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Abstract—Certain magnetic recording applications call for
a large number of sequences whose differences do not in-
clude certain disallowed binary patterns. We show that the
number of such sequences increases exponentially with their
length and that the exponent, or capacity, is the logarithm
of the joint spectral radius of an appropriately defined set
of matrices. We derive a new algorithm for determining
the joint spectral radius of sets of nonnegative matrices and
combine it with existing algorithms to determine the ca-
pacity of several sets of disallowed differences that arise in
practice.

I. Introduction

The error probability of many magnetic-recording sys-
tems may be characterized in terms of the differences be-
tween the sequences that may be recorded [1], [2], [3]. In
fact, the bit-error-rate is often dominated by a small set of
potential difference patterns. Recently, binary codes have
been proposed which exploit this fact [4], [5], [6], [7], [8],
[9]. The codes are designed to avoid the most problem-
atic difference patterns by constraining the set of allowed
recorded sequences and have been shown to improve system
performance.

In this paper we study the largest number of sequences
whose differences exclude a given set of disallowed patterns.
We show that the number of such sequences increases ex-
ponentially with their length and that the exponent, or
capacity, is the logarithm of the joint spectral radius of an
appropriately defined set of matrices. We derive new al-
gorithms for determining the joint spectral radius of sets
of non-negative matrices and combine them with existing
algorithms to determine the capacity of several sets of dis-
allowed differences that arise in practice.

The paper is organized as follows. In the next section
we motivate the problem by summarizing known results
showing that the error probability in models of magnetic
recording systems is determined by the differences between
recorded sequences. In Section III we formally describe
the resulting combinatorial problem, introduce the nota-
tion used, and present some simple examples. Section IV
contains the paper’s main result, deriving the connection
to the joint spectral radius. In Section V we describe some
known algorithms for determining the spectral radius, and
derive a new algorithm. Finally, in Section VI, we de-
termine the capacities of some simple sets of disallowed
patterns.

This work was supported in part by the UC Micro Project 98-140
in cooperation with Marvell Semiconductor Incorporated and NSF
grant NCR-9612802.
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Fig. 1. Communications channel model

II. Motivation

Consider the binary communications channel in Fig. 1
where a binary sequence a = (. . . , a0, a1, a2, . . . ) passes
through a linear channel with impulse response h(t) and
n(t) is additive white Gaussian noise. The received signal
is given by

r(t) =
∑

k

akh(t− k) + n(t).

Forney [10] showed that for h(t) of finite duration, the re-
ceiver illustrated in Fig. 1 consisting of a whitened matched
filter w(t), a bit-rate sampler and a minimum Euclidean
distance estimate given by the Viterbi algorithm yields a
maximum-likelihood estimate for the transmitted sequence
a.

However, the complexity of implementing the Viterbi al-
gorithm for the maximum-likelihood estimate grows expo-
nentially with the bit-period duration of the channel pulse
response. Hence, sub-optimal partial-response schemes are
often implemented in practice. For example, in hard-disk
drive magnetic recording channels, partial-response equal-
ization and detection using the Viterbi algorithm is cur-
rently the accepted mode of operation, e.g., [11].

In a partial-response scheme, the receiving filter w(t) is
chosen such that the signal at the input to the Viterbi de-
tector in the absence of noise approximates Xa, where X
is the Toeplitz matrix corresponding to a finite target re-
sponse x. The Viterbi algorithm is then used to obtain the
sequence Xâ closest in Euclidean distance to the sequence
received at the input to the Viterbi detector.

Let the difference sequence, e = â− a, denote the differ-
ence between the decoded and transmitted sequences. The
effective distance between a and â is

deff(e) def=
(Xe)T (Xe)

(Xe)TR(Xe)

where R is the autocorrelation matrix of the noise at the
input to the Viterbi detector and the superscript T denotes
vector transposition.
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At high signal-to-noise ratios, the probability of a bit
error for this detector is well approximated, e.g. [12], by

Pr(bit error) ≈
∑

e

P (e)wgt(e)Q
(
deff(e)

2

)
(1)

where wgt(e) is the number of ±1’s in e, and

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt

is the error function.
The sum in (1) is largely determined by a small set of

dominant error sequences—those with small effective dis-
tance. Letting D be the set of these difference sequences
we can approximate the error probability using only a few
terms:

Pr(bit error) ≈
∑
e∈D

P (e)wgt(e)Q
(
deff(e)

2

)
.

The magnetic recording channel may be modeled with
the Lorentzian pulse response,

h(t) =
1

1 + (2t/τ)2
− 1

1 + (2(t− 1)/τ)2
,

where the parameter τ measures the density of the record-
ing. It was shown in [1] that for x = (1, 1,−1,−1) and
1.5 ≤ τ ≤ 2.75, a target response and a density range of
practical interest, the minimum effective distance difference
pattern is contained in the set

D = {000(+0)k00, 000 + (−+)k000},

where (·)k denotes k ≥ 1 repetitions of (·), and we use
a shorthand notation to represent the ternary difference
patterns, i.e., +0− is used to denote +1, 0,−1. The bit-
error probability is well approximated over this range of
densities by taking k = 1, i.e., D = {000 + 000, 000 + − +
000}.

