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On Codes that Avoid Specified Differences

Bruce E. Moision, Member, IEEE,
Alon Orlitsky, Senior Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—Certain magnetic recording applications call for a large
number of sequences whose differences do not include certain disallowed
binary patterns. We show that the number of such sequences increases
exponentially with their length and that the growth rate, or capacity, is
the logarithm of the joint spectral radius of an appropriately defined
set of matrices. We derive a new algorithm for determining the joint
spectral radius of sets of nonnegative matrices and combine it with
existing algorithms to determine the capacity of several sets of disallowed
differences that arise in practice.

Index Terms—Capacity, constrained coding, joint spectral radius, mag-
netic recording.

I. INTRODUCTION

The error probability of many magnetic-recording systems may be
characterized in terms of the differences between the sequences that
may be recorded [1]–[3]. In fact, the bit-error rate (BER) is often dom-
inated by a small set of potential difference patterns. Recently, binary
codes have been proposed which exploit this fact [4]–[9]. The codes
are designed to avoid the most problematic difference patterns by con-
straining the set of allowed recorded sequences and have been shown
to improve system performance.

In this correspondence, we study the largest number of sequences
whose differences exclude a given set of disallowed patterns. We show
that the number of such sequences increases exponentially with their
length and that the growth rate, or capacity, is the logarithm of the joint
spectral radius of an appropriately defined set of matrices. We derive
new algorithms for determining the joint spectral radius of sets of non-
negative matrices and combine them with existing algorithms to deter-
mine the capacity of several sets of disallowed differences that arise in
practice.

The correspondence is organized as follows. In the next section, we
motivate the problem by summarizing known results showing that the
error probability in models of magnetic recording systems is deter-
mined by the differences between recorded sequences. In Section III,
we formally describe the resulting combinatorial problem, introduce
the notation used, and present some simple examples. Section IV con-
tains the main result of the correspondence, deriving the connection to
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Fig. 1. Communications channel model.

the joint spectral radius. In Section V, we describe some known algo-
rithms for determining the spectral radius, and derive a new algorithm.
Finally, in Section VI, we determine the capacities of some simple sets
of disallowed patterns.

II. M OTIVATION

Consider the binary communications channel in Fig. 1 where a se-
quencea = (. . . ; a0; a1; a2; . . .) over the binary alphabetf+1;�1g
passes through a linear channel with impulse responseh(t) andn(t) is
additive white Gaussian noise. The received signal is given by

r(t) =
k

akh(t� k) + n(t):

Forney [10] showed that forh(t) of finite duration, the receiver
illustrated in Fig. 1 consisting of a whitened matched filterw(t), a
bit-rate sampler, and a minimum Euclidean distance estimate given by
the Viterbi algorithm yields a maximum-likelihood (ML) estimate for
the transmitted sequencea.

However, the complexity of implementing the Viterbi algorithm for
the ML estimate grows exponentially with the bit-period duration of the
channel pulse response. Hence, suboptimal partial-response schemes
are often implemented in practice. For example, in hard-disk-drive
magnetic recording channels, partial-response equalization and
detection using the Viterbi algorithm is currently the accepted mode
of operation, e.g., [11].

In a partial-response scheme, the receiving filterw(t) is chosen such
that the signal at the input to the Viterbi detector in the absence of noise
approximatesXa, whereX is the Toeplitz matrix corresponding to a
finite target responsex. The Viterbi algorithm is then used to obtain the
sequenceXâ closest in Euclidean distance to the sequence received at
the input to the Viterbi detector.

Let thedifference sequencee = (â � a)=2 denote the difference
between the decoded and transmitted sequences. Theeffective distance
betweena andâ is

de�(e)
def
=

(Xe)T (Xe)

((Xe)TR(Xe))1=2

whereR is the autocorrelation matrix of the noise at the input to the
Viterbi detector and the superscriptT denotes vector transposition.

At high signal-to-noise ratios (SNRs), the probability of a bit error
for this detector is well approximated, e.g., [12], by

Pr(bit error) �
e

P (e)wgt(e)Q
de�(e)

2
(1)

wherewgt(e) is the number of�1s in e, and

Q(x) =
1p
2�

1

x

e�t =2 dt

is theerror function.
The sum in (1) is largely determined by a small set of dominant

difference sequences—those with small effective distance. LettingD
be the set of these difference sequences we can approximate the error
probability using only a few terms

Pr(bit error) �
e2D

P (e)wgt(e)Q
de�(e)

2
:

The magnetic recording channel may be modeled with the
Lorentzianpulse response

h(t) =
1

1 + (2t=�)2
� 1

1 + (2(t� 1)=�)2

where the parameter� measures thedensityof the recording. It was
shown in [1] that forx = (1; 1;�1;�1) and1:5 � � � 2:75, a
target response and a density range of practical interest, the minimum
effective distance difference pattern is contained in the set

