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Area-Efficient Architectures for the Viterbi 
Algorithm-Part 11: Applications 

C. Bernard Shung, Horng-Dar Lin, Robert Cypher, Paul H. Siegel, and Hemant K. Thapar 

Abstract-In the previous paper, we established the theoretical 
foundations of a new class of area-efficient architectures for the 
Viterbi algorithm. In this paper, we will show area-efficient ar- 
chitectures for practical codes to illustrate the design procedures 
and demonstrate the favorable area-time tradeoff results. Three 
examples from convolutional codes, matched-spectral-null (MSN) 
trellis codes, and Ungerboeck codes will be presented. We will 
also discuss the application of our area-efficient techniques to 
codes with a very large numbers of states, codes with time-varying 
trellises, and a programmable Viterbi decoder. 

I. INTRODUCTION 
N the previous (Part I) paper, we established the theoretical I foundations of a new class of area-efficient architectures for 

the Viterbi algorithm. In this paper, we will show area-efficient 
architectures for three practical examples to illustrate the 
design procedures and demonstrate the favorable area-time 
tradeoff results. The first example is a 16-state de Bruijn graph 
trellis in convolutional codes. The second example is a six- 
state matched-spectral-null (MSN) trellis code used in partial 
response channels. The third example is a 16-state Ungerboeck 
code used in the coded modulation. We will also discuss the 
application of our area-efficient techniques to codes with a very 
large numbers of states, codes with time-varying trellises, and 
a programmable Viterbi decoder. 

11. APPLICATION EXAMPLES 

A. de Bruijn Graphs 

Trellises with the structure of a de Bruijn graph often occur 

that a de Bruijn graph (they called it a four-pin shufle) of 2M 
states can be emulated by a smaller de Bruijn graph of 2L 
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'Strictly speaking, a de Bruijn graph corresponds to the trellis of a rate 

l /N  feedforward convolutional code. We are considering de Bruijn graphs 
with modified branch labels. 

I in convolutional codes [5].l Fishbum and Finkel [2] found 
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Fig. 1. (a) A 16-state de Bruijn graph trellis. (,b) A four-state de Bruijn graph 
trellis which emulates the trellis in (a) in a totally uniform manner. 

states, where M > L. The partitioning suggested in [2] can 
be called MSB grouping, where states with the same L most 
significant bits are partitioned into the same ACS. However, 
issues such as scheduling and local memory implementation 
were not addressed. 

We found that the LSB scheduling (by their M - L least 
significant bits) allows a simple SPN implementation. Let 
N = 2 M ,  P = 2L;  from Theorem 2 in the previous paper, 
we know that the matrix permutation reduces to within-block 
permutations and a fixed hterconnection. For de Bruijn graphs, 
the within-block permutation has two special characteristics 
that can be exploited to simplify the local memory design. 
First, the permutations are shuffle permutations. In a shuffle 
permutation of size NIP = 2M-L,  the state i with binary 
address ~ M - L - I  . . . ilia will be permuted to ~ O ~ M - L - I  . il . 
Furthermore, the same d metrics are required in d consecutive 
time units. Hence, only one SPN is needed, and the d metrics 
can be obtained by tapping off at d adjacent pipeline registers. 
Selective latches (SL's) have to be used to latch in d new data 
every d cycles and retain the values for d - 1 cycles. 

Each shuffle permutation of size 2 M - L  can be implemented 
by a special-purpose SPN that consists of M - L - 1 serial 
shuffles of size 2M-L--2, .  . , 2 , 1  (see the Appendix). This 
efficient implementation has a significant impact on the fea- 
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sibility of our area-efficient architectures on the de Bruijn 

(1 /2) (N/P) .  If (Y = ( N / P )  - ,# E (1 /2) (N/P)  5 6 ,  then 
we have a constant factor of two slowdown! If (1/2)(N/P) > 
15, then the slowdown factor is 1 + (1/&)(1/2)(N/P).  In 
both cases, the factor of slowdown is much smaller than the 
factor of area saving. 

