
.

802 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 5, MAY 1993

Area-Efficient Architectures for the Viterbi
Algorithm-Part 11: Applications

C. Bernard Shung, Horng-Dar Lin, Robert Cypher, Paul H. Siegel, and Hemant K. Thapar

Abstract-In the previous paper, we established the theoretical
foundations of a new class of area-efficient architectures for the
Viterbi algorithm. In this paper, we will show area-efficient ar-
chitectures for practical codes to illustrate the design procedures
and demonstrate the favorable area-time tradeoff results. Three
examples from convolutional codes, matched-spectral-null (MSN)
trellis codes, and Ungerboeck codes will be presented. We will
also discuss the application of our area-efficient techniques to
codes with a very large numbers of states, codes with time-varying
trellises, and a programmable Viterbi decoder.

I. INTRODUCTION
N the previous (Part I) paper, we established the theoretical I foundations of a new class of area-efficient architectures for

the Viterbi algorithm. In this paper, we will show area-efficient
architectures for three practical examples to illustrate the
design procedures and demonstrate the favorable area-time
tradeoff results. The first example is a 16-state de Bruijn graph
trellis in convolutional codes. The second example is a six-
state matched-spectral-null (MSN) trellis code used in partial
response channels. The third example is a 16-state Ungerboeck
code used in the coded modulation. We will also discuss the
application of our area-efficient techniques to codes with a very
large numbers of states, codes with time-varying trellises, and
a programmable Viterbi decoder.

11. APPLICATION EXAMPLES

A. de Bruijn Graphs

Trellises with the structure of a de Bruijn graph often occur

that a de Bruijn graph (they called it a four-pin shufle) of 2M
states can be emulated by a smaller de Bruijn graph of 2L

Paper approved by the Editor for VLSI in Communications of the IEEE
Communications Society.

Manuscript received August 29, 1990; revised April 14, 1991. This paper
was presented in part at the IEEE Global Telecommunications Conference,
San Diego, CA, December 1990.

C. B. Shung is with the Department of Electronics Engineering, National
Chiao-Tung University, Hsinchu, Taiwan 30039.

H.-D. Lin is with AT&T Bell Laboratories, Holmdel, NJ 07733.
R. Cypher is with the Almaden Research Center, IBM Corporation, San

P.H. Siegel is with the Signal Processing and Coding Division, IBM

H. K. Thapar is with the Storage Systems Department, Products Division,

IEEE Log Number 9209480.
'Strictly speaking, a de Bruijn graph corresponds to the trellis of a rate

l /N feedforward convolutional code. We are considering de Bruijn graphs
with modified branch labels.

I in convolutional codes [5].l Fishbum and Finkel [2] found

.
Jose, CA 95120.

Corporation, San Jose, CA 95120.

IBM Corporation, San Jose, CA 95120. I

(a) (b)

Fig. 1. (a) A 16-state de Bruijn graph trellis. (,b) A four-state de Bruijn graph
trellis which emulates the trellis in (a) in a totally uniform manner.

states, where M > L. The partitioning suggested in [2] can
be called MSB grouping, where states with the same L most
significant bits are partitioned into the same ACS. However,
issues such as scheduling and local memory implementation
were not addressed.

We found that the LSB scheduling (by their M - L least
significant bits) allows a simple SPN implementation. Let
N = 2 M , P = 2L; from Theorem 2 in the previous paper,
we know that the matrix permutation reduces to within-block
permutations and a fixed hterconnection. For de Bruijn graphs,
the within-block permutation has two special characteristics
that can be exploited to simplify the local memory design.
First, the permutations are shuffle permutations. In a shuffle
permutation of size NIP = 2M-L, the state i with binary
address ~ M - L - I . . . ilia will be permuted to ~ O ~ M - L - I . il .
Furthermore, the same d metrics are required in d consecutive
time units. Hence, only one SPN is needed, and the d metrics
can be obtained by tapping off at d adjacent pipeline registers.
Selective latches (SL's) have to be used to latch in d new data
every d cycles and retain the values for d - 1 cycles.

