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On Performance Bounds for Space–Time
Codes on Fading Channels
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Abstract—We evaluate truncated union bounds on the frame-
error rate (FER) performance of space–time (ST) codes operating
over the quasi-static fading channel and compare them with com-
puter simulation results. We consider both ST trellis and block
codes. We make the following contributions. For the case of ST
trellis codes, we develop a general method, which we denote as
measure spectrum analysis, that characterizes ST codeword differ-
ences and accommodates the combined influences of the ST code
and channel scenario. We propose a numerical bounding method
that converges in the measure spectrum to within a very small
fraction of a decibel to the simulated FER over the full range of
signal-to-noise ratio. In addition, we demonstrate the existence of
dominant quasi-static fading error events and detail a method for
predicting them. Using only this set of dominant measure spectrum
elements, very rapid and tight numerical estimation of FER perfor-
mance is attained.

Index Terms—Block fading, distance spectrum, diversity, frame-
error rate (FER), outage probability, performance bounds, quasi-
static fading, space–time (ST) codes, union bound.

I. INTRODUCTION

MULTIANTENNA communications on fading channels
has been theoretically demonstrated to provide signifi-

cant improvements in spectral efficiencies to a level that cannot
be achieved by any other current method [1], [2]. Space–time
(ST)-coded modulation, as introduced in [3]–[5], is a means of
exploiting this gain in capacity by imposing a spatio–temporal
structure onto the transmitted signal by allocating different sym-
bols to different antennas. This structure is designed to guar-
antee a particular level of transmitter diversity, and to provide
forward-error correction capability when communicating over
fading channels.

In most cases of ST coding, the focus is on low-delay appli-
cations, thus coding is only performed within a block or frame
of data, since coding across frames introduces delay. The appro-
priate channel property is the information outage probability [1],
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[6], which is a measure of the percentage of time that the instan-
taneous mutual information is below the code transmission rate.
As noted by [7] and [8], the outage probability is closely related
to the frame-error rate (FER). It was shown that in the limit, as
the block length increases, the FER approaches the outage prob-
ability. In addition, the FER is reasonable as a means of compar-
ison, since in many block-oriented systems, such as packet data
communications, corrupted frames are discarded and a frame
retransmission is requested.

The classical method of predicting code FER performance
uses a truncated union bound on the probability of error as a
function of the signal-to-noise ratio (SNR), and is calculated by
summing the pairwise error probabilities (PEP) averaged over
the channel for all codeword pairs. In [3] and [4], the analysis
of an upper bound on the PEP identified some of the structural
properties that govern code performance over fading channels.
This has led to code construction methods that exploit these
properties [9]–[14]. A general method for computing the ST
PEP for channels with different degrees of spatial and temporal
correlation was presented in [15] and [16].

In Sections II and III, we define the general system model
used throughout this paper, and provide a derivation of the PEP
and related bounds. Although PEP analysis is richly covered in
the literature, [17]–[19], we provide additional insights, such as
a generalization of the exact PEP equation in order to accom-
modate an arbitrary number of receive antennas and different
channel types.

To evaluate the union bound for specific codes, the pair-
wise codeword differences must be characterized according
to an appropriate performance measure for the given channel
model. The definition of this measure is dependent upon the
channel. Enumeration of the codeword-difference measures and
their multiplicities is analogous to the classical code-distance
spectrum. In Section III, we generalize to ST trellis codes
the distance-spectrum-evaluation methods in [20], in order to
accommodate the performance measures for arbitrary channel
types such as additive white Gaussian noise (AWGN), inde-
pendent Rayleigh fading, and quasi-static Rayleigh fading. Our
work deals primarily with channels without memory. However,
channels with memory, such as frequency-selective fading
channels, can be accommodated by concatenating the channel
and code at a cost of higher computational complexity. We call
this error-event enumeration process measure spectrum anal-
ysis, since in the general case, the measure is not a true distance
in a mathematical sense. Other authors have demonstrated
techniques that compute a small number of ST error events
[21], [22], however, our method computes all error events in
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an arbitrary number of trellis steps. We also demonstrate in
Section III a method for performing measure spectrum analysis
for ST block codes.