Let us use a 16-state trellis as an example, which is shown in 
Fig. l(a). A four-state trellis that emulates the 16-state trellis 
totally uniformly is shown in Fig. l(b). The S ,  X ,  and Y 
matrices of such a partitioning and scheduling of N = 16 and 
P = 4 are shown below. 

graph trellises. The latency of this SPN is /3 N 2n'-L-1 - - 
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An overall pipelined area-efficient architecture is shown in 
Fig. 2(a)-(c) for the 16-state trellis2 The timing diagram is 
in Fig. 3. It is a factor of two slower than the full parallel 
implementation, but the area saving is roughly a factor of 
three (not four considering all the overhead.) Based on the 
above analysis, we know that the area-time tradeoff will be 
increasingly favorable to the area-efficient architecture as N 
becomes larger. 

X =  

B. Matched-Spectral-Null Trellis Code 

In this section, we used a nonhomogeneous rate 8/10 MSN 
trellis code [4] [Fig. 4(a)] as an example, which is useful in 
partial response channels. Our architecture can be extended to 
MSN trellis codes with other rates. 

A trellis of P = 2 can be constructed [Fig. 4(b)] to emulate 
the original trellis. Note that each connection contains two 
parallel branches, and hence the degree of ACSl and ACS2 
is 4. The partitioning of states is done by edge grouping: each 
branch in the P = 2 trellis emulates a set of branches in 
the N = 6 trellis that have the same branch label. States 
0, 2, and 4 are partitioned to ACS1; states 1, 3, and 5 are 

0 1 2 3  
4 5 6 7  
4 5 6 7  
8 9 10 11 
8 9 10 11 
12 13 14 15 

'In this example, the branch metric computation is not discussed because 
it depends on the particular convolutional code. 

Y =  

IN 1 
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10 10 11 11 
4 4 5 5 '  
12 12 13 13 
6 6 7 7  
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Latch 
(SL) 

OUT 1 

OUT 2 

Fig. 2. (a) The area-efficient architecture of one pipelined ACS with local 
memory for the 16-state de Bruijn graph trellis. To support the with-block 
permutation, an SEU of size 1 (controlled by Cl) and two selective latches 
(SL) (controlled by C,) are used. The total latency is four, which is the same 
as the number of states sharing the ACS. The letters z, y, z (internal latch in 
the SEU), 1,  m. and R denote the content of the pipeline latches, respectively, 
and will be referred to in the timing diagram in Fig. 3. (b) The complete 
architecture which contains four copies of (a). The letters A-H indicate the 
feedback connections. Note that this is a fixed-interconnection network. 

partitioned to ACS2. We choose to put in three pipeline stages 
in the ACS's, one after the adder and one after each of the 
compare-selects. We need at least one extra pipeline stage 
because we need to bring out two metrics at a time. Therefore, 
we have one pipeline bubble because the number of pipeline 
stages is four while the number of states sharing one ACS 
is three. Consequently, two dummy states, 6 and 7, are put 
in. State 6 is partitioned to ACSl and state 7 is partitioned 
to ACS2. 

It can be seen that states 1 and 2 require the same set of 
path metrics (from states 0, 1, 2, and 3) so we schedule them 
in the same time unit. Likewise, states 3 and 4 are scheduled 
in the same time unit. States 0 and 7 are scheduled in the 
same time unit because state 7, being a dummy state, can 
take an arbitrary set of path metrics which is required by 
state 0. Likewise, states 5 and 6 are scheduled in the same 
time unit. The partitioning and scheduling are summarized by 
the S matrix below. 
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Y 10+bio ~ l O ~ b i o . 5 l l ~ b i i . s 1 1 * b i i . 7  

z 4 s  

ACS 2 P A: :  7 

m 6 6 7 7  

n 4 4 5 s  

c1 

c 2  

Fig. 3. The timing diagram of the area-efficient implementation in Fig. Z(a), 
(b). Each major cycle contains four minor cycles, and the contents of the 
pipeline registers at each minor cycle are shown. When C1 is HIGH, the 
contents in z and 1 are exchanged. When C2 is HIGH, the contents of 2 and 
I are latched into the selective latches (SL’s). The arrows indicate how the 
new path metrics are used in the next minor cycle. Their uniformity verifies 
the fixed interconnection. 

0 2 4 6  
. = ( 7  1 3 5 )  

7 1 3 5  
7 1 3 5  
7 1 3 5  

6 0 2 4 1  
0 2 4 6  
7 1 3 5  
1 3 5 7  
6 0 2 4  
0 2 4 6  
7 1 3 5  

X =  

\ 7 1 3 5  

1 3 5 7 /  
From the X and Y matrices above, we observe that: 1) the 
within-column permutations are the same for all four time 
units, thus allowing a fixed-interconnection realization; and 2) 
the within-row permutations are only circular shifts which can 
be implemented by tapping at different points in the pipeline 
registers. Therefore, neither an MIN nor an SPN is required 
in the area-efficient architecture. 