Each shuffle permutation of size 2 M - L can be implemented
by a special-purpose SPN that consists of M - L - 1 serial
shuffles of size 2M-L--2, . . , 2 , 1 (see the Appendix). This
efficient implementation has a significant impact on the fea-

0090-6778/93$03.00 0 1993 IEEE

SHUNG et al.: AREA-EFFICIENT ARCHITECTURES FOR VlTERBl ALGORITHM-PART 11 803

A -
Figure 21a)

B -

c -

D -
Elgure 2 l a)

E -

F -
F i g u r e a l a)

sibility of our area-efficient architectures on the de Bruijn

(1 /2) (N/P) . If (Y = (N / P) - ,# E (1 /2) (N/P) 5 6 , then
we have a constant factor of two slowdown! If (1/2)(N/P) >
15, then the slowdown factor is 1 + (1/&)(1/2)(N/P). In
both cases, the factor of slowdown is much smaller than the
factor of area saving.

Let us use a 16-state trellis as an example, which is shown in
Fig. l(a). A four-state trellis that emulates the 16-state trellis
totally uniformly is shown in Fig. l(b). The S , X , and Y
matrices of such a partitioning and scheduling of N = 16 and
P = 4 are shown below.

graph trellises. The latency of this SPN is /3 N 2n'-L-1 - -

- c

- A

- - G

-

- D

- - B

, I

1 2

9 10 11
12 13 14 15

G -

H -
Flqure 2 (a)

- H

- F

An overall pipelined area-efficient architecture is shown in
Fig. 2(a)-(c) for the 16-state trellis2 The timing diagram is
in Fig. 3. It is a factor of two slower than the full parallel
implementation, but the area saving is roughly a factor of
three (not four considering all the overhead.) Based on the
above analysis, we know that the area-time tradeoff will be
increasingly favorable to the area-efficient architecture as N
becomes larger.

X =

B. Matched-Spectral-Null Trellis Code

In this section, we used a nonhomogeneous rate 8/10 MSN
trellis code [4] [Fig. 4(a)] as an example, which is useful in
partial response channels. Our architecture can be extended to
MSN trellis codes with other rates.

A trellis of P = 2 can be constructed [Fig. 4(b)] to emulate
the original trellis. Note that each connection contains two
parallel branches, and hence the degree of ACSl and ACS2
is 4. The partitioning of states is done by edge grouping: each
branch in the P = 2 trellis emulates a set of branches in
the N = 6 trellis that have the same branch label. States
0, 2, and 4 are partitioned to ACS1; states 1, 3, and 5 are

0 1 2 3
4 5 6 7
4 5 6 7
8 9 10 11
8 9 10 11
12 13 14 15

'In this example, the branch metric computation is not discussed because
it depends on the particular convolutional code.

Y =

IN 1

IN 2

8 8 9 9
2 2 3 3
10 10 11 11
4 4 5 5 '
12 12 13 13
6 6 7 7

Selective
Latch
(SL)

OUT 1

OUT 2

Fig. 2. (a) The area-efficient architecture of one pipelined ACS with local
memory for the 16-state de Bruijn graph trellis. To support the with-block
permutation, an SEU of size 1 (controlled by Cl) and two selective latches
(SL) (controlled by C,) are used. The total latency is four, which is the same
as the number of states sharing the ACS. The letters z, y, z (internal latch in
the SEU), 1, m. and R denote the content of the pipeline latches, respectively,
and will be referred to in the timing diagram in Fig. 3. (b) The complete
architecture which contains four copies of (a). The letters A-H indicate the
feedback connections. Note that this is a fixed-interconnection network.

partitioned to ACS2. We choose to put in three pipeline stages
in the ACS's, one after the adder and one after each of the
compare-selects. We need at least one extra pipeline stage
because we need to bring out two metrics at a time. Therefore,
we have one pipeline bubble because the number of pipeline
stages is four while the number of states sharing one ACS
is three. Consequently, two dummy states, 6 and 7, are put
in. State 6 is partitioned to ACSl and state 7 is partitioned
to ACS2.

