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The error probability of many magnetic-recording systems may be
characterized in terms of the differences between the sequences that
may be recorded [1]-[3]. In fact, the bit-error rate (BER) is often dom-
inated by a small set of potential difference patterns. Recently, binary
codes have been proposed which exploit this fact [4]-[9]. The codes
are designed to avoid the most problematic difference patterns by con-
straining the set of allowed recorded sequences and have been shown
to improve system performance.

In this correspondence, we study the largest number of sequences
whose differences exclude a given set of disallowed patterns. We show
that the number of such sequences increases exponentially with their
length and that the growth rate, or capacity, is the logarithm of the joint
spectral radius of an appropriately defined set of matrices. We derive
new algorithms for determining the joint spectral radius of sets of non-
negative matrices and combine them with existing algorithms to deter-
mine the capacity of several sets of disallowed differences that arise in
practice.

The correspondence is organized as follows. In the next section, we
motivate the problem by summarizing known results showing that the
error probability in models of magnetic recording systems is deter-
mined by the differences between recorded sequences. In Section I,
we formally describe the resulting combinatorial problem, introduce
the notation used, and present some simple examples. Section IV con-
tains the main result of the correspondence, deriving the connection to
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Fig. 1. Communications channel model.

the joint spectral radius. In Section V, we describe some known algo-The magnetic recording channel may be modeled with the
rithms for determining the spectral radius, and derive a new algorithrorentzianpulse response
Finally, in Section VI, we determine the capacities of some simple sets 1 1

of disallowed patterns. h(t) = L4 (2t/7)2 1+ (2(t—1)/7)?

1I. M OTIVATION where the parameter measures thdensityof the recording. It was
) ) o o shown in [1] that forz = (1,1,—-1,—1) and1.5 < 7 < 2.75, a
Consider the binary communications channel in Fig. 1 where a §g¢qet response and a density range of practical interest, the minimum

quencer = (..., ao,a1,a,...) over the binary alphabdtt1, —1}  eftective distance difference pattern is contained in the set
passes through a linear channel with impulse respb(tgeandn(t) is

additive white Gaussian noise. The received signal is given by D= {()()()(—1—())’“()(),()()() + (——1—)"()()0}

r(t) = Z“"fh (t = k) + n(t). where( - )* denotesk > 1 repetitions of - ), and we use a shorthand
k o . ) notation to represent the ternary difference patterns 4@ is used

Forney [10] showed that fok(t) of finite duration, the receiver to denote+1, 0, —1. The bit-error probability is well approximated
illustrated in Fig. 1 consisting of a whitened matched filteft), a over this range of densities by takitg= 1, i.e.,
bit-rate sampler, and a minimum Euclidean distance estimate given by
the Viterbi algorithm yields a maximum-likelihood (ML) estimate for D = {000 + 000, 000 + — + 000}.
the transmitted sequenee

However, the complexity of implementing the Viterbi algorithm for The fact that a smalll set of difference patterns dominat.e the system
the ML estimate grows exponentially with the bit-period duration of theerformance has motivated _the const_ructlon of codes designed to avoid
channel pulse response. Hence, suboptimal partial-response schéhfegccurrence of the low-distance difference patterns [4]. The subse-
are often implemented in practice. For example, in hard-disk-drigiient increase in the minimum effective distance is, however, offset
magnetic recording channels, partial-response equalization 4@ 10ss in rate from the code. Further research [5]-[7], [9], [8] has
detection using the Viterbi algorithm is currently the accepted modavestigated higher rate codes designed to avoid the difference pattern
of operation, e.g., [11]. 000 + — + 000, which is the minimum effective distance pattern over

In a partial-response scheme, the receiving fittér) is chosen such certain dgnsit_y ranges. This leads to th_e foIIOV\_/ing question, which we
that the signal at the input to the Viterbi detector in the absence of nofgdress in this correspondence: what is the highest rate of a code that
approximatesX a, whereX is the Toeplitz matrix corresponding to a@voids a specified set of difference patterns?
finite target response. The Viterbi algorithm is then used to obtain the
sequenceX a closest in Euclidean distance to the sequence received at [1Il. N OTATION AND DEFINITIONS
the input to the Viterbi detector.