D = f000(+0)k00;000 + (�+)k000g
where( � )k denotesk � 1 repetitions of( � ), and we use a shorthand
notation to represent the ternary difference patterns, i.e.,+0� is used
to denote+1, 0, �1. The bit-error probability is well approximated
over this range of densities by takingk = 1, i.e.,

D = f000 + 000; 000 +�+ 000g:
The fact that a small set of difference patterns dominate the system

performance has motivated the construction of codes designed to avoid
the occurrence of the low-distance difference patterns [4]. The subse-
quent increase in the minimum effective distance is, however, offset
by a loss in rate from the code. Further research [5]–[7], [9], [8] has
investigated higher rate codes designed to avoid the difference pattern
000+�+ 000, which is the minimum effective distance pattern over
certain density ranges. This leads to the following question, which we
address in this correspondence: what is the highest rate of a code that
avoids a specified set of difference patterns?

III. N OTATION AND DEFINITIONS

Thedifferencebetween twon-bit sequencesu = (u1; . . . ; un) and
v = (v1; . . . ; vn) is the sequence

u� v
def
= (u1 � v1; . . . ; un � vn) 2 f�1; 0; 1gn

where subtraction is over the reals.
Given a setD of finite-length disallowed difference patterns and a

sequence length,n, we are interested in the largest number ofn-bit
sequences whose differences do not include any element ofD.

An n-bit codeC is a collection ofn-bit sequences, orcodewords,
thought of as potential recorded sequences.C avoidsD if, for all u; v 2
C and alli � j in [1; n]

u[i;j] � v[i;j] =2 D (2)

where, for alli � j, we use the notation

[i; j]
def
= fi; . . . ; jg

and

u[i;j]
def
= ui; . . . ; uj :

The largest number of sequences whose differences do not include
any pattern inD is therefore

�n(D)
def
= maxfjCj : C avoidsDg:
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It is easy to verify that�n(D) is submultiplicative

�n +n (D) � �n (D) � �n (D)

for all n1; n2 > 0. Hence, by the Sub-Additivity Lemma, e.g., [13],
we can define thecapacityof D as the limit

(D)
def
= log lim

n!1
(�n(D))1=n : (3)

We would like to determine the capacities of various difference setsD
and find codes that achieve them.

We are primarily interested in finite difference sets. Without loss
of generality we therefore assume from here on that all patterns inD
have the same lengthm. Otherwise, letm be the length of the longest
pattern inD and replace every pattern of lengthm0 < m by its3m�m

extensions of lengthm.
With this equal-length assumption, we restate constraint (2) and re-

quire that for allu; v 2 C and alli 2 [1; n0]

u[i;i ] � v[i;i ] =2 D

where, fori andn only, we let

i0
def
= i+m� 1

and

n0
def
= n�m+ 1:

Note also that we use the termpatternto refer to strings of lengthm
andsequencefor strings of lengthn.

The following examples illustrate these concepts for two simple dis-
allowed difference sets. Ann-bit codeC is represented as ajCj � n
array whose rows are the codewords.

Example 1: Consider the difference setD = f+�g consisting of a
single disallowed pattern. One can verify that the following 2-, 3-, and
4-bit codes

C2 def
=

00

01

11

C3 def
=

000

010

011

110

111

C4 def
=

0000

0001

0100

0101

0111

1100

1101

1111

avoidD and that there are no larger codes of lengths2, 3, and4. Hence

�2(D) = 3; �3(D) = 5; and �4(D) = 8:

We will show in Example 10 that forn � 4

�n(D) = �n�1(D) + �n�2(D)

hence

�n(D) =
1p
5

1 +
p
5

2

n+2

� 1�p
5

2

n+2

is the shifted Fibonacci sequence, and

(D) = log((1 +
p
5)=2):

Example 2: Consider the difference setD = f0 + 0g. One can
verify that the 3- and 4-bit codes

C3 def
=

000

100

011

111

C4 def
=

0000

0001

1000

1001

0110

0111

1110

1111

avoidD and there are no larger codes of length3 and4. Hence

�3(D) = 4 and �4(D) = 8:

More generally, for alln, the “repetition” code

Cn def
=

u0u1u1u2u2 � � �u u ; for n odd

u0u1u1 � � �u �1u �1u ; for n even

avoidsD. Hence

�n(D) � 2b c+1

and

(D) � 0:5:

It will be shown in Section VI that in fact

(D) = 0:5:

Example 3: Consider the difference setD = f++;+�g consisting
of a pair of patterns. One can verify that the 2-, 3-, and 4-bit codes

C2 def
=

00

10
C3 def

=

000

001

100

101

C4 def
=

0000

0010

1000

1010

avoidD and that no larger codes for lengths2, 3, and4 avoidD, hence

�2(D) = 2 and �3(D) = �4(D) = 4:

For generaln, it can be easily seen that

Cn def
=

fu10u30 � � � 0ung; if n is odd
fu10u30 � � �un�10g; if n is even

avoidsD, and that if a codeC avoidsD then at least one of any two
adjacent columns inC must be constant. Hence

�n(D) = 2d e

and

(D) = 0:5:

IV. FROM DISALLOWED DIFFERENCES TOJOINT SPECTRALRADIUS

In this section we describe the main result of the correspondence,
showing that the capacity of a difference set is the joint spectral radius
of an appropriately defined set of matrices. The proof is presented via
a sequence of lemmas in the following sections.