It can be seen that states 1 and 2 require the same set of
path metrics (from states 0, 1, 2, and 3) so we schedule them
in the same time unit. Likewise, states 3 and 4 are scheduled
in the same time unit. States 0 and 7 are scheduled in the
same time unit because state 7, being a dummy state, can
take an arbitrary set of path metrics which is required by
state 0. Likewise, states 5 and 6 are scheduled in the same
time unit. The partitioning and scheduling are summarized by
the S matrix below.

804 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 5, MAY 1993

Y 10+bio ~ l O ~ b i o . 5 l l ~ b i i . s 1 1 * b i i . 7

z 4 s

ACS 2 P A: : 7

m 6 6 7 7

n 4 4 5 s

c1

c 2

Fig. 3. The timing diagram of the area-efficient implementation in Fig. Z(a),
(b). Each major cycle contains four minor cycles, and the contents of the
pipeline registers at each minor cycle are shown. When C1 is HIGH, the
contents in z and 1 are exchanged. When C2 is HIGH, the contents of 2 and
I are latched into the selective latches (SL’s). The arrows indicate how the
new path metrics are used in the next minor cycle. Their uniformity verifies
the fixed interconnection.

0 2 4 6
. = (7 1 3 5)

7 1 3 5
7 1 3 5
7 1 3 5

6 0 2 4 1
0 2 4 6
7 1 3 5
1 3 5 7
6 0 2 4
0 2 4 6
7 1 3 5

X =

\ 7 1 3 5

1 3 5 7 /
From the X and Y matrices above, we observe that: 1) the
within-column permutations are the same for all four time
units, thus allowing a fixed-interconnection realization; and 2)
the within-row permutations are only circular shifts which can
be implemented by tapping at different points in the pipeline
registers. Therefore, neither an MIN nor an SPN is required
in the area-efficient architecture.

The detailed circuit block diagram of the area-efficient
design is shown in Fig. 5. Note that the tapping points in
ACSl and ACS2 are different. In ACS1, we tap off after the
fourth and fifth pipeline registers (net A and C). In ACS2,
we tap off after the third and fourth pipeline registers (net B
and D). This offset, however, will cause the path metrics of

(a) (b)

Fig. 4. (a) A six-state, nonhomogeneous trellis from a rate 8/10
matched-spectral-null (MSN) trellis code. (b) A two-state, degree-4,
homogeneous trellis which emulates the trellis in (a) (not in a totally uniform
manner). Edge grouping is apparent by comparing (a) and (b).

ACS 1

ACS 2

Compare/
Select B

4

1 i ‘

Select m
D B

Fig. 5. The area-efficient implementation for the six-state MSN trellis code.
The letters A-D indicate the feedback connections. The numerals 0-6
indicate the branch metrics. C1 and Cz are used to turn off half of the ACS
for states 0 and 5.

the wrong frame to be accessed at the first and last time unit.
Fortunately, because states 0 and 5 only need two out of the
four input metrics, they can be scheduled at the first and last
time unit, respectively, to avoid the problem. Two additional
control signals (GI and Cz in Fig. 5) are used to turn off the
effect of the path metrics of the wrong frame.

If not for the time inefficiency due to the dummy states, the
pipelining would have made up the speed loss from sharing
ACS’s. Therefore, our 2-ACS design is only 33% slower than a
state-parallel 6-ACS design. From six ACS’s to two pipelined
ACS’s we save roughly 50% in area because two out of the
six ACS’s are smaller and the pipeline registers contribute to
a larger ACS area than that of a nonpipelined one. In addition,
the wiring area is also reduced significantly. This is due to: 1)
fewer interconnections between ACS’s (bandwidth efficiency),
and 2) the branch metrics need to be routed to only one ACS
(by virtue of edge grouping). Overall, our area-efficient design
provides a very favorable area-speed tradeoff, which has been

SHUNG ef al.: AREA-EFFICIENT ARCHITECTURES FOR VITERBI ALGORITHM-PART 11 805

verified by a chip implementation of the rate 8/10 MSN trellis
code [7].