' ) The differencebetween two:-bit sequences = (u1,...,u,) and
Let thedifference sequence = (@ — «)/2 denote the difference , _ (v1,...,v,) is the sequence
between the decoded and transmitted sequencegfiEutive distance S
betweer: andi is w—v (uy = 1. un — o) € {=1,0,1}"
do(e) (X (Xe) -
e (Xe)TR(Xe))'/2 where subtraction is over the reals.

whereR is the autocorrelation matrix of the noise at the input to the Given a Ise'rD of f|n|te-len_gth d|saI:jO\_/vedhd|fIference pattt;ernse;nd a
Viterbi detector and the superscriptdenotes vector transposition. sequence length, we are interested in the largest numbemabit

At high signal-to-noise ratios (SNRs), the probability of a bit errorcdUENCeS whose _differences_ do not ir_lclude any elemdt of
for this detector is well approximated, e.g.., [12], by An n-bit codeC is a collection ofn-bit sequences, arodewords

thought of as potential recorded sequen€esroidsD if, forall u, v €

Pr(biterron ~ > P(e) wet(e)Q <d°ﬁ;6)> (1) Candalli < jin[l,n]
wherewgt(e) is the number oft1sine, and ufi,j) = Vi) € D 2)
1 [ _ep where, for all; < j, we use the notation
r)= — e dt ! =J

= [ o,

is theerror function li.g] ={i,....j}
The sum in (1) is largely determined by a small set of dominaaind

difference sequences—those with small effective distance. Lefting Wi et u;.
be the set of these difference sequences we can approximate the error !
probability using only a few terms The largest number of sequences whose differences do not include

any pattern inD is therefore

Pr(biterron & Y P(e) wgt(e)Q <deﬁ(6)> .

= 2 6. (D) o max{|C| : C avoidsD}.
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It is easy to verify thab,. (D) is submultiplicative Example 2: Consider the difference sé? = {0 4+ 0}. One can
verify that the 3- and 4-bit codes
by, 1+ng (D) S 6"1 (D) : 6"2 (D)

(00007
L 0001
for all n1,n2 > 0. Hence, by the Sub-Additivity Lemma, e.g., [13], 000 1000
we can define theapacityof D as the limit
0, def 100 ] 1001
.3 = 4 =
def . t/n 011 0110
cap(D) = log| lim (6, (D . 3
P(D) b[nfoo( (D)) ] ®) 111 0111
We would like to determine the capacities of various difference Bets 1110
and find codes that achieve them. L1111 ]

We are primarily interested in finite difference sets. Without losgvoid D and there are no larger codes of lengtand4. Hence
of generality we therefore assume from here on that all patterfs in

have the same length. Otherwise, letn be the length of the longest 63(D)=4 and 64(D)=8.
pattern inD and replace every pattern of length < m by its3” ™

extensions of length. More generally, for alk, the “repetition” code

With this equal-length assumption, we restate constraint (2) and re- ot {UOULULUQUQ e Un1Uno1 } , for n odd
quire that for allu,v € C and alli € [1,»’] Con = ?
{uoulul e '11,%_171%_111,%} , for n even
i) = Vi § D avoidsD. Hence
where, fori andn only, we let 8,(D) > 2L21%!
and
o1 def . . 1
¢ =t+m-— cap(D) > 0.5.
and . . . .
, def It will be shown in Section VI that in fact
n =n—m++ 1.
cap(D) = 0.5. O

Note also that we use the terpatternto refer to strings of lengtin

andsequenc_éor strings of I_engtm. ) . Example 3: Consider the difference séx = {4+, +—} consisting
The following examples illustrate these concepts for two simple digz 5 pair of patterns. One can verify that the 2-, 3-, and 4-bit codes
allowed difference sets. An-bit codeC is represented as|é| x n

array whose rows are the codewords. 000 0000
. . . . L, def | 00 , def | 001 , def | 0010
Example 1: Consider the difference sét = {+—} consisting of a C2 = 10 Cs = 100 Gy = 1000
single disallowed pattern. One can verify that the following 2-, 3-, and 101 1010
4-bit codes
00001 avoid D and that no larger codes for lengths3, and4 avoid D, hence
000 0001 82(D)y=2 and &(D)=64(D)=4.
0100 . .
00 010 For generak, it can be easily seen that
& lor| o o] ot [P
S 1 s 1 * 7 ot o det {u10u30---Ouy}, if n is odd
11(1] 1100 " 1 {uiOus0---u,—10},  ifniseven
1101 avoidsD, and that if a cod€ avoidsD then at least one of any two
L1111 ] adjacent columns iff must be constant. Hence
avoid D and that there are no larger codes of lengttss and4. Hence 5n(D) = 2151
b2(D 3, 63(D d 64(D 8 and
o = . =5 an = 8.
2(D) =3, &(D)=5, (D) cap(D) = 0.5. O
We will show in Example 10 that for > 4
6n0(D) = 8p_1(D) + 6, _2(D) IV. FROM DISALLOWED DIFFERENCES TQJOINT SPECTRAL RADIUS
In this section we describe the main result of the correspondence,
hence showing that the capacity of a difference set is the joint spectral radius
_ nt2 _ nt2 of an appropriately defined set of matrices. The proof is presented via
5.(D) = = [ (1F V5 _(1=V5 a sequence of lemmas in the following sections.
n\ \/5 2 2

