total latency 
in the feedback loop, this effect is additive, while the speedup 
effect by pipelining is multiplicative. Therefore, the overall 
effect of ACS pipelining is positive. We will show in the next 
section that it is advantageous to have as many ACS pipeline 
stages as possible. However, we cannot put too many such that 
the pipeline delays within the ACS are smaller than those in the 
SPN and the MIN. Consequently, the optimal ACS pipelining 
is achieved when the pipeline delays within the ACS are equal 
to those in the SPN and MIN. 

VI. AREA-TIME ANALYSIS 

With ( N /  P )  states sharing one ACS, a linear scale solution 
demands that the speed of the area-efficient architecture be 
( N I P )  times slower. In this section, we will show that, with 
the help of ACS pipelining, our area-efficient architecture can 
achieve a throughput rate which is higher than that of a linear 
scale solution. In other words, the area-efficient technique not 
only allows the exploration of the design space by trading 
speed for area saving, but also achieves a smaller area-time 
product than the state-parallel implementation. 

be 
the total number of pipeline stages in the SPN and MIN, and 
y be a overhead factor. The condition for our area-efficient 
architecture to perform better than the linear scale solution is 

Let (Y be the number of pipeline stages in the ACS, 

(1) 
f f + P <  1 N 

a l + y P ‘  
The numerator on the left-hand side of ( 1 )  indicates the total 
number of pipeline stages (latency) in the feedback loop. The 
left-hand side of ( 1 )  indicates the effective slow-down of the 
area-efficient architecture, compared to a nonpipelined state- 
parallel implementation. The right-hand side of ( 1 )  indicates 
the effective area saving. Equation (1) means that if the 
effective slow-down is smaller than the effective area saving, 
then the area-time tradeoff is favorable for the area-efficient 
architecture. 

Both p and y are trellis dependent. Let p = ,& + ,&, 
where is the number of pipeline stages in the SPN and 
p2 is the number of pipeline stages in the MIN. For arbitrary 
codes ,& = S ( N / P ) , &  = 210g Pd - 1 .  For specific codes, 
however, the routing latency can be substantially smaller with 
special-purpose SPN’s. The y factor is to account for the 
overhead related to the routing network, pipeline registers, 
etc., which depends strongly on the particular codes. Note 
that the reduced number of interconnection wires (bandwidth- 
efficiency) contributes to the area saving and also partially 
compensates the overhead. 

Note that a + p 2 ( N I P )  because each ACS needs at least 
( N I P )  stages to store the path metrics of all the states sharing 
it. The excessive pipeline stages (of size (Y + p - ( N I P ) )  
are so-called pipeline bubbles which render the architecture 
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time-inefficient.’ Fortunately, the internal parallelism can be 
exploited to speedup the architecture by a factor of a. From 
the above equation, it is clear that the ACS pipelining has an 
additive effect on the total latency and a multiplicative effect 
on the throughput. Hence, it is advantageous to have cy as large 
as possible. On the other hand, as explained in the previous 
section, CY is also constrained by the fact that the pipeline 
delays in the ACS cannot be smaller than those in SPN and 
MIN. Therefore, the optimum CY (denoted by 5) occurs when 
the pipeline delay in the ACS is the same as the rest of the 
architecture (SPN and MIN). 

VII. CONCLUSION 
In this paper, we propose a new class of area-efficient 

architectures for the Viterbi algorithm that allows a number 
of trellis states to share one ACS. A systematic approach 
for partitioning, scheduling, and mapping the N trellis states 
to P ACS’s is presented. Based on the matrix permutation 
techniques, the partition and schedule of the trellis can be 
mapped to an area-efficient architecture with a multistage 
interconnection network (MIN). For trellises where emulation 
by a smaller trellis is possible, further area saving can be 
achieved with a fixed-interconnection realization. 

We proposed a novel technique for path metric storage, 
by using a sequential permutation network (SPN) to reorder 
the path metrics. This technique results in a pipelined local 
memory which is faster and smaller than a multiport imple- 
mentation. 

A major advantage of our area-efficient architectures is the 
internal parallelism, which is created by ACS sharing. Pipelin- 
ing the SPN and MIN introduces latency to the architecture, 
but pipelining the ACS is found to be an effective way to 
combat the latency problem. Detailed area-time analysis of 
our architectures is provided. 

The favorable area-time tradeoff will be demonstrated by 
application examples in an accompanying paper. These include 
convolutional codes, matched-spectral-null (MSN) codes, and 
Ungerboeck codes. Applications to trellises with very large 
numbers of states and time-varying codes will also be dis- 
cussed. The area-efficient architecture also makes it possible 
to design a programmable Viterbi decoder due to the extensive 
amount of programmability in the SPN and MIN. 