C. Ungerboeck Codes

Coded modulation with multileveVphase signals, first pro-
posed by Ungerboeck [8], has proven to be an effective
technique in communications. The structure of Ungerboeck
codes can be viewed as de Bruijn graphs with M-ary alpha-
bets, and the branch labels are obtained by the set partitioning
principle. Both characteristics are found to be very useful in
the area-efficient architectures.

In this section, we will use a 16-state Ungerboeck code for
coded 8-PSK modulation as an example (see Fig. 6) [8]. Each
state is degree-4. The 16 states are partitioned into two ACS’s
by edge grouping: half of the states take 0, 2, 4, 6 as branch
labels, and the other half takes 1, 3, 5 , 7 as branch labels. The
S, X , and Y matrices are shown below.

0 1 2 3 8 9 1 0 1 1
4 5 6 7 12 13 14 15
0 1 2 3 8 9 1 0 1 1
0 1 2 3 8 9 1 0 1 1
0 1 2 3 8 9 1 0 1 1
0 1 2 3 8 9 1 0 1 1
4 5 6 7 12 13 14 15
4 5 6 7 12 13 14 15
4 5 6 7 12 13 14 15
4 5 6 7 12 13 14 15
0 8 4 1 2 1 0 2 14 6
4 1 2 0 8 1 4 6 1 0 2

0 12 4 2 10 6 14

s = (

Y =

ACSl is to produce updated path metrics for states 0, 1, 2,
and 3 in the first four time units. All of them require the same
set of path metrics (from states 0, 4, 8, and 12). In matrix Y ,
their order is deliberately permuted to match the order of the
branch metrics. Therefore, two four-input MIN’s are required
to perform within-column permutations.

The block diagram of the area-efficient design is shown in
Fig. 7. The four-input ACS is the same as the one used in the
MSN trellis code, which has three pipeline stages. The required
SPN’s degenerate to just two SEU’s of size 2, which are used
to reorder {0,1,2,3,8,9,10,11} into {0 ,1 ,8 ,9 ,2 ,3 ,10 ,11}
and {4,5,6,7,12,13,14,15} into {4,5,12,13,6,7,14,15}.
Like the de Bruijn graphs in section A, eight selective latches
(SL’s) are used to latch the path metrics at the one out of four
time units and retain the values at the other three time units.
The eight path metrics are divided into two groups, and each
is sent to a four-input MIN.

The total number of pipeline stages is 11, with three in the
four-input ACS, three in the SEU, three in latches, one in the
SL, and one in the four-input MIN. With eight states sharing
one ACS, this is not time-efficient. Specifically, the speed is

0 4 2 6

1 5 3 7

4 0 6 2

5 1 7 3

2 6 0 4

3 7 1 5

6 2 4 0

7 3 5 1

4 0 6 2

5 1 7 3

0 4 2 6

1 5 3 7

6 2 4 0

7 3 5 1

2 6 0 4

3 7 1 5

Fig. 6. The trellis diagram of a 16-state Ungerboeck code for 8-PSK [8].

Fig. 7. The area-efficient architecture for the 16-state Ungerboeck code. The
selective latch (SL) is illustrated as part of Fig. 2 (a). The switch unit (SU)
is illustrated in Fig. 4 in the accompanying (Part I) paper. The letters A - H
indicate the feedback connections. The numerals 0-7 indicate the branch
metrics. c1 controls the two SEU’s, Cz controls the eight SL’s, C3-c~
control the two four-input MIN’s.

(a + P)/a = 11/3 times slower than that of a state-parallel
design. The area saving is estimated to be a factor of eight. A
good part of the area saving comes from the interconnection
of the branch metrics, which can now be sent to only one
ACS, as opposed to being switched in a complicated way in
the state-parallel design. Our area-efficient architecture again
provides a favorable area-time tradeoff in this example.