A. Disallowed Joint Patterns

is the shifted Fibonacci sequence, and Let C be ann-bit code. Let

cap(D) = log((1+ V5)/2). O P S up i ueC)
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be the set ofn-bit patterns present in columfisi’], and let and

of M{++,+-1) = {{10,11},{01, 11}, {00, 10}, {00,011} }.
ML 0.1y P, @ ({#++,+-1) = {110, 11}, {01,11}, {00, 10}, {00, 01}}
One can verify that each of the sétf of the codes presented in Ex-

be the set ofn-bit patterns missing from those columns. amples 1 and 3 contains an element of the correspontit®). [

A joint patternis a set of twon-bit patterns. A joint patterfp, p' }

is disallowed for a difference sé? if We can think of the minimal representing sets as the smallest can-
, , didate sets of patterns which must be missing from colupig in a
p-p €D or p-peD. code which avoidD.
Let 7 (D) denote the collection of all disallowed joint patterns. Obc Disallowed Sets
serve that
} Let My,....M,, C {0,1}™ be sets ofm-bit patterns. An
|7(D)| = Z 2:(») n-bit sequencesy, ..., s, avoidsthe set sequenca/,, ..., M, if
p€ED spi,in ¢ M, foralli € [1,»']. We think of these sets asissingfrom
S1ye-vs8n. Let u(My, ..., M, ) be the number of.-bit sequences

wherez(p} is the number of zeros in the pattgrn that avoidM, . .., M,,,. Note that ifA; D M; foralli € [1,n'], then

Lemmal: LetC be am-bitcode andlef{s, ..., M, be as defined
in (4). ThenC avoidsD iffforall i € [1,»'] and allJ € 7(D) p(My, .., Myr) < p(My,. .., M) (6)
JO M #40. (5) If M is a collection of sets if0,1}™, we let
Proof: If {p,p’'} € J(D) is a disallowed joint pattern, then n (M) def max{u(My, ... M) : My € MVi}

andp’ cannot both appear in any st of a code that avoid®, for if
they did, we Wou!d geta disallowed difference. Herlgep'} N M is be the largest number af-bit sequences avoiding a sequence of sets
not empty for alli. in M

I 3l , y ! . . . . . .
Conversely, if (5) holds, then for evemyv € C and alli & [1. 7], Note that unlike disallowed differences which constrain pairs of se-

ugi,in = vpiin § D O guences, disallowed sets constrain individual sequences. We will show
Example 4: For D = {+—}, the collection of disallowed joint pat- later that this type of constraint is easier to analyze, and we now prove
terns is that it leads to the same capacity.
J(D) = {{01,10}} Lemma 3: For everyn
and indeed].7(D)| = 1 = 2°*7). One can verify thaf01,10} on(D) = pn(M(D)).
intersects each/; of the codes in Example 1. _ ) ) ‘
For D = {0 + 0}, the collection of disallowed joint patterns is Proof: Consider a codé that avoidsD and achieves, (D). For

i € [1,7] let M; be the set defined in (4), and 18f; be the sets in
J(D) = {{010, 000}, {011, 001},{110, 100},{111, 101}} M(D) indicated in Lemma 2. Then, using (6)

satisfying|.7(D)| = 4 = 2°(°*% and each set it/ (D) intersects 82(D) = |C| < (M, ..., M,
eachM; of the codes in Example 2. / '
<u(My,...,M.) < ppn(M(D
ForD = {++.+-} <My, M) < pn (M(D))

J(D) = {{11.00}, {10,01}}. where the first inequality follows as, by definition, each codeword in
' C avoidsMy, ..., M, , the second because, as Lemma 2 showed, for
Again|7(D)| = 2 = 2+ 4 2:(+7) and each set iy (D) inter- €achM; there existsM; in M(D) such thatM] C M, hence
sects eacld/; of the codes in Example 3. |
(M, M) < (M, ..., M)

B. Representing Sets
m : . .. and the third from the definition qf,,(M(D)).
AsetM C {0,1 for7 (D) if . . .
setM € {0,1}" representr is arepresenting set (D)1 To establish the reverse inequality, note thatfi,.... M,, €

it intersects every set iif (D). It is minimalif, in addition, none of its . -~
strict subsets represenf§ D). Clearly, every representing set containsék\/l(p)’ then, by Lemma 1, the set of all-bit sequences avoiding

aminimal one. Let\ (D) be the collection of all minimal representing” h,..., M, avoidsD. =
sets for7(D).