A. Disallowed Joint Patterns

Let C be ann-bit code. Let

Pi
def
= u[i;i ] : u 2 C
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be the set ofm-bit patterns present in columns[i; i0], and let

Mi
def
= f0; 1gm � Pi (4)

be the set ofm-bit patterns missing from those columns.
A joint patternis a set of twom-bit patterns. A joint patternfp; p0g

is disallowed for a difference setD if

p� p0 2 D or p0 � p 2 D:

LetJ (D) denote the collection of all disallowed joint patterns. Ob-
serve that

jJ (D)j =
p2D

2z(p)

wherez(p) is the number of zeros in the patternp.

Lemma 1: LetC be ann-bit code and letM1; . . . ;Mn be as defined
in (4). ThenC avoidsD iff for all i 2 [1; n0] and allJ 2 J (D)

J \Mi 6= ;: (5)

Proof: If fp; p0g 2 J (D) is a disallowed joint pattern, thenp
andp0 cannot both appear in any setPi of a code that avoidsD, for if
they did, we would get a disallowed difference. Hence,fp; p0g\Mi is
not empty for alli.

Conversely, if (5) holds, then for everyu; v 2 C and alli 2 [1; n0];
u[i;i ] � v[i;i ] =2 D.

Example 4: ForD = f+�g, the collection of disallowed joint pat-
terns is

J (D) = ff01;10gg

and indeed,jJ (D)j = 1 = 2z(+�). One can verify thatf01;10g
intersects eachMi of the codes in Example 1.

ForD = f0 + 0g, the collection of disallowed joint patterns is

J (D) = ff010; 000g;f011; 001g;f110; 100g;f111; 101gg

satisfyingjJ (D)j = 4 = 2z(0+0), and each set inJ (D) intersects
eachMi of the codes in Example 2.

ForD = f++;+�g

J (D) = ff11;00g; f10;01gg:

Again jJ (D)j = 2 = 2z(++) + 2z(+�), and each set inJ (D) inter-
sects eachMi of the codes in Example 3.

B. Representing Sets

A setM � f0; 1gm representsor is arepresenting set forJ (D) if
it intersects every set inJ (D). It is minimal if, in addition, none of its
strict subsets representsJ (D). Clearly, every representing set contains
a minimal one. LetM(D) be the collection of all minimal representing
sets forJ (D).

In general, finding the smallest size of a minimal representing set,
and therefore finding all of them, is NP-hard, e.g., [14, SP8]. However,
in the cases we consider,m is fixed and typically small, hence finding
M(D) is usually not difficult.

Equation (5) implies the following lemma.

Lemma 2: If a codeC avoidsD then for everyi 2 [1; n0] the set
Mi defined in (4) contains a setM 0

i 2 M(D).

Example 5:

M(f+�g) = ff01g;f10gg

and

M(f++;+�g) = ff10;11g;f01; 11g; f00;10g; f00; 01gg:

One can verify that each of the setsMi of the codes presented in Ex-
amples 1 and 3 contains an element of the correspondingM(D).

We can think of the minimal representing sets as the smallest can-
didate sets of patterns which must be missing from columns[i; i0] in a
code which avoidsD.

C. Disallowed Sets

Let M1; . . . ;Mn � f0; 1gm be sets ofm-bit patterns. An
n-bit sequences1; . . . ; sn avoids the set sequenceM1; . . . ;Mn if
s[i;i ] =2 Mi for all i 2 [1; n0]. We think of these sets asmissingfrom
s1; . . . ; sn. Let �(M1; . . . ;Mn ) be the number ofn-bit sequences
that avoidM1; . . . ;Mn . Note that ifMi �M 0

i for all i 2 [1; n0], then

�(M1; . . . ;Mn ) � �(M 0

1; . . . ;M
0

n ): (6)

If M is a collection of sets inf0; 1gm, we let

�n(M)
def
= maxf�(M1; . . . ;Mn ) : Mi 2M 8ig

be the largest number ofn-bit sequences avoiding a sequence of sets
in M.

Note that unlike disallowed differences which constrain pairs of se-
quences, disallowed sets constrain individual sequences. We will show
later that this type of constraint is easier to analyze, and we now prove
that it leads to the same capacity.