The detailed circuit block diagram of the area-efficient 
design is shown in Fig. 5. Note that the tapping points in 
ACSl and ACS2 are different. In ACS1, we tap off after the 
fourth and fifth pipeline registers (net A and C). In ACS2, 
we tap off after the third and fourth pipeline registers (net B 
and D). This offset, however, will cause the path metrics of 

(a) ( b) 

Fig. 4. (a) A six-state, nonhomogeneous trellis from a rate 8/10 
matched-spectral-null (MSN) trellis code. (b) A two-state, degree-4, 
homogeneous trellis which emulates the trellis in (a) (not in a totally uniform 
manner). Edge grouping is apparent by comparing (a) and (b). 

ACS 1 

ACS 2 

Compare/ 
Select B 

4 

1 i ‘  

Select m 
D B  

Fig. 5. The area-efficient implementation for the six-state MSN trellis code. 
The letters A-D indicate the feedback connections. The numerals 0-6 
indicate the branch metrics. C1 and Cz are used to turn off half of the ACS 
for states 0 and 5. 

the wrong frame to be accessed at the first and last time unit. 
Fortunately, because states 0 and 5 only need two out of the 
four input metrics, they can be scheduled at the first and last 
time unit, respectively, to avoid the problem. Two additional 
control signals (GI and Cz in Fig. 5) are used to turn off the 
effect of the path metrics of the wrong frame. 

If not for the time inefficiency due to the dummy states, the 
pipelining would have made up the speed loss from sharing 
ACS’s. Therefore, our 2-ACS design is only 33% slower than a 
state-parallel 6-ACS design. From six ACS’s to two pipelined 
ACS’s we save roughly 50% in area because two out of the 
six ACS’s are smaller and the pipeline registers contribute to 
a larger ACS area than that of a nonpipelined one. In addition, 
the wiring area is also reduced significantly. This is due to: 1) 
fewer interconnections between ACS’s (bandwidth efficiency), 
and 2) the branch metrics need to be routed to only one ACS 
(by virtue of edge grouping). Overall, our area-efficient design 
provides a very favorable area-speed tradeoff, which has been 
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verified by a chip implementation of the rate 8/10 MSN trellis 
code [7]. 

C. Ungerboeck Codes 

Coded modulation with multileveVphase signals, first pro- 
posed by Ungerboeck [8], has proven to be an effective 
technique in communications. The structure of Ungerboeck 
codes can be viewed as de Bruijn graphs with M-ary alpha- 
bets, and the branch labels are obtained by the set partitioning 
principle. Both characteristics are found to be very useful in 
the area-efficient architectures. 

In this section, we will use a 16-state Ungerboeck code for 
coded 8-PSK modulation as an example (see Fig. 6) [8]. Each 
state is degree-4. The 16 states are partitioned into two ACS’s 
by edge grouping: half of the states take 0, 2, 4, 6 as branch 
labels, and the other half takes 1, 3, 5 ,  7 as branch labels. The 
S, X ,  and Y matrices are shown below. 

0 1 2 3 8  9 1 0 1 1  
4 5 6 7 12 13 14 15 
0 1 2 3  8 9 1 0 1 1  
0 1 2 3 8  9 1 0 1 1  
0 1 2 3 8  9 1 0 1 1  
0 1 2 3 8  9 1 0 1 1  
4 5 6 7 12 13 14 15 
4 5 6 7 12 13 14 15 
4 5 6 7 12 13 14 15 
4 5 6 7 12 13 14 15 
0 8 4 1 2 1 0  2 14 6 
4 1 2 0  8 1 4 6 1 0 2  

0 12 4 2 10 6 14 

s =  ( 

Y =  

ACSl is to produce updated path metrics for states 0, 1, 2, 
and 3 in the first four time units. All of them require the same 
set of path metrics (from states 0, 4, 8, and 12). In matrix Y ,  
their order is deliberately permuted to match the order of the 
branch metrics. Therefore, two four-input MIN’s are required 
to perform within-column permutations. 