Conventional truncated union-bounding techniques based on
exact PEPs are not adequate for predicting ST-coded perfor-
mance in quasi-static fading, as they do not converge as the
number of measure spectrum elements is increased in the bound
computation [23]. We deal with this problem in [16], which
was the first to generalize the numerical “limit-before-aver-
aging” bounding techniques of [23] to ST codes in quasi-static
fading. In [23], this numerical bounding method was shown
to provide for convergence in the measure spectrum, and offer
a significantly tighter bound for convolutional codes used on
parallel (non-cross-coupled) quasi-static fading channels. We
discovered in [16] that these properties also hold for ST codes
operating over quasi-static fading channels. Many subsequent
authors have independently used this method in their analysis
of ST trellis codes [24]–[26]. However, as we demonstrated
in [16] and [27], this improved bound has two significant
additional properties. First, not only does this bound converge
in the measure spectrum, but it also is very tight, converging
within a very small fraction of a decibel (dB) to the simulated
FER over the full range of SNR. Second, this convergence
property appears to be due to a small set of dominant error
events, and is a function of the frame length. Because the
conventional union bound does not converge in the measure
spectrum for quasi-static fading, it is generally thought that
dominant error events do not exist [23]. However, we demon-
strate in Sections IV and V a method for predicting the dominant
error events from the measure spectrum, and show that we
can tightly bound the simulated FER performance with only
this dominant set of two to three error events. We find that
these properties hold for a wide sampling of ST trellis and
block codes. Thus, for realistic block lengths, this numerical
bounding method coupled with this small set of dominant
error events results in a very rapid method for estimating ST
code FER performance.

II. SYSTEM MODEL

We consider a ST-coded system that employs transmit
antennas and receive antennas. All transmit antennas are
assumed to be spatially uncorrelated. The baseband symbol
derived from a constellation with unit average energy is trans-
mitted by antenna during time epoch with average symbol
energy , and is denoted by . A codeword spans

time epochs, and during each time slot, symbols are
simultaneously transmitted from the transmit antennas. In
this paper, represents the frame length, and is the
number of symbols transmitted during a block. Each receive
antenna observes a noisy superposition of the transmitted
symbols impaired by a multiplicative distortion , be-
tween transmit antenna and receive antenna at time epoch

. The complex fading values follow a known proba-
bility law, and are often modeled as samples from a Gaussian
random process.

After matched filtering, the sampled received signal at receive
antenna for a frame length of is

(1)

where is zero-mean additive complex Gaussian noise
with complex variance . Expression (1) can be placed in
matrix form after defining a suitable representation for the
codeword matrix. For one possible structure [15], given a
single receive antenna , a codeword of code , denoted

, is defined as an block
matrix, where each is an diagonal codeword
matrix of complex constellation symbols . A system with

spatially uncorrelated receive antennas is modeled as an
block diagonal codeword matrix

Given the definition of , (1) in matrix form becomes

where
and
are vectors of length , and

with is a
stacked vector of length where superscript indicates
transposition.

III. ST PEP

A. Probability of Error

Assuming the receiver has perfect knowledge of the channel
fading coefficient vector , the conditional probability of in-
correctly decoding the transmitted codeword matrix is upper
bounded by the classical union bound and satisfies
[28]

(2)

where the summation is performed over all conditional PEPs,
, in code of choosing codeword instead

of the transmitted codeword , given . In addition,
assumes that and were the only two possible de-

coder outcomes. The conditional PEP is defined as [3]

(3)

where is the codeword difference matrix,
and is the channel quadratic form and

the Gram matrix (conjugate transpose is de-
noted by superscript ). We also use the Gaussian tail function



1690 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 10, OCTOBER 2004

. If multiple inde-
pendent receive antennas are used, then the conditional PEP in
(3) can be written as

where is the th independent realization of the fading vector,
and .

We now assume the complex fading coefficient from transmit
antenna to receive antenna at time is modeled
as a zero-mean complex Gaussian random variable with unit
complex variance. To obtain a closed-form expression for the
average PEP, , we average (3) over the proba-
bility density function (PDF) of the quadratic form of complex
Gaussian variates , which can be written ([29, eqs.
14-4-13 and 14-5-26]

(4)

where and the are the
nonzero eigenvalues of the matrix product , denoted as

. Expression is the
channel covariance matrix. We also note that is the rank of

and is upper bounded by . E de-
notes the expectation operator. It is not difficult to show that the
mean of is where is
the trace of matrix .

Averaging (3) over the two cases in (4), the exact
closed-form PEP expression is [29, eqs. 14-4-15 and
14-5-28], [30], shown in (5) at the bottom of the page,
where . We empha-
size that (4) and (5) are general, in terms of accommodating
the combined influences of the ST code, number of receive
antennas, and channel type on the exact PEP through the
eigenvalues . This coupling of ST code and channel
must be taken into account during code design and performance
estimation.