The fact that a small set of difference patterns dominate
the system performance has motivated the construction of
codes designed to avoid the occurrence of the low-distance
difference patterns [4]. The subsequent increase in the min-
imum effective distance is, however, offset by a loss in rate
from the code. Further research [5], [6], [7], [9], [8] has
investigated higher-rate codes designed to avoid the differ-
ence pattern 000+−+000, which is the minimum effective
distance pattern over certain density ranges. This leads
to the following question, which we address in this paper:
what is the highest rate of a code which avoids a specified
set of difference patterns?

III. Notation and definitions

The difference between two n-bit sequences u =
(u1, . . . , un) and v = (v1, . . . , vn) is the sequence u− v

def=
(u1 − v1, . . . , un − vn) ∈ {−1, 0, 1}n, where subtraction is
over the reals.

Given a set D of finite-length disallowed difference pat-
terns and a sequence length, n, we are interested in the
largest number of n-bit sequences whose differences do not
include any element of D.

An n-bit code C is a collection of n-bit sequences, or
codewords, thought of as potential recorded sequences. C
avoids D if, for all u, v ∈ C and all i ≤ j in [1, n],

u[i,j] − v[i,j] /∈ D (2)

where, for all i ≤ j, we use the notation

[i, j] def= {i, . . . , j}

and
u[i,j]

def= ui, . . . , uj.

The largest number of sequences whose differences do
not include any pattern in D is therefore

δn(D) def= max{|C| : C avoids D}.

It is easy to verify that δn(D) is sub-multiplicative:

δn1+n2(D) ≤ δn1(D) · δn2(D)

for all n1, n2 > 0. Hence, by the Sub-Additivity Lemma,
e.g., [13], we can define the capacity of D as the limit

cap(D) def= log
[

lim
n→∞

(δn(D))1/n
]
. (3)

We would like to determine the capacities of various differ-
ence sets D and find codes that achieve them.

We are primarily interested in finite difference sets.
Without loss of generality we therefore assume from here
on that all patterns in D have the same length m. Oth-
erwise, let m be the length of the longest pattern in D
and replace every pattern of length m′ < m by its 3m−m′

extensions of length m.
With this equal-length assumption, we restate con-

straint (2) and require that for all u, v ∈ C and all i ∈ [1, n′],

u[i,i′] − v[i,i′] /∈ D

where, for i and n only, we let

i′
def= i + m− 1

and
n′ def= n−m + 1.

Note also that we use the term pattern to refer to strings
of length m and sequence for strings of length n.

The following examples illustrate these concepts for two
simple disallowed difference sets. An n-bit code C is repre-
sented as a |C| × n array whose rows are the codewords.

Example 1: Consider the difference set D = {+−} con-
sisting of a single disallowed pattern. One can verify that
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the following 2-, 3-, and 4-bit codes,

C2
def=


 00

01
11


 C3

def=




000
010
011
110
111


 C4

def=




0000
0001
0100
0101
0111
1100
1101
1111



,

respectively, avoid D and that there are no larger codes of
lengths 2, 3, and 4. Hence

δ2(D) = 3, δ3(D) = 5, and δ4(D) = 8.

We will show in Example 10 that for n ≥ 4

δn(D) = δn−1(D) + δn−2(D)

hence

δn(D) =
1√
5


(

1 +
√

5
2

)n+2

−
(

1 −
√

5
2

)n+2

 ,

is the shifted Fibonacci sequence, and

cap(D) = log
(

(1 +
√

5)/2
)
.

�
Example 2: Consider the difference set D = {0+0}. One

can verify that the 3- and 4-bit codes,

C3
def=




000
100
011
111


 C4

def=




0000
0001
1000
1001
0110
0111
1110
1111



,

respectively, avoid D and there are no larger codes of length
3 and 4. Hence

δ3(D) = 4 and δ4(D) = 8.

One can show that for all n, the ‘repetition’ code

Cn
def=

{ {u0u1u1u2u2 · · ·un−1
2
un−1

2
} for n odd

{u0u1u1 · · ·un
2 −1un

2 −1un
2
} for n even

,

avoids D. Hence
δn(D) ≥ 2�

n
2 �+1

and
cap(D) ≥ .5.

It will be shown in Section VI that in fact

cap(D) = .5.

�

Example 3: Consider the difference set D = {++,+−}
consisting of a pair of patterns. One can verify that the 2-,
3-, and 4-bit codes

C2
def=

[
00
10

]
C3

def=




000
001
100
101


 C4

def=




0000
0010
1000
1010




avoid D and that no larger codes for lengths 2, 3, and 4
avoid D, hence

δ2(D) = 2 and δ3(D) = δ4(D) = 4.