In general, finding the smallest size of a minimal representing s
and therefore finding all of them, is NP-hard, e.qg., [14, SP8]. However, In the previous subsection we reduced the difference constraint on
in the cases we considen, is fixed and typically small, hence finding pairs of sequences to a constraint on individual sequences. We now
M(D) is usually not difficult. convert this problem to that of counting paths in graphs.

Equation (5) implies the following lemma. A bipartite graph L, R, E) consists of a st of left verticesa setR
. . , of right vertices and a seE’ of edgesEach edgé!, ») € E connects a

'Lemma 2: If a codeC avoidsD then for everyi € [1.n'] the Set |ofi yertexi ¢ L to aright vertex- € R. Though we do not draw their
M; defined in (4) contains a séf; € M(D). direction explicitly, we think of the edges as directed from left to right.
Example 5: Form > 2, letG,, be the bipartite graph where

8. Bipartite and Cascade Graphs

M({+=}) = {{01}.{10}} L=R={0.1)""
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1,1

Fig. 4. [G{i0y,G o1y, Gioy]-

A pathin a cascaddG1,...,G,, ] is a sequences. ..., v, 4+
of vertices where each; € V;, andv; is connected ta;, for all

i € [1,n/]. Note that all paths connect a leftmost vertex to a rightmost
vertex and proceed from left to right. We let([G4,...,G,./])

be the total number of paths in the cascade. For example, in
[Gi0y. Gyo1y. Gi0y] there are two paths frorl, 0) to (4,0), three
paths from(1,0) to (4, 1), etc. Hence

Fig. 2. G- andGs.

P ([G{]o},G{m},G{]o}]) =2 +3) + 1 + 2=28.

If M C {0,1} ands € {0,1}™,thenl = 51 ,,, 17 @Ndr = s[3 1)
are vertices of+3s with an edge from left nodgto right noder if and
only if s ¢ M, namely,s avoids M. More generally, fom > m,

there is a bijection between-bit sequences that avoitd, ..., M,/
and paths in the cascaflés, , ..., G, ], hence
&
(M, ..., M) =2 ([Gays- .o Gar, 1)
®—11® Letting

(M) def max{w ([GMI, e GMM]) M, e M Vi}

we obtain the following lemma.

Lemma 4.

] o (M(D)) = b, (M(D)). |
F|g. 3. G{IO} andG{lol}. ( ( ))

Example 6: Let D = {+—}. One can verify that,(M(D)) = 8,
achieved by the cascad€'(10}, Go1},G10}], illustrated in Fig. 4.
There is a bijection between the paths in the cascade and the codewords

r,—y foralli = 2,...,m — 1. We identify this edge with the:-bit

and(l1,...,l,n_1) € Lis connected t¢ry,...,7m-1) € Rifl; =

sequence in Example 1. O
holos sl Ty = ho T T E. Adjacency Matrices
Fig. 2 illustrates> andG's. Identifying the elements ofL and R of a bipartite graph

ForM C {0,1}™, defineG s to be the bipartite graph obtainedG = (L, R, F') with the intervald1, |L|] and[1, | R|], respectively, we
from G, by removing the edges corresponding to elementdfof let theadjacency matrixd¢; be the|L| x |R| matrix whose(l, r)th
Fig. 3 illustratesi (101 andGy1013- elementisl if (I,7) € E, and0 otherwise.

If G1,..., G, are bipartite graphs with left vertex sdts, .. ., L,/ Note that the(l, r)th element ofd« is the number of edges from
and right vertex set®;, ..., R+, respectively, such tha&;, = L,;, left nodel to right noder in G. Similarly, it can be shown that in the

foralli € [1,n' — 1], we let cascad¢Gy., ..., G, ], the number of left-to-right paths from leftmost
. vertex! to rightmost vertex- is the (7, r)th element of the product
{1} x Ly, ifi=1 Ao Ao e
Vi ¥ iy x Rimi = {i}y x Li,  if2<i<n’ Letting
{n' +1} X Ry, ifi =n'+1
_ , Al =D 1A @
and define theascaddG, . . ., G,,/] to be the graph whose vertex set —

isVi U--- UV, and where for € [1,r'], the edges betwe€lri
andVi4, are the edges df;, and there are no other edges. Drawinglenote thel, norm of the matrix 4, it follows that, for every
the vertices of each; vertically and to the left of th&;,, vertices, Mi,..., M, C {0,1}™
we call the verticed’; andV,,,, leftmostandrightmost respectively.