In the above table, we summarize the results of the three
design examples. Specifically, the ACS row shows the ratios
of the number of ACS’s used in the state-parallel (SP) and
area-efficient (AE) designs. The Area row shows the ratio of
the area estimates of SP and AE designs, which takes into
account: 1) the ACS number, 2) the routing area, and 3) the
area increase by the introduction of pipeline registers in ACS’s.
The Time row shows the ratio of the cycle time estimates of SP

806

de Bruijn MSN Ungerboeck
(SP):(AE) (SP):(AE) (SP):(AE)

ACS 16 : 4 6 : 2 16 : 2
Area 3 : 1 2 : 1 8 : 1
Time 1 : 2 1 : 1.33 1 : 3.67

and AE designs. It can be seen that in all three examples, the
area reduction more than compensates for the speed penalty.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 5 , MAY 1993

required
system
throughput

Area 1 [old technology]

area-efficient i
technique applicable
applicable

: technolobg

technique area-efficient applicable /-speed i technique applicable

; statepar;lllel / i implementation
[new technology] i &s a hnctlon of

: technolobg

111. OTHER APPLICATIONS

Area-efficient architectures are very suitable for codes with
a very large number of states. One such project has been
undertaken at the Jet Propulsion Laboratory for decoding the
data from the Galileo spacecraft [l], which involves a low-rate
convolutional code with 214 states. A state-parallel implemen-
tation has been planned which employs a modular architecture
such that the entire Viterbi decoder can be constructed by a few
types of different components. From section A, we feel that
our area-efficient architecture can be applied to greatly reduce
the hardware complexity without much degradation in speed.

Continuous speech recognition with a hidden Markov model
(HMM) has been a hot research area recently. It involves
implementing the Viterbi algorithm with a large number of
states in the trellis (on the order of thousands) at a relatively
lower speed (on the order of thousands of samples per second)
[6]. Systolic architectures [3] have also been proposed for both
the training and recognition phases of HMM. However, they
are less effective when the transition in the trellis is sparse (Le.,
each state makes a transition to a small portion of all states),
which is usually the case in continuous speech recognition.

Our area-efficient architecture matches the continuous
speech recognition problem well by providing a means to trade
speed for area saving. The HMM at the word level is more
regular such that some heuristics may be used to achieve an
efficient architectural mapping. The HMM at the grammar
level, however, is less regular, and hence a random matrix
permutation may have to be used.

Another application of the area-efficient architectures is the
design of a programmable Viterbi decoder. It provides a uni-
versal hardware platform, and allows the implementation of ar-
bitrary codes to be done by software. A programmable Viterbi
decoder is possible because of the extensive programmability
inherent in the SPN and MIN. Once the general-purpose area-
efficient architecture is implemented for a particular { N , P, d } ,
changing the trellis structure is simply done by changing the
matrix permutation. Any trellis with.smaller N can also be
realized. In this case, the long-jump connection in the SPN
provides an easy way for the smaller trellis to avoid the
large latency built in for the large trellis. It is not possible,
however, to map trellises with larger N or d to an architecture
designed for a smaller trellis. Time-varying codes can also
be implemented by the programmable Viterbi decoder. In this
case, an additional area saving is obtained because we do not
have to design separate special-purpose hardware.

Time

Fig. 8 With the improvement of technology, area-efficient techniques will
become more and more useful.

IV. CONCLUSION

In this paper, we applied the area-efficient techniques devel-
oped in the previous (Part I) paper to three practical examples
-convolutional codes, matched-spectral-null (MSN) trellis
codes, and Ungerboeck codes-and showed favorable results.
We also discussed the application of our area-efficient tech-
niques to codes with very large numbers of states, codes with
time-varying trellises, and a programmable Viterbi decoder.

The authors feel that the area-efficient techniques will be-
come more useful as the technology improves. This argument
is explained by in Fig. 8, in which a line is used to represent
the state-parallel implementation as a function of technology.
For a given required system throughput which corresponds
to a vertical line in Fig. 8, it can be seen that the high-
speed techniques are required for speed improvement in old
technologies, while the area-efficient techniques are required
for area reduction in new technologies. One such example is
the use of a very-high-speed technology, such as GaAs, where
area is at a premium and the circuit speed is expected to be
much higher than the desired throughput rate.

APPENDIX
SHUFFLE PERMUTATION BY SPN

In this Appendix, we show a recursive algorithm for shuffle
permutation that is suitable for efficient SPN implementation.
In a shuffle permutation of size 2M, the state i with bi-
nary address i ~ - l . . + ili0 will be permuted to i ~ i ~ - l . . . i l .
The following recursive algorithm can easily be proved by
induction.