For general n, it can be easily seen that

Cn
def=

{
{u10u30 . . . 0un} if n is odd,
{u10u30 . . . un−10} if n is even,

avoids D, and that if a code C avoids D then at least one
of any two adjacent columns in C must be constant. Hence

δn(D) = 2�
n
2 �,

and
cap(D) = .5.

�

IV. From disallowed differences to joint

spectral radius

In this section we describe the paper’s main result, show-
ing that the capacity of a difference set is the joint spectral
radius of an appropriately defined set of matrices. The
proof is presented via a sequence of lemmas in the follow-
ing sections.

A. Disallowed joint patterns

Let C be an n-bit code. Let

Ai
def= {u[i,i′] : u ∈ C}

be the set of m-bit patterns appearing in columns [i, i′],
and let

Mi
def= {0, 1}m −Ai (4)

be the set of m-bit patterns missing from those columns.
A joint pattern is a set of two m-bit patterns. A joint

pattern {p, p′} is disallowed for a difference set D if

p− p′ ∈ D or p′ − p ∈ D.

Let J (D) denote the collection of all disallowed joint
patterns. Observe that

|J (D)| =
∑
p∈D

2z(p),

where z(p) is the number of zeros in the pattern p.
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Lemma 1: Let C be an n-bit code and let M1, . . . ,Mn′

be as defined in (4). Then C avoids D iff for all i ∈ [1, n′]
and all J ∈ J (D),

J ∩Mi �= ∅. (5)

Proof: If {p, p′} ∈ J (D) is a disallowed joint pattern,
then p and p′ cannot both appear in any set Ai of a code
that avoids D, for if they did, we would get a disallowed
difference. Hence, {p, p′} ∩Mi is not empty for all i.

Conversely, if (5) holds, then for every u, v ∈ C and all
i ∈ [1, n′], u[i,i′] − v[i,i′] /∈ D. �

Example 4: For D = {+−}, the collection of disallowed
joint patterns is

J (D) = {{01, 10}},
and indeed, |J (D)| = 1 = 2z(+−). One can verify that
{01, 10} intersects each Mi of the codes in Example 1.

For D = {0 + 0}, the collection of disallowed joint pat-
terns is

J (D) = {{010, 000}, {011, 001},
{110, 100}, {111, 101}},

satisfying |J (D)| = 4 = 2z(0+0), and each set in J (D)
intersects every Mi in Example 2.

For D = {++,+−},

J (D) = {{11, 00}, {10, 01}}.
Again |J (D)| = 2 = 2z(++) + 2z(+−) and each set in J (D)
intersects every Mi in Example 3. �

B. Representing sets

A set M ⊆ {0, 1}m represents or is a representing set
for J (D) if it intersects every set in J (D). It is minimal
if, in addition, none of its strict subsets represents J (D).
Clearly, every representing set contains a minimal one. Let
M(D) be the collection of all minimal representing sets for
J (D).

In general, finding the smallest size of a minimal repre-
senting set, and therefore finding all of them, is NP hard,
e.g., [14, SP8]. However, in the cases we consider, m is
fixed and typically small, hence finding M(D) is usually
not difficult.

Equation (5) implies the following lemma.
Lemma 2: If a code C avoids D, then, for every i ∈ [1, n′],

the set Mi defined in (4) contains a set M ′
i ∈ M(D).

Example 5:

M({+−}) = {{01}, {10}}
and

M({++,+−}) = {{10, 11}, {01, 11},
{00, 10}, {00, 01}}.

One can verify that each of the sets Mi of the codes pre-
sented in Examples 1 and 3 contains an element of the
corresponding M(D). �
We can think of the minimal representing sets as the small-
est candidate sets of patterns which must be missing from
columns [i, i′] in a code which avoids D.

C. Disallowed sets

Let M1, . . . ,Mn′ ⊆ {0, 1}m be sets of m-bit patterns.
An n-bit sequence s1, . . . , sn avoids the set sequence
M1, . . . ,Mn′ if s[i,i′] /∈ Mi for all i ∈ [1, n′]. We think of
these sets as missing from s1, . . . , sn. Let µ(M1, . . . ,Mn′)
be the number of n-bit sequences that avoid M1, . . . ,Mn′ .
Note that if Mi ⊇ M ′

i for all i ∈ [1, n′], then

µ(M1, . . . ,Mn′) ≤ µ(M ′
1, . . . ,M

′
n′). (6)

If M is a collection of sets in {0, 1}m, we let

µn(M) def= max{µ(M1, . . . ,Mn′) : Mi ∈ M ∀i}

be the largest number of n-bit sequences avoiding a se-
quence of sets in M.

Note that unlike disallowed differences which constrain
pairs of sequences, disallowed sets constrain individual se-
quences. We will show later that this type of constraint
is easier to analyze, and we now prove that it leads to the
same capacity.