Fig. 4 illustrates the cascafi@0}, G{o1}- G1io}l- d)([GAII3“'7GA“'[71’]) = H‘4G1\41 Teeest ‘4GI\/[71/ )
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Let

def

(D)= {A¢,, : M € M(D)}
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For any matrix norm andt € C™*™ we have, e.g., [15, Theorem
5.6.9]

AA) < 1A

: 9)

denote the set of adjacency matrices corresponding to the collection
M(D) of minimal representing sets for the disallowed joint patterris is also well known, e.g., [15, Corollary 5.6.14], that

J (D) (see Sections IV-A and IV-B for definitions). Let

{ﬁ c A € E}
=1

denote the set of products efmatrices in>. Then, setting

s def

s =

~ def n
(S0l ) masc{J Al - 4 € 57

for an arbitary seE C C™*™, we get the following lemma.

Lemma 5:

’@L‘"(/\A(D) = ﬁn’(E(D)ﬂ

L) O

This suggests looking for algebraic methods to determine the capacity.

F. Matrix Norms and Spectral Radius

A matrix normfor the setC™*’™ of complex square matrices is a

mapping||-|| : C™"™*™ — [0,00) suchthatforall4, A,, A € C™*™

1) |4l =0, iff A=0

2) A+ Aol < [lAL] + [ A2l
3) [lAx - Aaf] < [l As]] - [ Azl

4) el = || |4l Veec.

Example 7: Let A € C™*™ . TheL, norm,||A||: of A was already
defined in (7). Themaximum-column-sum noraf A is

def
.=

A

ax Ai
121]‘5*,”2' il
and thespectral normof A € C™*™ is

Al =

max [|Az||2
z|l2=1

m 1/2
£
=1

is theEuclidean nornof a vectorz € C™. It can be shown thdt- ||1,

where

]2 <

PA) = p(A).
They are called thepectral radiusof A and denoted by(A).

G. Joint Spectral Radius

The quantities) andj can be generalized to sets of matrices. We
begin withp. Letting

~ def n
pn (S [ 1D = sup{[|A]l: A € ="}

for an arbitrary matrix nornfj - || and set= C C™*™, Rota and Strang
[16] defined thgoint spectral radiusof ¥ to be

d

R . ef . ~ . n
()= nlgl}xz pn(kEa“'H)l/

where the limit exists by submultiplicativity, and (8) implies that it is
independent of the nort- ||.

Daubechies and Lagarias [17] defined tieneralized spectral ra-
diusof ¥ to be

103  im sup ﬁn(E)]/"

where
Fn(S) = sup{/(4): 4 € 2"},
It follows from (9) that
pn(Z) < pn ([ )

for everyn. Hence

4

p(X)

IN

)

and Daubechies and Lagarias conjectured that equality holds, namely

A

p(E) = p(Z)

as was proven by Berger and Wang [18] for all fifiteWe denote this
guantity byp(X), and refer to it as the joint spectral radius.
Combining (3) and Lemmas 3 to 5, we obtain our main result.

Theorem 1: For every finiteD

cap(D) = log(p(2(D))). O

Namely, the capacity is the logarithm of the joint spectral radius of
(D).

[ ]l+, and|| - ||s are all matrix norms. O
One can show, e.g., [15, Theorem 5.4.4], that for any two matrix
norms|| - ||, || - || there are constants < ¢; < ¢, such that for all
‘4 E Cme
alldllg < |Alla < 2|4l (8)

By submultiplicativity of matrix norms, the limit

def

HA)Z lim [|A™|' "

exists, and, by (8), is independent of the matrix ndrnj|. One can
also define

pA) = max{|A| : X an eigenvalue of}.

This equality generalizes known results oanstrained systems
where, instead of differences, certain patterns are disallowed, and it is
well known, e.g., [19, Theorem 3.9], that the growth rate of the number
of sequences, @hannon capacitgf the constraint, isog(5(A4)), the
logarithm of the spectral radius of a corresponding adjacency mat-
rix A.

The joint spectral radius measures the maximum growth rate of a
product of matrices drawn from the &t This concept appears in many
applications. In addition to Rota and Strang’s original work in matrix
theory [16], it has been used to study convergence of infinite products
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of matrices, e.g., [20], with applications to wavelets [17]. The concepas provided an algorithm based on Lemma 6 which includes a se-
is also related to the stability properties of discrete linear inclusiorgience of lower bounds such thdf) may be specified to lie within
e.g., [21], [22], wherein the logarithm of the joint spectral radius ian arbitrarily small interval.

referred to as theyapunov indicator The remainder of this section describes an algorithm which empirical
In the next section we describe several existing algorithms for comesults show has a computation time competitive with the algorithm in
puting the joint spectral radius and introduce some new ones. [28].