APPENDIX A 
PROOF OF THEOREM 2 

Theorem 2: Let H be a homogeneous trellis with N states 
and degree d. Then there exists a matrix permutation M E M 
which is valid for H,-and permutations A l ,  A2, and A3 such 
that A1 E B,A2 E C,A3 E B, and M = A3 o A2 o A I ,  if 
and only if there exists a homogeneous trellis G with P states 
which emulates H in a totally uniform manner. 

Proof: First we will assume that G exists, and we will 
show that suitable permutations AI ,,A2, and A3 must exist. 
Number the vertices in G with 0 through P - 1. Because 
G emulates H in a totally uniform manner, there exists a 

9 0 f  course, if external parallelism is applicable, then the pipeline bubbles 
can be eliminated, and the area-efficient architecture will be time-efficient. 

mapping f which sends ( N I P )  vertices in H to each vertex 
in G, and ( N I P )  edges in H to each edge in G. We will 
use this mapping function f to create the matrix permutations 
M , A l , A 2 ,  and A3. 

Label each vertex in H with a pair of the form [ i , j ] , O  5 
i < P.0 5 j < ( N / P ) ,  indicating that it is the j th  vertex in 
H which f maps to vertex i in G. Define a partitioning and 
scheduling matrix S (see Section 111-A), such that sij  = [ i , j ]  
for all i and j ,  0 5 i < P, 0 5 i < ( N / P ) .  Create the matrix 
X by forming d copies of each row in S (see Section 111- 
A). Thus, for all i and j ,  0 5 i < Pd,O 5 j < ( N / P ) ,  
xij = [ Li/dJ, j ] .  Create the matrix Y by replacing each entry 
s,j with a column of d entries giving the d old path metrics 
which are needed in order to calculate s i j  (see Section 111-A). 
Specifically, for all i and j ,  0 5 i < Pd,O 5 j < ( N / P ) ,  
y i j  = [a ,  b] if the (i mod 4 t h  incoming edge to node [ l i / dJ ,  j ]  
in H comes from node [a, b] in H .  Finally, let M be a matrix 
permutation defined by X and Y. 

We will now show how M can be decomposed into per- 
mutations A l , A 2 ,  and A3 of the desired types. Label each 
edge in H with a triple of the form ( i , j ,  k ) ,  0 5 i < P, 0 5 
j < d,O 5 k < ( N / P ) ,  indicating that it is the kth edge in 
H which f maps to the j th  outgoing edge from node i in G. 
Note that the outgoing edges leaving any node [a ,  b] in H have 
labels of the form ( a ,  j ,  k ) ,  because f maps the node [a ,  b] to 
node a in G, and f maps all of the edges which leave [a ,  b] to 
edges which leave a. Permutation A1 is defined to send each 
item xTc, 0 5 r < Pd, 0 5 c < ( N / P ) ,  to row id + j and 
column k if the (r mod d)th outgoing edge of node [ [ r / d J ,  c] 
is labeled { i , j , k ) .  It was just shown that Lr/d] must equal 
i ,  so each item will remain within the same block of d rows, 
and A I  E B. 

Permutation A2 permutes the rows according to the pattern 
of connections in G. More formally, permutation A2 sends 
each item in row r and column c to row i d  + j and column c 
if the (r mod d)th outgoing edge from node Lr/dJ in G is also 
the j th  incoming edge to node i in G. It is clear that A2 keeps 
the same set of items in each column, and that items which 
start in the sameA row are sent by A2 to the same destination 

The definition of permutation A3 is similar to the definition 
of permutation A I ,  except that it is stated in terms of incoming 
edges rather than outgoing edges. Label each edge in H with 
a triple of the form ( i , j , k ) ,  0 5 i < P,O 5 j < d,O 5 
k < ( N / P ) ,  indicating that it is the kth edge in H which f 
maps to the j th  incoming edge to node i in G. Note that the 
incoming edges entering any node [a, b] in H have labels of 
the form ( a , j , k ) ,  because f maps the node [a,b] to node a 
in G, and f maps all of the edges which enter [a ,  b] to edges 
which enter a. Permutation A3 is defined to send each item 
from row T and column c, 0 5 r < Pd,O 5 c < ( N / P ) ,  to 
row i d  + j and column k it the j th  incoming edge to node 
[ i , k ]  is labeled (a,b,c),  where a = Lr/dJ and b = r mod d. 
It was just shown that [r/dJ must equal i ,  so each item will 
remain within the same block of d rows, and A3 E B. 