The block diagram of the area-efficient design is shown in 
Fig. 7. The four-input ACS is the same as the one used in the 
MSN trellis code, which has three pipeline stages. The required 
SPN’s degenerate to just two SEU’s of size 2, which are used 
to reorder {0,1,2,3,8,9,10,11} into {0 ,1 ,8 ,9 ,2 ,3 ,10 ,11}  
and {4,5,6,7,12,13,14,15} into {4,5,12,13,6,7,14,15}. 
Like the de Bruijn graphs in section A, eight selective latches 
(SL’s) are used to latch the path metrics at the one out of four 
time units and retain the values at the other three time units. 
The eight path metrics are divided into two groups, and each 
is sent to a four-input MIN. 

The total number of pipeline stages is 11, with three in the 
four-input ACS, three in the SEU, three in latches, one in the 
SL, and one in the four-input MIN. With eight states sharing 
one ACS, this is not time-efficient. Specifically, the speed is 

0 4 2 6  

1 5 3 7  

4 0 6 2  

5 1 7 3  

2 6 0 4  

3 7 1 5  

6 2 4 0  

7 3 5 1  

4 0 6 2  

5 1 7 3  

0 4 2 6  

1 5 3 7  

6 2 4 0  

7 3 5 1  

2 6 0 4  

3 7 1 5  

Fig. 6. The trellis diagram of a 16-state Ungerboeck code for 8-PSK [8]. 

Fig. 7. The area-efficient architecture for the 16-state Ungerboeck code. The 
selective latch (SL) is illustrated as part of Fig. 2 (a). The switch unit (SU) 
is illustrated in Fig. 4 in the accompanying (Part I) paper. The letters A - H  
indicate the feedback connections. The numerals 0-7 indicate the branch 
metrics. c1 controls the two SEU’s, Cz controls the eight SL’s, C3-c~ 
control the two four-input MIN’s. 

( a  + P)/a = 11/3 times slower than that of a state-parallel 
design. The area saving is estimated to be a factor of eight. A 
good part of the area saving comes from the interconnection 
of the branch metrics, which can now be sent to only one 
ACS, as opposed to being switched in a complicated way in 
the state-parallel design. Our area-efficient architecture again 
provides a favorable area-time tradeoff in this example. 

In the above table, we summarize the results of the three 
design examples. Specifically, the ACS row shows the ratios 
of the number of ACS’s used in the state-parallel (SP) and 
area-efficient (AE) designs. The Area row shows the ratio of 
the area estimates of SP and AE designs, which takes into 
account: 1) the ACS number, 2) the routing area, and 3) the 
area increase by the introduction of pipeline registers in ACS’s. 
The Time row shows the ratio of the cycle time estimates of SP 
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de Bruijn MSN Ungerboeck 
(SP):(AE) (SP):(AE) (SP):(AE) 

ACS 16 : 4 6 : 2  16 : 2 
Area 3 :  1 2 :  1 8 :  1 
Time 1 : 2  1 : 1.33 1 : 3.67 

and AE designs. It can be seen that in all three examples, the 
area reduction more than compensates for the speed penalty. 

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 5 ,  MAY 1993 

required 
system 
throughput 

Area 1 [old technology ] 

area-efficient i 
technique applicable 
applicable 

: technolobg 

technique area-efficient applicable /-speed i technique applicable 

; statepar;lllel / i implementation 
[new technology] i &s a hnctlon of 

: technolobg 

111. OTHER APPLICATIONS 

Area-efficient architectures are very suitable for codes with 
a very large number of states. One such project has been 
undertaken at the Jet Propulsion Laboratory for decoding the 
data from the Galileo spacecraft [l], which involves a low-rate 
convolutional code with 214 states. A state-parallel implemen- 
tation has been planned which employs a modular architecture 
such that the entire Viterbi decoder can be constructed by a few 
types of different components. From section A, we feel that 
our area-efficient architecture can be applied to greatly reduce 
the hardware complexity without much degradation in speed. 

Continuous speech recognition with a hidden Markov model 
(HMM) has been a hot research area recently. It involves 
implementing the Viterbi algorithm with a large number of 
states in the trellis (on the order of thousands) at a relatively 
lower speed (on the order of thousands of samples per second) 
[6]. Systolic architectures [3] have also been proposed for both 
the training and recognition phases of HMM. However, they 
are less effective when the transition in the trellis is sparse (Le., 
each state makes a transition to a small portion of all states), 
which is usually the case in continuous speech recognition. 