V. COMPUTING THE JOINT SPECTRAL RADIUS C. The Pruning Algorithm

We present an alternative method, the pruning algorithm, for
bounding p(X) when all the matrices irE are nonnegative. The
Tsitsiklis and Blondel [23] have shown that approximating the joirthethod replaces the search for the largest norm among all (exponen-
spectral radius of a pair of matrices wif, 1} entries is NP-hard. In tjally many) products of» matrices with a search over a smaller set
addition, they have shown [24] that determining wheth€L) < 1  jth the same largest norm. It can be applied to comput&) and
whenX is a set of nonnegative rational matrices is undecidable. Henge (s, |- 1) for several norms.
the problem of determining the joint spectral radius of a set of nonneg-\we write A > 0 if every element of4 is nonnegative and > B if
ative rational matrices is undecidable. every element ofl is at least as large as the corresponding element of

Note that{X(D)| D a difference sgtis a subclass of the set of B_ |t can be shown, e.g., [15, Theorem 8.1.18], that it B > 0 then
{0, 1} matrices. It is currently unresolved whether or not determining p(A) > p(B). (10)

the capacity of a difference set is NP-hard. Nonetheless, Tsitsikilis andA matrix A dominatesnatrix 13 with respect to the nor- | if
Blondel's results point to the difficulty of finding efficient algorithms : P
to determine the capacity of a given difference set. AM|| = || BM]|
Here we determine the capacity of several simple difference sets tfeatall M > 0. In particular
arise in practice. Al > ||B]|-

A. Computing the Joint Spectral Radius Is Hard

A subsetS of ¥™ is dominatingif every matrix in¥" is dominated
by some matrix inS. Let ¥,, be any dominating subset &f*. By
Because of the submultiplicativity @f. (X, || - |]) definition

B. Existing Algorithms

P(E) = H(Z) < pa (S |- D" (S ]+ 1) = max{|| A
for everyn. Furthermore, as increases, this upper bound general
better approximates the joint spectral radius in the sense that for e

n, there exists am’ > n such that
\Ijn-l—l g anz-

o (S0 1D < pu (- I Given a matrix norm one can, therefore, construct a recursive al-
Similarly, everyp,, (¥) lower-boundg (%), and as: increasesj»(X)  gorithm which computes a dominating skt from ¥,,_; by consid-
generally better approximates the joint spectral radius from below, éfing all products in¥,,_; ¥ and “pruning” those that are dominated
the sense that, for every by another product. The subsequent growth ratelief] will depend
pn(E)l/n < ﬁnk(z)l/kn on the condition for domination. The following lemmas provide suffi-
cient conditions for domination with respect to the norm, the max-

CAEW,). (11)

I " . . . .
\)l— rthermore, it is easy to verify that if all matricestirare nonnegative
thén¥,, ¥ is a dominating subset &I" ™", namely

foranyk > 1. o o _ imum-column-sum norm, and the spectral norm.
This suggests approximating the joint spectral ragit) by com- We write A >¢ B if every column-sum of4 is at least as large as
puting the lower bounds the corresponding column-sum Bf
¢ BTk ) )
122, (3 Lemma 7: If A >¢ B, thenA dominatesB with respect td| - ||1
and upper bounds and|l- [ .

Proof: Clearly, if A >« B, then||A||: > ||B]|» and|| 4], >
min (S, |- |)"/* || B||~. Domination follows asd >¢ B implies AM >¢ BM for
1sksn everyM > 0. |

forn =1,2,... . However, the number of matrix operations increases |t can be shown, e.g., [15, Sec. 5.6.6], that

as|X|", such that determining(X) with an arbitrary error may be
computationally prohibitive.

Several steps have been taken to reduce the growth rate of
number of computations required to approximat® ). Maesumi [25]
has shown the number of matrix operations may be reduced|&E¢m Lemma 8: If A*A > B*B, thenA dominatesB with respect to
to|Z|" /n. Daubechies and Lagarias [17] proved the following resulty . ||,

Proof: SinceA™ A andB™ B are nonnegative, (10) implies

p(A"A) > p(B"B)

Alls = p(Aa*4)'/? (12)
ereA™ denotes the Hermitian adjoint df. This can be used to prove
the following lemma.

Lemma 6: If {A;} is a set of building blocks foE, i.e.,

a) eachd; is the product of:; matrices drawn fronx,

b) there exists someo > 0 such that, ifA is a finite product of hence
elements oft, thend = A4; --- 4;, @, where@ is a product

of at mostn, elements of, 1Alls = [1Bl],-
thenp(S) < sup [|4;(]'/". [0 Domination follows as for every/ > 0
A AT\ * AT — /L/*,//
Lemma 6 can be used to implement a recursive “branch-and-bound” (AM)"AM = M"A"AM

algorithm to upper-bound(X), e.g., [17], [26], [27]. Gripenberg [28] > M'B*BM = (BM)"BM. O
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An analogous algorithm, based on (10) may be used to construaral

sequence of convergent lower boundspoR ).