Lemma 3: For every n,

δn(D) = µn(M(D)).

Proof: Consider a code C that avoids D and achieves
δn(D). For i ∈ [1, n′] let Mi be the set defined in (4), and
let M ′

i be the sets in M(D) indicated in Lemma 2. Then,
using (6),

δn(D) = |C| ≤ µ(M1, . . . ,Mn′)
≤ µ(M ′

1, . . . ,M
′
n′) ≤ µn(M(D))

where the first inequality follows as, by definition, each
codeword in C avoids M1, . . . ,Mn′ , the second because,
as Lemma 2 showed, for each Mi there exists M ′

i in
M(D) such that M ′

i ⊆ Mi hence µ(Mi, . . . ,Mn′) ≤
µ(M ′

i , . . . ,M
′
n′), and the third from the definition of

µn(M(D)).
To establish the reverse inequality, note that if

M1, . . . ,Mn′ ∈ M(D), then, by Lemma 1, the set of all
n-bit sequences avoiding M1, . . . ,Mn′ avoids D. �

D. Bipartite and cascade graphs

In the previous subsection we reduced the difference con-
straint on pairs of sequences to a constraint on individual
sequences. We now convert this problem to that of count-
ing paths in graphs.

A bipartite graph (L,R,E) consists of a set L of left
vertices, a set R of right vertices, and a set E of edges.
Each edge (l, r) ∈ E connects a left vertex l ∈ L to a
right vertex r ∈ R. Though we don’t draw their direction
explicitly, we think of the edges as directed from left to
right.

For m ≥ 2, let Gm be the bipartite graph where
L = R = {0, 1}m−1 and (l1, . . . , lm−1) ∈ L is con-
nected to (r1, . . . , rm−1) ∈ R if li = ri−1 for all i =
2, . . . ,m−1. We identify this edge with the m-bit sequence
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Fig. 2. G2 and G3
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Fig. 3. G{10} and G{101}

l1, l2, . . . , lm−1, rm−1 = l1, r1, . . . , rm−1. Fig. 2 illustrates
G2 and G3.

For M ⊆ {0, 1}m, define GM to be the bipartite graph
obtained from Gm by removing the edges corresponding to
elements of M . Fig. 3 illustrates G{10} and G{101}.

If G1, . . . , Gn′ are bipartite graphs with left vertex sets
L1, . . . , Ln′ and right vertex sets R1, . . . , Rn′ , respectively,
such that Ri = Li+1 for all i ∈ [1, n′ − 1], we let

Vi
def=




{1} × L1 if i = 1,
{i} ×Ri−1 = {i} × Li if 2 ≤ i ≤ n′,
{n′ + 1} ×Rn′ if i = n′ + 1,

and define the cascade [G1, . . . , Gn′ ] to be the graph whose
vertex set is V1 ∪ . . . ∪ Vn′+1 and where for i ∈ [1, n′], the
edges between Vi and Vi+1 are the edges of Gi, and there are
no other edges. Drawing the vertices of each Vi vertically
and to the left of the Vi+1 vertices, we call the vertices
V1 and Vn′+1 leftmost and rightmost, respectively. Fig. 4
illustrates the cascade [G{10}, G{01}, G{10}].

A path in a cascade [G1, . . . , Gn′ ] is a sequence
v1, . . . , vn′+1 of vertices where each vi ∈ Vi, and vi is con-
nected to vi+1 for all i ∈ [1, n′]. Note that all paths connect
a leftmost vertex to a rightmost vertex and proceed from

V3 V4V2V1

10

00

1111

01

00

1, 1

1, 0 2, 0

2, 1 3, 1

3, 0 4, 0

4, 1

01

00

11

Fig. 4. [G{10}, G{01}, G{10}]

left to right. We let ψ([G1, . . . , Gn′ ]) be the total number of
paths in the cascade. For example, in [G{10}, G{01}, G{10}]
there are two paths from (1, 0) to (4, 0), three paths from
(1, 0) to (4, 1), etc.. Hence,

ψ([G{10}, G{01}, G{10}]) = 2 + 3 + 1 + 2 = 8.

If M ⊆ {0, 1}m and s ∈ {0, 1}m, then l = s[1,m−1] and
r = s[2,m] are vertices of GM with an edge from left node
l to right node r if and only if s /∈ M , namely, s avoids
M . More generally, for n ≥ m, there is a bijection between
n-bit sequences that avoid M1, . . . ,Mn′ and paths in the
cascade [GM1 , . . . , GMn′ ], hence

µ(M1, . . . ,Mn′) = ψ([GM1 , . . . , GMn′ ]).