Lemma 3: For everyn

�n(D) = �n(M(D)):

Proof: Consider a codeC that avoidsD and achieves�n(D). For
i 2 [1; n0] let Mi be the set defined in (4), and letM 0

i be the sets in
M(D) indicated in Lemma 2. Then, using (6)

�n(D) = jCj � �(M1; . . . ;Mn )

� �(M 0

1; . . . ;M
0

n ) � �n(M(D))

where the first inequality follows as, by definition, each codeword in
C avoidsM1; . . . ;Mn , the second because, as Lemma 2 showed, for
eachMi there existsM 0

i in M(D) such thatM 0
i � Mi hence

�(Mi; . . . ;Mn ) � �(M 0

i ; . . . ;M
0

n )

and the third from the definition of�n(M(D)).
To establish the reverse inequality, note that ifM1; . . . ;Mn 2

M(D), then, by Lemma 1, the set of alln-bit sequences avoiding
M1; . . . ;Mn avoidsD.

D. Bipartite and Cascade Graphs

In the previous subsection we reduced the difference constraint on
pairs of sequences to a constraint on individual sequences. We now
convert this problem to that of counting paths in graphs.

A bipartite graph(L;R;E) consists of a setL of left vertices, a setR
of right vertices, and a setE of edges. Each edge(l; r) 2 E connects a
left vertexl 2 L to a right vertexr 2 R. Though we do not draw their
direction explicitly, we think of the edges as directed from left to right.

Form � 2, letGm be the bipartite graph where

L = R = f0; 1gm�1



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 1, JANUARY 2001 437

Fig. 2. G andG .

Fig. 3. G andG .

and(l1; . . . ; lm�1) 2 L is connected to(r1; . . . ; rm�1) 2 R if li =
ri�1 for all i = 2; . . . ;m � 1. We identify this edge with them-bit
sequence

l1; l2; . . . ; lm�1; rm�1 = l1; r1; . . . ; rm�1:

Fig. 2 illustratesG2 andG3.
ForM � f0; 1gm, defineGM to be the bipartite graph obtained

from Gm by removing the edges corresponding to elements ofM .
Fig. 3 illustratesGf10g andGf101g.

If G1; . . . ; Gn are bipartite graphs with left vertex setsL1; . . . ; Ln
and right vertex setsR1; . . . ; Rn , respectively, such thatRi = Li+1

for all i 2 [1; n0 � 1], we let

Vi
def
=

f1g � L1; if i = 1

fig �Ri�1 = fig � Li; if 2 � i � n0

fn0 + 1g �Rn ; if i = n0 + 1

and define thecascade[G1; . . . ; Gn ] to be the graph whose vertex set
is V1 [ � � � [ Vn +1 and where fori 2 [1; n0], the edges betweenVi
andVi+1 are the edges ofGi, and there are no other edges. Drawing
the vertices of eachVi vertically and to the left of theVi+1 vertices,
we call the verticesV1 andVn +1 leftmostandrightmost, respectively.
Fig. 4 illustrates the cascade[Gf10g; Gf01g; Gf10g].

Fig. 4. [G ;G ;G ].

A path in a cascade[G1; . . . ; Gn ] is a sequencev1; . . . ; vn +1

of vertices where eachvi 2 Vi, andvi is connected tovi+1 for all
i 2 [1; n0]. Note that all paths connect a leftmost vertex to a rightmost
vertex and proceed from left to right. We let ([G1; . . . ; Gn ])
be the total number of paths in the cascade. For example, in
[Gf10g; Gf01g; Gf10g] there are two paths from(1; 0) to (4; 0), three
paths from(1; 0) to (4; 1), etc. Hence

 Gf10g; Gf01g; Gf10g = 2 + 3 + 1 + 2 = 8:

If M � f0; 1gm ands 2 f0; 1gm, thenl = s[1;m�1] andr = s[2;m]

are vertices ofGM with an edge from left nodel to right noder if and
only if s =2 M , namely,s avoidsM . More generally, forn � m,
there is a bijection betweenn-bit sequences that avoidM1; . . . ;Mn

and paths in the cascade[GM ; . . . ; GM ], hence

�(M1; . . . ;Mn ) =  GM ; . . . ; GM :

Letting

 n(M)
def
= max  GM ; . . . ; GM : Mi 2 M 8i

we obtain the following lemma.

Lemma 4:

�n(M(D)) =  n(M(D)):

Example 6: LetD = f+�g. One can verify that 4(M(D)) = 8,
achieved by the cascade[Gf10g; Gf01g; Gf10g], illustrated in Fig. 4.
There is a bijection between the paths in the cascade and the codewords
in Example 1.

E. Adjacency Matrices

Identifying the elements ofL and R of a bipartite graph
G = (L;R;E) with the intervals[1; jLj] and[1; jRj], respectively, we
let theadjacency matrixAG be thejLj � jRj matrix whose(l; r)th
element is1 if (l; r) 2 E, and0 otherwise.

Note that the(l; r)th element ofAG is the number of edges from
left nodel to right noder in G. Similarly, it can be shown that in the
cascade[G1; . . . ; Gn ], the number of left-to-right paths from leftmost
vertex l to rightmost vertexr is the (l; r)th element of the product
AG AG . . .AG .