VI. CAPACITIES OF CERTAIN DIFFERENCESETS

A. Explicit Computation

max log, ﬁk(E)lM =0.8113...

1<k<316

<cap(D) < | min log, pi(] -] D) =08116... .

<k<31

In some cases, one can find the joint spectral radius, and henceugvever, one can show by an inductive argument using the domination

capacity, exactly.
Example 8: LetD = {0™+}, m > 0. We show thas,, (D) < 2™

condition in Lemma 7 that for = 1,2,...

n
forall n > m. Form = 0, the result is obvious. Suppose there exists Vin = {(AG{HO}AG{HO}AG{oonAG{om) )

a codeC which avoidsD with |C| > 2™. Then there must exist v €

C, u # v suchthatup ,,) = vy ). ForC to avoid D, we must have
up;) = v form < i < n. Henceu = v, a contradiction. Therefore,

6.(D) < 2™ and
cap({0"+}) =0

forall m > 0. O
Example 9: Let D = {0 + 0}. One can show that

and therefore

cap({0+0}) = 0.5. O

The pruning algorithm may lead to a direct computation of the joint’

spectral radius via an inductive argument.

Example 10: For D = {+-1} we have

S(+-) = {40y Ac oy |-

n
(‘4G{001}AG{110} Ac{no} AG{OOI}) s
n
(“4G{001}AG{001} AG{no} AG{IIO}) s
)7’1

(‘4(}{110}‘4(}{001}AG{om}AG{no} }

Hence

1/4n

n
p(X) = lim H(AG{HO}AG{MO}“40{001}14(7{001})

1/4
=0p (A(7{110}AG{110}‘4G{001}AG{OOl})
= (2+ ((25 - 3v69)/2)"/*
+((25+3V69)/2)' /%) /3

and

cap({++ —}) = log, p(X) = 0.8113... . O

B. Simplifications
When all matrices irt are Hermitian, it follows from (12) that

p(Z) = pm(E,

hence

By application of the domination condition in Lemma 7 and inspection p(X) = pr(X - ls)-

of £(+—), one can show that for = 1,2, ...

n n
Uy = {(AG{Ol}AG{lo}> ’ (AG{m}AG{Ol}> }
n
ot = {Aoy (Ao Ac )

AG oy (A("'{w}AG{on)n}
from which it follows that
n({+=H=bn1({+=-D+ o 2({+-}
whereé; = 2 andé, = 3. Hence, as shown in Example 1,

cap({+—1}) = log,((1+ v3)/2) = 0.6942... . O

For example, this can be used to provide a simple prooéipf{++}).

Example 12: For D = {++} we have

s -{[0 11021

hencecap({++}) = log((1 + v/5)/2). O

The following lemma equates the capacities of certain pairs of differ-
ence sets for which there exists a bijection between codes which avoid
the sets.

Lemma 9: Fix a difference seD. Let D' be the difference set ob-
tained by inverting the symbols, — at odd positions of the patterns
in D. Then

cap(D) = cap(D").

An inductive argument may lead to a direct computation in cases where Proof: Suppose’ avoidsD. Let C' be the code constructed by

the convergence rate of the bounds is slow.

Example 11: For D = {+ + —} we have

S{++-} = {AG{HO}’AG{OOU}

inverting every other bit of the codewords®ffor example, every bit
corresponding to an even position index. (One could equally well invert
every bit corresponding to an odd position index.) It is straightforward
to show that’" avoidsD’, hences,, (D') > 6, (D). Similarly, one can
map any code which avoid?’ to a code which avoid® by inverting
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TABLE |
CAPACITY OF VARIOUS DIFFERENCESETS D

a = logy((1 + v5)/2) = .6942...

1= logg((2 + (2272

6 = log,((1 + (19 + 3v/33)Y/3 + (19 —- 3v/33)1/3)/3) = .8791...,

231”21— °69)1/3)/3) = .8113...,

e =log,(1/ (3 4+ V17)/2) = .9162...,

n = log,((3 + v/3C + 1/99 — 3¢ + 2344/3/)/12) = .9467...,

WHERE ¢ = 11 — 5683 + 4/, AND 3 = (2/(—65 + 3v/1689))1/3.

m D cap(D) |O

m>1[0m 1+ 0 -

2 +— o 10 01
++ o 11
0+— [, .6948) | 101,010
0+0 5 00, 11M
0+ + [, .6948) | 11

3 +0- o 11019, 001,

011M, 100
+0+ a 101,111
++ - ¥ 110, 1100,
001 001®

+++ 5 111
+—+ ) 1010 010

4 0+—+ |[5,.8797) | 1010,0101
O+ ++ |[5,.8797) | 111
+—+— | [r,.9468) | 1010©,0101®
+ 444 | [n,.9468) | 1111