It has been shown that A I  E D,A2 E C ,  and A3 E B, 
but it still remains to be shown that M G A3 o A2 0 A I .  
Consider an arbitrary item in row i d  + j and column k of 

TOW, SO A2 E C. 
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x, where 0 5 i < P,o  5 j < d,  and 0 5 k < ( N / P ) .  
From the definition of X ,  this item equals [i, k] .  ~ ~ l l ~ ~ i ~ ~  the 
application Of permutation A i ,  this item is located in TOW id+a 

[6] P.G. Gulak and E. Shwedyk, “VLSI structures for Viterbi receivers: 
Part I-general theory and applications,” IEEE J.  Sekct. Areas Com- 
mun., vol. SAC-4, pp. 142-154, Jan. 1986. 

171 G. D. Fomev, Jr., “Maximum-likehood sequence estimation of digital _ .  
and column b if the j th  outgoing edge leaving node [ i , k ]  is 
labeled (i, a, b). Then, following the application of Permutation 
A2, this item is located in row gd + h and column b if the ath 

sequences in the presence of intersymbol ~ interference,” IEEE Trans. 
Inform. Theory, vol. IT-18, pp. 363-378, May 1972. 

Mar. 1973. 
[8] -, ‘<The wterbi algorithm,” Proc. IEEE, vol. 61, pp. 268-278, 

outgoing edge leaving node i in G is also the hth incoming 
edge entering node in G. Finally, following the application 
Of permutation A3, this item is located in row gd 4- u and 
column o if the uth incoming edge entering node [g ,o]  is 
labeled (9, h, b). Note that the jth Outgoing edge leaving node 
[i, I C ]  is the bth edge which is mapped by f to the ath outgoing 

[9] G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm for 
routing in permutation networks,” IEEE Trans. Computers, vol. C-30, 
pp. 93-100, Feb. 1981. 

[lo] H.-D. Lin and D.G. Messerschmitt, “Algorithms and architectures for 
concurrent Viterbi decoding,” in Proc. Int. Con& Commun., Boston, MA, 
June 1989, pp. 836-840. 

[ l l ]  J. Rabaey, T. Stoelzle, D. Chen, S. Narayanaswamy, R. Brodersen, 
H. Murveit, and A. Santos, “A large vocabulary real time continuous 

~~ 

edge leaving node i in G. M ~ ~ ,  
edge entering node [g ,  

that the uth incoming 
is the bth edge, which is mapped by 

speech recognition system,” in VLSISignalProcessing, III, R. Brodersen 
and H. Moscovitz, Ed. 

1121 H. Thaper and J. Cioffi, “A block processing method for designing high- 
New York: IEEE Press, 1988. 

- -  
f to the hth incoming edge entering node g in G. But the ath 
Outgoing edge leaving node in is the hth incoming 
edge entering node g in G. Therefore, the j th  outgoing edge 

speed Viterbi detectors,” in Proc. h t .  Conf Commun., Boston, MA, June 

[13] :;9kterbi, “Error bounds for convolutional codes and asymptotically 
outimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, 

leaving node [i, k] is also the uth incoming edge entering node 
[ g ,  From the definition of y, the item in row g d  + 21 and 

pp. 260-269, A;. 6 6 7 .  
[14] C.-L. Wu and T.-Y. Feng, “On a class of multistage interconnection 

networks,” IEEE Trans. Computers, vol. C-29, pp. 108-116, Aug. 1980. 
column o of Y has the value [i, k ] .  It was just shown applying 
permutations A i ,  A2, and A3 to X, the item in row gd + u and 
column o has the value [i, k]. As a result, M A3 o A2 o AI.  

Now we will assume that a matrix permutation M and 
suitable permutations A I ,  A2, and A3 exist, and we will show 
that a homogeneous trellis G with P states which emulates 
H in a totally uniform manner must exist. The construction is 
essentially the inverse of the previously described construction. 
Let matrices S, X, and Y be as defined in Section 111-A, such 
that the matrix permutation M maps matrix X into matrix Y. 
Number the vertices in G with 0 through P - 1. Each vertex in 
G will have exactly d outgoing and d incoming edges. Assign 
to the ith outgoing edge, 0 5 i < d,  from vertex j in G the 
number j d  + i. Construct G by making each outgoing edge 
number k ,  0 5 k < P d ,  the ith incoming edge to vertex j if 
permutation A2 sends row IC to row j d  + i. It is easily verified 
that G emulates H in a totally uniform manner when vertex 
i in H is mapped to vertex j in G and only if there exists an 

0 entry s,, in S such that s,, = i and T = j. 
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