Letting

kAk1 =
l;r

jAl;rj (7)

denote theL1 norm of the matrixA, it follows that, for every
M1; . . . ;Mn � f0; 1gm

 GM ; . . . ; GM = AG � . . . � AG
1
:
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Let

�(D)
def
= fAG :M 2M(D)g

denote the set of adjacency matrices corresponding to the collection
M(D) of minimal representing sets for the disallowed joint patterns
J (D) (see Sections IV-A and IV-B for definitions). Let

�n def
=

n

i=1

: Ai 2 �

denote the set of products ofn matrices in�. Then, setting

�̂n(�; k � k1)
def
= maxfkAk1 : A 2 �ng

for an arbitary set� � m�m, we get the following lemma.

Lemma 5:

 n(M(D) = �̂n (�(D);k � k1):

This suggests looking for algebraic methods to determine the capacity.

F. Matrix Norms and Spectral Radius

A matrix normfor the set m�m of complex square matrices is a
mappingk�k : m�m ! [0;1) such that for allA1; A2; A 2 m�m

1) kAk = 0; iff A = 0

2) kA1 +A2k � kA1k+ kA2k

3) kA1 � A2k � kA1k � kA2k

4) kcAk = jcj � kAk 8c 2 :

Example 7: LetA 2 m�m. TheL1 norm,kAk1 ofA was already
defined in (7). Themaximum-column-sum normof A is

kAk

def
= max

1�j�m

m

i=1

jAi;j j

and thespectral normof A 2 m�m is

kAks
def
= max
kxk =1

kAxk2

where

kxk2
def
=

m

i=1

jxij
2

1=2

is theEuclidean normof a vectorx 2 m. It can be shown thatk � k1,
k � k
 , andk � ks are all matrix norms.

One can show, e.g., [15, Theorem 5.4.4], that for any two matrix
normsk � k�; k � k� there are constants0 < c1 < c2 such that for all
A 2 m�m

c1kAk� � kAk� � c2kAk�: (8)

By submultiplicativity of matrix norms, the limit

�̂(A)
def
= lim

n!1
kAnk1=n

exists, and, by (8), is independent of the matrix normk � k. One can
also define

��(A)
def
= maxfj�j : � an eigenvalue ofAg:

For any matrix norm andA 2 m�m we have, e.g., [15, Theorem
5.6.9]

��(A) � kAk: (9)

It is also well known, e.g., [15, Corollary 5.6.14], that

��(A) = �̂(A):

They are called thespectral radiusof A and denoted by�(A).

G. Joint Spectral Radius

The quantitieŝ� and �� can be generalized to sets of matrices. We
begin with�̂. Letting

�̂n(�; k � k)
def
= supfkAk : A 2 �ng

for an arbitrary matrix normk � k and set� � m�m, Rota and Strang
[16] defined thejoint spectral radiusof � to be

�̂(�)
def
= lim

n!1
�̂n(�; k � k)

1=n

where the limit exists by submultiplicativity, and (8) implies that it is
independent of the normk � k.

Daubechies and Lagarias [17] defined thegeneralized spectral ra-
diusof � to be

��(�)
def
= lim sup

n!1
��n(�)

1=n

where

��n(�)
def
= supf��(A) : A 2 �ng:

It follows from (9) that

��n(�) � �̂n(�; k � k)

for everyn. Hence

��(�) � �̂(�)

and Daubechies and Lagarias conjectured that equality holds, namely

��(�) = �̂(�)

as was proven by Berger and Wang [18] for all finite�. We denote this
quantity by�(�), and refer to it as the joint spectral radius.

Combining (3) and Lemmas 3 to 5, we obtain our main result.

Theorem 1: For every finiteD

(D) = log(�(�(D))):

Namely, the capacity is the logarithm of the joint spectral radius of
�(D).

This equality generalizes known results onconstrained systems
where, instead of differences, certain patterns are disallowed, and it is
well known, e.g., [19, Theorem 3.9], that the growth rate of the number
of sequences, orShannon capacityof the constraint, islog(�̂(A)), the
logarithm of the spectral radius of a corresponding adjacency mat-
rix A.

The joint spectral radius measures the maximum growth rate of a
product of matrices drawn from the set�. This concept appears in many
applications. In addition to Rota and Strang’s original work in matrix
theory [16], it has been used to study convergence of infinite products
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of matrices, e.g., [20], with applications to wavelets [17]. The concept
is also related to the stability properties of discrete linear inclusions,
e.g., [21], [22], wherein the logarithm of the joint spectral radius is
referred to as theLyapunov indicator.

In the next section we describe several existing algorithms for com-
puting the joint spectral radius and introduce some new ones.

V. COMPUTING THE JOINT SPECTRAL RADIUS

A. Computing the Joint Spectral Radius Is Hard

Tsitsiklis and Blondel [23] have shown that approximating the joint
spectral radius of a pair of matrices withf0; 1g entries is NP-hard. In
addition, they have shown [24] that determining whether�(�) � 1
when� is a set of nonnegative rational matrices is undecidable. Hence,
the problem of determining the joint spectral radius of a set of nonneg-
ative rational matrices is undecidable.