Algorithm: To shuffle 2M points, do
1) If M = 1, stop.
2) For j = 2h4-2 + 1 to 2M-1, exchange point j with point

j + 2M-2. There will be 2M-2 exchanges altogether. This can
be done by an SEU of size 2M-2.

3) Break the 2M points at the center to form two 2'-1
points. Recursively call this algorithm to shuffle each group.

0
We will use a 16-point example (see Fig. 9) to illustrate the

operation. In the first step, four exchanges occur (4 with 8,
5 with 9, 6 with 10, and 7 with 11). Then the 16 points are

SHUNG et al.: AREA-EFFICIENT ARCHITECTURES FOR VITERBI ALGORITHM-PART 11 807

15 7 14 6 13 5 12 4 11 3 10 2 9 1 8 0 desired output

15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0 input

15 14 13 12 7 6 5 4 111 10 9 8 3 2 1 0 after 1st SEU

15 14-7 6 ~ 13 12 5 4 ~ 1 1 10 3 2 ~ 9 8 2 0 after 2nd SEU

15 7 ~ 1L 6 j 13 5 12 4 I l l 3 110 2 9 1 ~ 8 0 after 3rd SEU

-
w w

W W

Fig. 9. A 16-point shuffle permutation example in the Appendix.

divided (by the dotted line) into two eight-points groups, each
of which undertakes two exchanges in the second step. Note
that the two groups can share the same SEU of size 2 because
they are shifted through the SEU in sequence. Therefore, the
16-point shuffle permutation can be implemented by an SPN
with three SEU’s with sizes 4, 2, and 1. In general, to shuffle
2M points, a special-purpose SPN with M - 1 SEU’s of sizes
M/4,. . . , 4 , 2 , 1 can be used whose total latency is roughly
M/2.

REFERENCES

0. Collins, S. Dolinar, R. McEliece, and R. Pollara, “A VLSI decompo-
sition of the DeBruijn graph,” Tech. Rep. TDA Progress Rep. 42-100,
Jet Propulsion Lab., Feb. 1990.
J. P. Fishburn and R. A. Finkel, “Quotient networks,” IEEE Trans. Com-
put., vol. C-31, pp. 288-295, Apr. 1982.

J. Hwang, J. Vlontzos, and S. Kung, “A systolic neural network archi-
tecture for hidden Markov models, “ IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1967-1979, Dec. 1989.
R. Karabed and P.H. Siegel, “Matched spectral null trellis codes for
partial response channels, Parts I and 11,” in Proc. 1988 Inf. Symp. Inform.
Theory, Kobe, Japan, June 1988.
S. Lin and D. Costello, Jr., Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
J. Rabaey, T. Stoelzle, D. Chen, S. Narayanaswamy, R. Brodersen,
H. Murveit, and A. Santos, “A large vocabulary real time continuous
speech recognition system,” in R. Brodersen and H. Moscovitz, Ed., VLSI
Signal Processing, IIZ. New York: IEEE Press, 1988.
C. B. Shung, P. H. Siegel, H. K. Thapar, and R. Karabed, “Implementation
issues for the design of a rate 8/10 trellis code chip for partial response
channels,” in Proc. 3rd Workshop ECC, San Jose, CA, Sept. 1989,

G. Ungerboeck, “Channel coding with multilevel/phase signals,” ZEEE
Trans. Inform. Theory, vol. IT-28, pp. 55-67, Ian. 1982.

pp. 213-225.

C. Bernard Shung, for a photograph and biography, see the April 1993 issue
of this Transactions, p. 643.
Horng-Dar Lin, for a photograph and biography, see the April 1993 issue
of this Transactions, p. 643.
Robert Cypher, for a photograph and biography, see the April 1993 issue
of this Transactions, p. 644.
Paul H. Siegel, for a photograph and biography, see the April 1993 issue of
this Transactions, p. 644.
Hemant K. Thapar, for a photograph and biography, see the April 1993
issue of this Transactions, p. 644.