Letting

ψn(M) def= max{ψ([GM1 , . . . , GMn′ ]) : Mi ∈ M ∀i}

we obtain
Lemma 4:

µn(M(D)) = ψn(M(D)). �
Example 6: Let D = {+−}. One can ver-

ify that ψ4(M(D)) = 8, achieved by the cascade
[G{10}, G{01}, G{10}], illustrated in Fig. 4. There is a bijec-
tion between the paths in the cascade and the codewords
in Example 1. �

E. Adjacency matrices

Identifying the elements of L and R of a bipartite graph
G = (L,R,E) with the intervals [1, |L|] and [1, |R|], re-
spectively, we let the adjacency matrix AG be the |L|× |R|
matrix whose (l, r)th element is 1 if (l, r) ∈ E, and 0 oth-
erwise.

Note that the (l, r)th element of AG is the number of
edges from left node l to right node r in G. Similarly,
it can be shown that in the cascade [G1, . . . , Gn′ ], the
number of left-to-right paths from leftmost vertex l to
rightmost vertex r is the (l, r)-th element of the product
AG1AG2 . . . AGn′ .

Letting

‖A‖1 =
∑
l,r

|Al,r| (7)
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denote the L1 norm of the matrix A, it follows that, for
every M1, . . . ,Mn′ ⊆ {0, 1}m,

ψ([GM1 , . . . , GMn′ ]) = ‖AGM1
· . . . ·AGM

n′ ‖1.

Let

Σ(D) def= {AGM : M ∈ M(D)}

denote the set of adjacency matrices corresponding to the
collection M(D) of minimal representing sets for the dis-
allowed joint patterns J (D) (see sections IV-A and IV-B
for definitions). Letting

ρ̂n(Σ, ‖ · ‖1) def= max

{∥∥∥∥∥
n∏

i=1

Ai

∥∥∥∥∥
1

: A1, . . . , An ∈ Σ

}
,

for an arbitary set Σ ⊆ Cm×m, we get
Lemma 5:

ψn(M(D)) = ρ̂n′(Σ(D), ‖ · ‖1). �
This suggests looking for algebraic methods to determine
the capacity.

F. Matrix norms and spectral radius

A matrix norm for the set Cm×m of complex square ma-
trices is a mapping ‖ · ‖ : Cm×m → [0,∞) such that for all
A1, A2, A ∈ C

m×m,

1. ‖A‖ = 0 iff A = 0,
2. ‖A1 + A2‖ ≤ ‖A1‖ + ‖A2‖,
3. ‖A1 · A2‖ ≤ ‖A1‖ · ‖A2‖,
4. ‖cA‖ = |c| · ‖A‖,∀c ∈ C.

Example 7: Let A ∈ Cm×m. The L1 norm, ||A||1 of
A was already defined in (7). The maximum-column-sum
norm of A is

‖A‖γ
def= max

1≤j≤m

m∑
i=1

|Ai,j |,

and the spectral norm of A ∈ C
m×m is

‖A‖s
def= max

‖x‖2=1
‖Ax‖2,

where

‖x‖2
def=

(
m∑

i=1

|xi|2
)1/2

is the Euclidean norm of a vector x ∈ C
m. It can be shown

that ‖ · ‖1, ‖ · ‖γ , and ‖ · ‖s are all matrix norms. �
One can show, e.g., [15, Theorem 5.4.4], that for any two

matrix norms ‖ · ‖α, ‖ · ‖β there are constants 0 < c1 < c2
such that for all A ∈ Cm×m,

c1‖A‖β ≤ ‖A‖α ≤ c2‖A‖β. (8)

By sub-multiplicativity of matrix norms, the limit

ρ̂(A) def= lim
n→∞

‖An‖1/n,

exists, and, by (8), is independent of the matrix norm ‖ · ‖.
One can also define

ρ̌(A) def= max {|λ| : λ an eigenvalue of A} .

For any matrix norm and A ∈ Cm×m we have, e.g., [15,
Theorem 5.6.9],

ρ̌(A) ≤ ‖A‖. (9)

It is also well known, e.g., [15, Corollary 5.6.14], that

ρ̌(A) = ρ̂(A).

They are called the spectral radius of A and denoted by
ρ(A).

G. Joint spectral radius

The quantities ρ̂ and ρ̌ can be generalized to sets of ma-
trices. We begin with ρ̂. Letting

ρ̂n(Σ, ‖ · ‖) def= sup

{∥∥∥∥∥
n∏

i=1

Ai

∥∥∥∥∥ : A1, . . . , An ∈ Σ

}

for an arbitrary matrix norm ‖·‖ and set Σ ⊆ Cm×m, Rota
and Strang [16] defined the joint spectral radius of Σ to be

ρ̂(Σ) def= lim
n→∞

ρ̂n(Σ, ‖ · ‖)1/n,

where the limit exists by sub-multiplicativity, and (8) im-
plies that it is independent of the norm ‖ · ‖.

Daubechies and Lagarias [17] defined the generalized
spectral radius of Σ to be

ρ̌(Σ) def= lim sup
n→∞

ρ̌n(Σ)1/n

where

ρ̌n(Σ) def= sup

{
ρ̌

(
n∏

i=1

Ai

)
: A1, . . . , An ∈ Σ

}
.