Note thatf�(D) jD a difference setg is a subclass of the set of
f0; 1g matrices. It is currently unresolved whether or not determining
the capacity of a difference set is NP-hard. Nonetheless, Tsitsikilis and
Blondel’s results point to the difficulty of finding efficient algorithms
to determine the capacity of a given difference set.

Here we determine the capacity of several simple difference sets that
arise in practice.

B. Existing Algorithms

Because of the submultiplicativity of̂�n(�; k � k)

�(�) = �̂(�) � �̂n(�; k � k)
1=n

for everyn. Furthermore, asn increases, this upper bound generally
better approximates the joint spectral radius in the sense that for every
n, there exists ann0 > n such that

�̂n (�; k � k)1=n � �̂n(�; k � k)
1=n:

Similarly, every��n(�) lower-bounds�(�), and asn increases,��n(�)
generally better approximates the joint spectral radius from below, in
the sense that, for everyn

��n(�)
1=n � ��nk(�)

1=kn

for anyk � 1.
This suggests approximating the joint spectral radius�(�) by com-

puting the lower bounds

max
1�k�n

��k(�)
1=k

and upper bounds

min
1�k�n

�̂k(�; k � k)
1=k

for n = 1; 2; . . . : However, the number of matrix operations increases
as j�jn, such that determining�(�) with an arbitrary error may be
computationally prohibitive.

Several steps have been taken to reduce the growth rate of the
number of computations required to approximate�(�). Maesumi [25]
has shown the number of matrix operations may be reduced fromj�jn

to j�jn=n. Daubechies and Lagarias [17] proved the following result.

Lemma 6: If fAjg is a set of building blocks for�, i.e.,

a) eachAj is the product ofnj matrices drawn from�,
b) there exists somen0 � 0 such that, ifA is a finite product of

elements of�, thenA = Aj � � �Aj Q, whereQ is a product
of at mostn0 elements of�,

then�(�) � sup kAjk
1=n .

Lemma 6 can be used to implement a recursive “branch-and-bound”
algorithm to upper-bound�(�), e.g., [17], [26], [27]. Gripenberg [28]

has provided an algorithm based on Lemma 6 which includes a se-
quence of lower bounds such that�(�) may be specified to lie within
an arbitrarily small interval.

The remainder of this section describes an algorithm which empirical
results show has a computation time competitive with the algorithm in
[28].

C. The Pruning Algorithm

We present an alternative method, the pruning algorithm, for
bounding �(�) when all the matrices in� are nonnegative. The
method replaces the search for the largest norm among all (exponen-
tially many) products ofn matrices with a search over a smaller set
with the same largest norm. It can be applied to compute��n(�) and
�̂n(�; k � k) for several norms.

We writeA � 0 if every element ofA is nonnegative andA � B if
every element ofA is at least as large as the corresponding element of
B. It can be shown, e.g., [15, Theorem 8.1.18], that ifA � B � 0 then

�(A) � �(B): (10)

A matrixA dominatesmatrixB with respect to the normk � k if

kAMk � kBMk

for all M � 0. In particular

kAk � kBk:

A subsetS of �n is dominatingif every matrix in�n is dominated
by some matrix inS. Let 	n be any dominating subset of�n. By
definition

�̂n(�; k � k) = maxfkAk : A 2 	ng: (11)

Furthermore, it is easy to verify that if all matrices in� are nonnegative
then	n� is a dominating subset of�n+1, namely

	n+1 � 	n�:

Given a matrix norm one can, therefore, construct a recursive al-
gorithm which computes a dominating set	n from 	n�1 by consid-
ering all products in	n�1� and “pruning” those that are dominated
by another product. The subsequent growth rate ofj	nj will depend
on the condition for domination. The following lemmas provide suffi-
cient conditions for domination with respect to theL1 norm, the max-
imum-column-sum norm, and the spectral norm.

We writeA �C B if every column-sum ofA is at least as large as
the corresponding column-sum ofB.

Lemma 7: If A �C B, thenA dominatesB with respect tok � k1
andk � k
 .

Proof: Clearly, ifA �C B, thenkAk1 � kBk1 andkAk
 �
kBk
 . Domination follows asA �C B impliesAM �C BM for
everyM � 0.

It can be shown, e.g., [15, Sec. 5.6.6], that

kAks = �(A�A)1=2 (12)

whereA� denotes the Hermitian adjoint ofA. This can be used to prove
the following lemma.

Lemma 8: If A�A � B�B, thenA dominatesB with respect to
k � ks.

Proof: SinceA�A andB�B are nonnegative, (10) implies

�(A�A) � �(B�B)

hence

kAks � kBks:

Domination follows as for everyM � 0

(AM)�AM =M tA�AM

�M tB�BM = (BM)�BM:
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An analogous algorithm, based on (10) may be used to construct a
sequence of convergent lower bounds on�(�).

VI. CAPACITIES OFCERTAIN DIFFERENCESETS

A. Explicit Computation

In some cases, one can find the joint spectral radius, and hence the
capacity, exactly.