Our area-efficient architecture matches the continuous 
speech recognition problem well by providing a means to trade 
speed for area saving. The HMM at the word level is more 
regular such that some heuristics may be used to achieve an 
efficient architectural mapping. The HMM at the grammar 
level, however, is less regular, and hence a random matrix 
permutation may have to be used. 

Another application of the area-efficient architectures is the 
design of a programmable Viterbi decoder. It provides a uni- 
versal hardware platform, and allows the implementation of ar- 
bitrary codes to be done by software. A programmable Viterbi 
decoder is possible because of the extensive programmability 
inherent in the SPN and MIN. Once the general-purpose area- 
efficient architecture is implemented for a particular { N ,  P, d } ,  
changing the trellis structure is simply done by changing the 
matrix permutation. Any trellis with.smaller N can also be 
realized. In this case, the long-jump connection in the SPN 
provides an easy way for the smaller trellis to avoid the 
large latency built in for the large trellis. It is not possible, 
however, to map trellises with larger N or d to an architecture 
designed for a smaller trellis. Time-varying codes can also 
be implemented by the programmable Viterbi decoder. In this 
case, an additional area saving is obtained because we do not 
have to design separate special-purpose hardware. 

Time 

Fig. 8 With the improvement of technology, area-efficient techniques will 
become more and more useful. 

IV. CONCLUSION 

In this paper, we applied the area-efficient techniques devel- 
oped in the previous (Part I) paper to three practical examples 
-convolutional codes, matched-spectral-null (MSN) trellis 
codes, and Ungerboeck codes-and showed favorable results. 
We also discussed the application of our area-efficient tech- 
niques to codes with very large numbers of states, codes with 
time-varying trellises, and a programmable Viterbi decoder. 

The authors feel that the area-efficient techniques will be- 
come more useful as the technology improves. This argument 
is explained by in Fig. 8, in which a line is used to represent 
the state-parallel implementation as a function of technology. 
For a given required system throughput which corresponds 
to a vertical line in Fig. 8, it can be seen that the high- 
speed techniques are required for speed improvement in old 
technologies, while the area-efficient techniques are required 
for area reduction in new technologies. One such example is 
the use of a very-high-speed technology, such as GaAs, where 
area is at a premium and the circuit speed is expected to be 
much higher than the desired throughput rate. 

APPENDIX 
SHUFFLE PERMUTATION BY SPN 

In this Appendix, we show a recursive algorithm for shuffle 
permutation that is suitable for efficient SPN implementation. 
In a shuffle permutation of size 2M, the state i with bi- 
nary address i ~ - l  . . + ili0 will be permuted to i ~ i ~ - l  . . . i l  . 
The following recursive algorithm can easily be proved by 
induction. 

Algorithm: To shuffle 2M points, do 
1) If M = 1, stop. 
2) For j = 2h4-2 + 1 to 2M-1, exchange point j with point 

j + 2M-2. There will be 2M-2 exchanges altogether. This can 
be done by an SEU of size 2M-2. 

3) Break the 2M points at the center to form two 2'-1 
points. Recursively call this algorithm to shuffle each group. 

0 
We will use a 16-point example (see Fig. 9) to illustrate the 

operation. In the first step, four exchanges occur (4 with 8, 
5 with 9, 6 with 10, and 7 with 11). Then the 16 points are 
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15 7 14 6 13 5 12 4 11 3 10 2 9 1 8 0 desired output 

15 14 13 12 1 1  10 9 8 7 6 5 4 3 2 1 0 input 

15 14 13 12 7 6 5 4 111 10 9 8 3 2 1 0 after 1st SEU 

15 14-7 6 ~ 13 12 5 4 ~ 1 1  10 3 2 ~ 9 8 2  0 after 2nd SEU 

15 7 ~ 1L 6 j 13 5 12 4 I l l  3 110 2 9 1 ~ 8 0 after 3rd SEU 

- 
w w 

W W 

Fig. 9. A 16-point shuffle permutation example in the Appendix. 

divided (by the dotted line) into two eight-points groups, each 
of which undertakes two exchanges in the second step. Note 
that the two groups can share the same SEU of size 2 because 
they are shifted through the SEU in sequence. Therefore, the 
16-point shuffle permutation can be implemented by an SPN 
with three SEU’s with sizes 4, 2, and 1. In general, to shuffle 
2M points, a special-purpose SPN with M - 1 SEU’s of sizes 
M/4,. . . , 4 , 2 , 1  can be used whose total latency is roughly 
M/2. 
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