5 0+—+0][e.9164) [10100,0101™M
0+++0]|[e.9164) | 11110, 0000V

every other bit of the codewords 6f. Hence 6..(D’) = 6,.(D) and
cap(D) = cap(D'). O

For example, it follows from Lemma 9 that

cap({++}) = cap({+-1}).
cap({+++}) = cap({+ - +}).
cap({0+ —} = cap({0+ +}).

and

C. Results

Table | summarizes known values or rangesa(D) for all dif-
ference setd consisting of a single pattern of length 3 and some

patterns of larger length. Since the same number of sequences avoidi§]
patternp as its negatiorn-p, we assume that the first nonzero element

of p is+. Also, we do not listap(D) if the (identical) capacity of the

string obtained by reversing the orderdfias already been addressed. [17]
Next to the capacity, we list a constraint describing a sequence of

codes{C.}, such that eacti,, avoidsD and

lim log |C,|/"

n—2o0

achieves the lower bound on the capacityap( D) when itis known.

In a notation similar to that used to describe shift spaces [29, Defini-

tion 1.2.1], the constraint is defined by a list of forbidden pattepns
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and the codeS§,, can be taken to be the largesbit codes satisfying

the constraint. If no superscript is listed with a pattern, the pattern is
forbidden from appearing in all columns of the code. If superscripts
appear, then the patterns are periodically forbidden and the period is
one more than the largest superscript. The superscript then represents
the column indexes (modulo the period) in which the pattern cannot
appear. For examplé()1,010 means that these triples do not appear

in any three consecutive columns, ard”, 01¢") means that0 does

not appear in columng, ¢ + 1] for eveni and01 does not appear in
columnsli, ¢ 4 1] for odd:.

Several of these constraints have appeared in the magnetic
recording literature® = {00*, 11V} is referred to as thbiphase
constraint [30],0 = {1010,0101} as theMTR constraint [5], and
O = {1010, 0101V} as theTMTRconstraint [6].
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Abstract—We investigate the importance sampling (IS) simulation for ~tained variance and the minimum variance is shown to be represented
the sample average of an output sequence from an irreducible Markov by the KL divergence. Moreover, we show a geometric relationship be-

chain. The optimal Markov chain used in simulation is known to be a  tween a simulation Markov chain and the optimal one.
twisted Markov chain, however, the proofs in [2], [3] are very complicated

and do not give us a good perspective. We give a simple and natural
proof for the optimality of the simulation Markov chain in terms of the Il. IMPORTANCE SAMPLING SIMULATION FOR MARKOV CHAINS

Kullback-Leibler (KL) divergence of Markov chains. The performance We i tigat imulation for th | f tout
degradation of the IS simulation by using a not optimal simulation Markov € Investigate a simulation for the sample average or an output se-

chain, i.e., the difference between the obtained variance and the minimum guence from an irreducible finite-state Markov chain.
variance is shown to be represented by the KL divergence. Moreover, we  Let Py denote an irreducible Markov chain on the state sgace

show a geometric relationship between a simulation Markov chain and {0. 1, ..., K}, K > 0. The state transition probability matrix &%
the optimal one. is denoted byPs = (Po(z'|x))s. »7cq. and the initial distribution is
Index Terms—mportance sampling simulation, information geometry, given by the stationary distributign, = (po(«)).co of Fy. The joint
Kullback-Leibler (KL) divergence, Markov chain. probability ofz, 2’ € €2 is denoted byPy (x, 2') = po(z)Po(a’|2).
Consider a mapping: Q2 x 2 — Z, whereZ denotes the set of
integers. Denote by p,[f] the expectation of with respect ta%

On the Optimal Markov Chain of IS Simulation

Kenji NakagawaMember, IEEE

|. INTRODUCTION

The importance sampling (IS) simulation technique has been used Erlfl = Z Po(a, ') f(x, a'). )
to obtain quickly an accurate estimate for a very small probability that @, 2/ €Q
is not tractable by the ordinary Monte Carlo (MC) simulation. The 18ssumeEr,[f] = 0 without loss of generality.
technique is widely used for various types of engineering problems,Letz” = (x1, 2, ..., x,) € " be a sample sequence generated
e.g., the estimation of a blocking probability in queuing system [2py the Markov chain’% . We consider the probability of the following
[4], [7], an error rate in communications system [2], [6], etc. See [Zet4.:
for an overview of the application of IS simulation. {
z" e Q"

n—I1

%Zf(l‘nmmw}v c>0. (2
=1

If the target event (blocking in queuing systems, or error in commud, =
nications systems) is a rare event with small probability of less than
about10~°, it is impossible to obtain an estimate by the ordinary MQVrite

an = PRy(4,) = Y R(a")
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