Example 8: LetD = f0m+g; m � 0. We show that�n(D) � 2m

for all n � m. Form = 0, the result is obvious. Suppose there exists
a codeC which avoidsD with jCj > 2m. Then there must existu; v 2
C; u 6= v such thatu[1;m] = v[1;m]. ForC to avoidD, we must have
u[i] = v[i] for m < i � n. Henceu = v, a contradiction. Therefore,
�n(D) � 2m and

(f0m+g) = 0

for all m � 0.

Example 9: LetD = f0 + 0g. One can show that

��2(f0 + 0g) = �̂2(f0 + 0g; k � ks)
= � AG AG

= 2;

and therefore

(f0 + 0g) = 0:5:

The pruning algorithm may lead to a direct computation of the joint
spectral radius via an inductive argument.

Example 10: ForD = f+�g we have

�(+�) = AG ; AG :

By application of the domination condition in Lemma 7 and inspection
of �(+�), one can show that forn = 1; 2; . . .

	2n = AG AG

n

; AG AG

n

	2n+1 = AG AG AG

n

;

AG AG AG

n

from which it follows that

�n(f+�g) = �n�1(f+�g) + �n�2(f+�g)

where�1 = 2 and�2 = 3. Hence, as shown in Example 1,

(f+�g) = log2((1 +
p
5)=2) = 0:6942 . . . :

An inductive argument may lead to a direct computation in cases where
the convergence rate of the bounds is slow.

Example 11: ForD = f+ + �g we have

�(f++�g) = AG ; AG

and

max
1�k�316

log2 ��k(�)
1=k = 0:8113 . . .

� (D) � min
1�k�316

log2 �̂k(k � ks;�)1=k = 0:8116 . . . :

However, one can show by an inductive argument using the domination
condition in Lemma 7 that forn = 1; 2; . . .

	4n = AG AG AG AG

n

;

AG AG AG AG

n

;

AG AG AG AG

n

;

AG AG AG AG

n

Hence

�(�) = lim
n!1

AG AG AG AG

n 1=4n

= � AG AG AG AG

1=4

= (2 + ((25� 3
p
69)=2)1=3

+ ((25+ 3
p
69)=2)1=3)=3

and

(f++�g) = log2 �(�) = 0:8113 . . . :

B. Simplifications

When all matrices in� are Hermitian, it follows from (12) that

��1(�) = �̂1(�; k � ks)

hence

�(�) = �̂1(�; k � ks):

For example, this can be used to provide a simple proof of(f++g).
Example 12: ForD = f++g we have

�(f++g) = 0 1

1 1
;

1 1

1 0
;

hence (f++g) = log((1 +
p
5)=2).

The following lemma equates the capacities of certain pairs of differ-
ence sets for which there exists a bijection between codes which avoid
the sets.

Lemma 9: Fix a difference setD. LetD0 be the difference set ob-
tained by inverting the symbols+;� at odd positions of the patterns
in D. Then

(D) = (D0):

Proof: SupposeC avoidsD. Let C0 be the code constructed by
inverting every other bit of the codewords ofC, for example, every bit
corresponding to an even position index. (One could equally well invert
every bit corresponding to an odd position index.) It is straightforward
to show thatC0 avoidsD0, hence�n(D0) � �n(D). Similarly, one can
map any code which avoidsD0 to a code which avoidsD by inverting
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TABLE I
CAPACITY OF VARIOUS DIFFERENCESETSD

every other bit of the codewords ofC0. Hence,�n(D0) = �n(D) and
(D) = (D0).

For example, it follows from Lemma 9 that

(f++g) = (f+�g);

(f+++g) = (f+�+g); and

(f0 +�g = (f0 + +g):

C. Results

Table I summarizes known values or ranges of(D) for all dif-
ference setsD consisting of a single pattern of length� 3 and some
patterns of larger length. Since the same number of sequences avoid a
patternp as its negation�p, we assume that the first nonzero element
of p is+. Also, we do not list (D) if the (identical) capacity of the
string obtained by reversing the order ofp has already been addressed.

Next to the capacity, we list a constraint describing a sequence of
codes,fCng, such that eachCn avoidsD and

lim
n!1

log jCnj
1=n

achieves the lower bound on the capacity, or(D)when it is known.
In a notation similar to that used to describe shift spaces [29, Defini-
tion 1.2.1], the constraint is defined by a list of forbidden patternsO

and the codesCn can be taken to be the largestn-bit codes satisfying
the constraint. If no superscript is listed with a pattern, the pattern is
forbidden from appearing in all columns of the code. If superscripts
appear, then the patterns are periodically forbidden and the period is
one more than the largest superscript. The superscript then represents
the column indexes (modulo the period) in which the pattern cannot
appear. For example,101; 010 means that these triples do not appear
in any three consecutive columns, and10(0); 01(1) means that10 does
not appear in columns[i; i + 1] for eveni and01 does not appear in
columns[i; i + 1] for odd i.