It follows from (9) that

ρ̌n(Σ) ≤ ρ̂n(Σ, ‖ · ‖)

for every n. Hence,

ρ̌(Σ) ≤ ρ̂(Σ),

and Daubechies and Lagarias conjectured that equality
holds, namely

ρ̌(Σ) = ρ̂(Σ),

as was proven by Berger and Wang [18] for all finite Σ. We
denote this quantity by ρ(Σ), and refer to it as the joint
spectral radius.

Combining (3) and Lemmas 3 to 5, we obtain our main
result:
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Theorem 1: For every finite D,

cap(D) = log(ρ(Σ(D))). �
Namely, the capacity is the logarithm of the joint spectral
radius of Σ(D).

This equality generalizes known results on constrained
systems where, instead of differences, certain patterns are
disallowed, and it is well known, e.g., [19, Theorem 3.9],
that the growth rate of the number of sequences, or Shan-
non capacity of the constraint, is log(ρ̂(A)), the logarithm
of the spectral radius of a corresponding adjacency matrix
A.

The joint spectral radius measures the maximum growth
rate of a product of matrices drawn from the set Σ. This
concept appears in many applications. In addition to Rota
and Strang’s original work in matrix theory [16], it has been
used to study convergence of infinite products of matrices,
e.g., [20], with applications to wavelets [17]. The concept
is also related to the stability properties of discrete linear
inclusions, e.g., [21], [22], wherein the logarithm of the joint
spectral radius is referred to as the Lyapunov indicator.

In the next section we describe several existing algo-
rithms for computing the joint spectral radius and intro-
duce some new ones.

V. Computing the joint spectral radius

A. Computing the joint spectral radius is hard

Tsitsiklis and Blondel [23] have shown that approximat-
ing the joint spectral radius of two integer matrices is NP-
hard. In addition, they have shown [24] that determining
whether ρ(Σ) < 1 when Σ is a set of nonnegative rational
matrices is undecidable. Hence, the problem of determin-
ing the joint spectral radius of a set of nonnegative rational
matrices is undecidable.

Note that {Σ(D)|D a difference set} is a subclass of
the set of {0, 1} matrices; hence it remains unresolved
whether or not determining the capacity of a difference
set is tractable. Nonetheless, Tsitsikilis and Blondel’s re-
sults point to the difficultly of finding efficient algorithms
to determine the capacity of a given difference set.

Here we determine the capacity of several simple differ-
ence sets that arise in practice.

B. Existing algorithms

Because of the sub-multiplicativity of ρ̂n(Σ, ‖ · ‖),

ρ(Σ) = ρ̂(Σ) ≤ ρ̂n(Σ, ‖ · ‖)1/n

for every n. Furthermore as n increases, this upper bound
better approximates the joint spectral radius. Similarly,
every ρ̌n(Σ) lower bounds ρ(Σ), and as n increases, ρ̌n(Σ)
generally increases as well.

This suggests approximating the joint spectral radius
ρ(Σ) by computing the lower bounds max 1≤k≤nρ̌k(Σ)1/k

and upper bounds min1≤k≤nρ̂k(Σ, ‖·‖)1/k for n = 1, 2, . . . .
However, the number of matrix operations increases as
|Σ|n, such that determining ρ(Σ) with an arbitrary error
may be computationally prohibitive.

Several steps have been taken to reduce the growth rate
of the number of computations required to approximate
ρ(Σ). Maesumi [25] has shown the number of matrix op-
erations may be reduced from |Σ|n to |Σ|n/n. Daubechies
and Lagarias [17] proved the following result:

Lemma 6: If {Aj} is a set of building blocks for Σ, i.e.,
a) each Aj is the product of nj matrices drawn

from Σ,
b) there exists some n0 ≥ 0 such that, if A is

a finite product of elements of Σ, then
A = Aj1 · · ·Ajk

Q, where Q is a product of
at most n0 elements of Σ,

then ρ(Σ) ≤ sup ‖Aj‖1/nj . �

Lemma 6 can be used to implement a recursive ‘branch-
and-bound’ algorithm to upper bound ρ(Σ), e.g. [17], [26],
[27]. Gripenberg [28] has provided an algorithm based on
Lemma 6 which includes a sequence of lower bounds such
that ρ(Σ) may be specified to lie within an arbitrarily small
interval.

The remainder of this section describes an algorithm
which empirical results show has a computation-time com-
petitive with the algorithm in [28].

C. The pruning algorithm

We present an alternative method, the pruning algo-
rithm, for bounding ρ(Σ) when all the matrices in Σ are
non-negative. The method replaces the search for the
largest norm among all (exponentially many) products of
n matrices with a search over a smaller set with the same
largest norm. It can be applied to compute ρ̌n(Σ) and
ρ̂n(Σ, ‖ · ‖) for several norms.

We write A ≥ 0 if every element of A is nonnegative
and A ≥ B if every element of A is at least as large as
the corresponding element of B. It can be shown, e.g., [15,
Theorem 8.1.18], that if A ≥ B ≥ 0 then

ρ(A) ≥ ρ(B). (10)

A matrix A dominates matrix B with respect to the
norm ‖ · ‖ if

‖AM‖ ≥ ‖BM‖
for all M ≥ 0. In particular,

‖A‖ ≥ ‖B‖.

Let

Σn def=

{
n∏

i=1

: Ai ∈ Σ

}

denote the set of products of n matrices in Σ. A subset S
of Σn is dominating if every matrix in Σn is dominated by
some matrix in S. Let Ψn be any dominating subset of Σn.
By definition,

ρ̂n(Σ, ‖ · ‖) = max {‖A‖ : A ∈ Ψn} . (11)

Furthermore, it is easy to verify that if all matrices in Σ
are non-negative then ΨnΣ is a dominating subset of Σn+1.
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Given a matrix norm one can construct a recursive algo-
rithm which computes a dominating set Ψn from Ψn−1 by
‘pruning’ those products in Ψn−1Σ which are dominated by
another product. The subsequent growth rate of |Ψn| will
depend on the condition for domination. The following
lemmas provide sufficient conditions for domination with
respect to the L1 norm, the maximum-column-sum norm,
and the spectral norm.

We write A ≥C B if every column-sum of A is at least
as large as the corresponding column-sum of B.

Lemma 7: If A ≥C B, then A dominates B with respect
to ‖ · ‖1 and ‖ · ‖γ .

Proof: Clearly if A ≥C B, then ‖A‖1 ≥ ‖B‖1 and
‖A‖γ ≥ ‖B‖γ . Domination follows as A ≥C B implies
AM ≥C BM for every M ≥ 0. �

It can be shown, e.g., [15, 5.6.6], that

‖A‖s = ρ(A∗A)1/2 (12)

where A∗ denotes the Hermitian adjoint of A. This can be
used to prove the following lemma.

Lemma 8: If A∗A ≥ B∗B, then A dominates B with
respect to ‖ · ‖s.

Proof: Since A∗A and B∗B are non-negative, (10) im-
plies

ρ(A∗A) ≥ ρ(B∗B),

hence
‖A‖s ≥ ‖B‖s.

Domination follows as for every M ≥ 0,

(AM)∗AM = M tA∗AM

≥ M tB∗BM = (BM)∗BM.

�
An analogous algorithm, based on (10) may be used to

construct a sequence of convergent lower bounds on ρ(Σ).

VI. Capacities of certain difference sets

A. Explicit computation

In some cases, one can find the joint spectral radius, and
hence the capacity, exactly.

Example 8: Let D = {0m+}, m ≥ 1. We show that
δn(D) ≤ 2m for all n ≥ m. Suppose there exists a code
C which avoids D with |C| > 2m. Then there must exist
u, v ∈ C, u �= v, such that u[1,m] = v[1,m]. For C to avoid
D, we must have u[i] = v[i] for m < i ≤ n. Hence u = v, a
contradiction. Therefore, δn(D) ≤ 2m and

cap({0m+}) = 0

for all m ≥ 1. �
Example 9: Let D = {0 + 0}. One can show that

ρ̌2({0 + 0}) = ρ̂2({0 + 0}, ‖ · ‖s)
= ρ(AG{001,010,101,110}AG{010,011,100,101} )

= 2,

and, therefore,
cap({0 + 0}) = .5.

�
The pruning algorithm may lead to a direct computation

of the joint spectral radius via an inductive argument.
Example 10: For D = {+−} we have

Σ(+−) =
{
AG{01} , AG{10}

}
,

and, by applying the domination condition in Lemma 7,
one can show that for n = 1, 2, . . .

Ψ2n = {(AG{01}AG{10})n, (AG{10}AG{01})n},
Ψ2n+1 = {AG{10}(AG{01}AG{10})n,

AG{01}(AG{10}AG{01})n}

from which it follows that

δn({+−}) = δn−1({+−}) + δn−2({+−}),

where δ1 = 2 and δ2 = 3. Hence, as shown in Example 1,

cap({+−}) = log2((1 +
√

5)/2) = .6942 . . . .

�
An inductive argument may lead to a direct computation
in cases where the convergence rate of the bounds is slow.

Example 11: For D = {+ + −} we have

Σ({+ + −}) = {AG{110} , AG{001}},

and max1≤k≤316 log2 ρ̌k(Σ)1/k = .8113 . . . ≤ cap(D) ≤
min1≤k≤316 log2 ρ̂k(‖ · ‖s,Σ)1/k = .8116 . . . . However, one
can show by an inductive argument using the domination
condition in Lemma 7 that for n = 1, 2, . . .