Several of these constraints have appeared in the magnetic
recording literature.O = f00(1); 11(1)g is referred to as thebiphase
constraint [30],O = f1010;0101g as theMTR constraint [5], and
O = f1010(1); 0101(1)g as theTMTRconstraint [6].
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On the Optimal Markov Chain of IS Simulation

Kenji Nakagawa, Member, IEEE

Abstract—We investigate the importance sampling (IS) simulation for
the sample average of an output sequence from an irreducible Markov
chain. The optimal Markov chain used in simulation is known to be a
twisted Markov chain, however, the proofs in [2], [3] are very complicated
and do not give us a good perspective. We give a simple and natural
proof for the optimality of the simulation Markov chain in terms of the
Kullback–Leibler (KL) divergence of Markov chains. The performance
degradation of the IS simulation by using a not optimal simulation Markov
chain, i.e., the difference between the obtained variance and the minimum
variance is shown to be represented by the KL divergence. Moreover, we
show a geometric relationship between a simulation Markov chain and
the optimal one.

Index Terms—Importance sampling simulation, information geometry,
Kullback–Leibler (KL) divergence, Markov chain.

I. INTRODUCTION

The importance sampling (IS) simulation technique has been used
to obtain quickly an accurate estimate for a very small probability that
is not tractable by the ordinary Monte Carlo (MC) simulation. The IS
technique is widely used for various types of engineering problems,
e.g., the estimation of a blocking probability in queuing system [2],
[4], [7], an error rate in communications system [2], [6], etc. See [2]
for an overview of the application of IS simulation.

If the target event (blocking in queuing systems, or error in commu-
nications systems) is a rare event with small probability of less than
about10�6, it is impossible to obtain an estimate by the ordinary MC
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simulation because of the limit of simulation time and the precision
limit of pseudo-random numbers. To overcome these difficulties, a dif-
ferent probability distribution from the underlying probability distri-
bution is used for simulation in order to generate more samples in the
target event. Then the obtained value is modified by the likelihood ratio
to obtain an unbiased estimate. This estimate is called an IS estimate.
The probability distribution used for simulation is called a simulation
distribution. If the simulation distribution is appropriately chosen, the
variance of the IS estimate can be smaller than that of the MC estimate.
The simulation distribution that yields the IS estimate of the minimum
variance is referred to as the optimal simulation distribution. When we
apply the IS technique to some simulation problem, it is critical to find
the optimal simulation distribution.

In the case of a Markov chain, the Markov chain which is used in the
IS simulation is called a simulation Markov chain, and the optimal one
is called the optimal simulation Markov chain. It has been known [2],
[3] that the optimal simulation Markov chain is unique and belongs to
the class of twisted Markov chains (TMC), but the proofs in [2], [3] are
complicated and do not give a good perspective. In [2], the perturbation
technique is used to prove that the optimal simulation Markov chain is
a TMC. In [3], Jensen’s inequality is used in the proof and the line of
argument is elementary but complicated. Both of the proofs in [2] and
[3] are lengthy.

In [10], we studied geometric properties of IS simulation and showed
that the Kullback–Leibler (KL) divergence of Markov chains plays an
important role in this problem. In this correspondence, we give a geo-
metric view to this problem and provide a simple and natural proof
for the optimality of a simulation Markov chain in terms of KL diver-
gence. The performance degradation of the IS simulation by using a not
optimal simulation Markov chain, i.e., the difference between the ob-
tained variance and the minimum variance is shown to be represented
by the KL divergence. Moreover, we show a geometric relationship be-
tween a simulation Markov chain and the optimal one.

II. I MPORTANCESAMPLING SIMULATION FOR MARKOV CHAINS

We investigate a simulation for the sample average of an output se-
quence from an irreducible finite-state Markov chain.

Let P0 denote an irreducible Markov chain on the state space
 �
f0; 1; . . . ; Kg; K > 0. The state transition probability matrix ofP0
is denoted byP0 = (P0(x

0jx))x; x 2
, and the initial distribution is
given by the stationary distributionp0 = (p0(x))x2
 of P0. The joint
probability ofx; x0 2 
 is denoted byP0(x; x0) � p0(x)P0(x

0jx).
Consider a mappingf : 
 � 
 ! Z, whereZ denotes the set of
integers. Denote byEP [f ] the expectation off with respect toP0

EP [f ] �
x; x 2


P0(x; x
0)f(x; x0): (1)

AssumeEP [f ] = 0 without loss of generality.
Letxxxn = (x1; x2; . . . ; xn) 2 
n be a sample sequence generated

by the Markov chainP0. We consider the probability of the following
setAn:

An = xxx
n 2 
n 1

n� 1

n�1

i=1

f(xi; xi+1) > c ; c > 0: (2)

Write

�n � P0(An) =
xxx 2A

P0(xxx
n)

where

P0(xxx
n) = p0(x1)P0(x2jx1) . . .P0(xnjxn�1):
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