Ψ4n = {(AG{110}AG{110}AG{001}AG{001})n,

(AG{001}AG{110}AG{110}AG{001})n,

(AG{001}AG{001}AG{110}AG{110})n,

(AG{110}AG{001}AG{001}AG{110})n}

Hence

ρ(Σ) = lim
n→∞

‖(AG{110}AG{110}AG{001}AG{001})n‖1/4n

=ρ(AG{110}AG{110}AG{001}AG{001})1/4

=(2 + ((25 − 3
√

69)/2)1/3

+ ((25 + 3
√

69)/2)1/3)/3

and
cap({+ + −}) = log2 ρ(Σ) = .8113 . . . .

�
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B. Simplifications

When all matrices in Σ are Hermitian, it follows
from (12) that

ρ̌1(Σ) = ρ̂1(Σ, ‖ · ‖s),

hence,
ρ(Σ) = ρ̂1(Σ, ‖ · ‖s).

For example, this can be used to provide a simple proof of
cap({++}).

Example 12: For D = {++} we have

Σ({++}) =
{[

0 1
1 1

]
,

[
1 1
1 0

]}
,

hence cap({++}) = log((1 +
√

5)/2). �
The following lemma equates the capacities of certain

pairs of difference sets for which there exists a bijection
between codes which avoid the sets.

Lemma 9: Fix a difference set D. Let D′ be the differ-
ence set obtained by inverting the symbols +,− at odd
positions of the patterns in D. Then

cap(D) = cap(D′).

Proof: Suppose C avoids D. Let C′ be the code con-
structed by inverting every other bit of the codewords of
C. It is straightforward to show that C′ avoids D′, hence
δn(D′) ≥ δn(D). Similarly, one can map any code which
avoids D′ to a code which avoids D by inverting every
other bit of the codewords of C′. Hence, δn(D′) = δn(D)
and cap(D) = cap(D′). �

For example, it follows from Lemma 9 that

cap({++}) = cap({+−}),
cap({+ + +}) = cap({+ − +}), and

cap({0 + −} = cap({0 + +}).

C. Results

Table I summarizes known values or ranges of cap(D)
for all difference sets D consisting of a single pattern of
length ≤ 3 and some patterns of larger length. Since the
same number of sequences avoid a pattern p as its negation
−p, we assume that the first nonzero element of p is +.
Also, we do not list cap(D) if the (identical) capacity of
the string obtained by reversing the order of p has already
been addressed.

Next to the capacity, we list a constraint describing a
sequence of codes, {Cn}, such that each Cn avoids D and

lim
n→∞

log |Cn|1/n

achieves the lower bound on the capacity, or cap(D) when
it is known. In a notation similar to that used to describe
shift spaces [29, Defn. 1.2.1], the constraint is defined by a
list of forbidden patterns O and the codes Cn can be taken
to be the largest n-bit codes satisfying the constraint. If no
superscript is listed with a pattern, the pattern is forbidden

m D cap(D) O
m ≥ 1 0m−1+ 0 −
2 +− α 10(0), 01(1)

++ α 11
0 + − [α, .6948) 101, 010
0 + 0 .5 00(1), 11(1)

0 + + [α, .6948) 11
3 +0− α 110(0), 001(0),

011(1), 100(1)

+0+ α 101, 111
+ + − γ 110(0), 110(1),

001(2), 001(3)

+ + + δ 111
+ − + δ 101(0), 010(1)

4 0 + −+ [δ, .8797) 1010, 0101
0 + ++ [δ, .8797) 111
+ − +− [η, .9468) 1010(0), 0101(1)

+ + ++ [η, .9468) 1111
5 0 + − + 0 [ε, .9164) 1010(1), 0101(1)

0 + + + 0 [ε, .9164) 1111(1), 0000(1)

TABLE I
Capacity of various difference sets D.

α = log2((1 +
√
5)/2) = .6942...

γ = log2((2 + (
25 − 3

√
69

2
)1/3 + (

25 + 3
√
69

2
)1/3)/3) = .8113...,

δ = log2((1 + (19 + 3
√
33)1/3 + (19 − 3

√
33)1/3)/3) = .8791...,

ε = log2(

q
(3 +

√
17)/2) = .9162...,

η = log2((3 +
p
3ζ +

q
99 − 3ζ + 234

p
3/ζ)/12) = .9467...,

where ζ = 11 − 56β + 4/β, and β = (2/(−65 + 3
√
1689))1/3.

from appearing in all columns of the code. If superscripts
appear, then the patterns are periodic and the period is one
more than the largest superscript. The superscript then
represents the column indices (modulo the period) in which
the pattern is disallowed. For example, 101, 010 means
that these triples do not appear in any three consecutive
columns, and 10(0), 01(1) means that 10 does not appear
in columns [i, i + 1] for even i and 01 does not appear in
columns [i, i + 1] for odd i.

Several of these constraints have appeared in the mag-
netic recording literature. O = {00(1), 11(1)} is referred to
as the biphase constraint [30], O = {1010, 0101} as the
MTR constraint [5], and O = {1010(1), 0101(1)} as the
TMTR constraint [6].
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