Chernoff upper bounding (3) at high SNR gives the expres-
sion from [4], however, generalized for an arbitrary channel

(6)

From bound (6), we see that ST code design requires that both
the rank and the minimum geometric mean of the nonzero
eigenvalues are maximized. These code-design requirements,

first identified in [4] as the rank and determinant criteria, respec-
tively, characterize the diversity achieved and the point of low
SNR rolloff. Since the nonzero eigenvalues of and

are equivalent, we choose to define the error-event
matrix (EEM) as

which emphasizes the dependency of the ST error event on
the channel characteristics. By specializing for a particular
channel scenario, we modify the structure of and, con-
sequently, the measure on the error events, as we see in the
following.

B. Computing the ST Trellis Code Measure Spectrum

For computing the ST measure spectrum, the union upper
bound on the probability of error event (2) is further upper
bounded by the union bound on the probability that an error
event occurs at trellis epoch zero, also known as the probability
of first error event [31]. We denote this bound by
and it is expressed as

(7)

where is the set of codewords from code starting in state
at time zero from state-space , with total number of states
. The number of branches emanating from each state (equiv-

alently, the number of symbols in the modulation alphabet) is
denoted by . The average multiplicity is the
number of error events with the same EEM, ,
and is scaled by , the total number of possible first
error events of the same length . The performance measure on
the error event described by is defined as . We will
demonstrate in Section IV the importance of defining

as the multiplicity of the distinct EEMs, rather than the
multiplicity of distinct measures , since the individual
EEMs will be used in the calculation of the numerical bound. A
detailed equation for computing can be found in
[20].

The set of tuples

is obtained by traversing the trellis of the ST code of interest.
In the following, we will denote this measure as for
the measure at trellis step , or simply when the trellis
step is not informative. The enumeration of the error events is
quantified according to the value of this performance measure.
For example, the Euclidean distance is used as the performance
measure for codes operating in AWGN. For the general channel
case, (3) indicates that the eigenvalues of the EEM are essential

(5)
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for computing the error events, and the bound in (6) suggests
the product of these nonzero eigenvalues is the appropriate
choice of performance measure.

Our method of enumerating a finite number of ST trellis
error events that generates the truncated measure spectrum is
discussed in [32]. This computer-search procedure is a general-
ization of a method described in [20] to a ST code and arbitrary
channel. Since most of the ST trellis codes discussed in the
literature do not comply with the classic symmetry conditions
and are nonuniform, we must consider all possible pairwise
codeword differences in computing the measure spectrum.
Therefore, the complexity of this method grows with the square
of the number of encoder trellis states. The algorithm considers
all possible pairs of merged codeword paths by operating
on a superstate trellis, denoted , with superstates
corresponding to all pairs of states in the original trellis. An
error event in the original trellis, consisting of a pair of paths
diverging from state and remerging into state , while
sharing no intermediate states, corresponds to a path in the
superstate trellis that starts in and ends in . For each
superstate , we create a data structure which contains a
set of arrays for storing the distinct partial EEM, measure,
multiplicity, and number of bit errors of a running error event
at each trellis epoch. Two stopping criteria are used to end the
algorithm. The first stopping criterion advances through the
trellis computing error events until all error events with mea-
sure less than or equal to the maximum desired measure
are found. The second stopping criterion finds all measures
regardless of magnitude in trellis steps, with .

All ST trellis codes, as defined in [4], can be considered as
block codes of length over the real numbers, since known
symbols are used to terminate the trellis code to a known state.
A complete measure spectrum for a terminated ST trellis code is
found by computing the appropriate measure on all error events
in trellis epochs. As we step through the trellis, these channel-
dependent measures are nondecreasing in error-event length for
all the possible codeword paths. Thus, we expect the lowest
values of measure in the initial epochs of the trellis. Given that
the number of codeword matrices is , this search
procedure can be computationally demanding. However, as we
will show in the sequel, computing the full measure spectrum
for a truncated ST trellis code is not always required, since a
small set of error events from the initial trellis epochs appear to
characterize the simulated FER.

We next give some examples of this general method of
computing the ST measure spectrum for different channels of
interest.

1) Example: AWGN Model: In AWGN, is the
all-ones matrix, which implies that we should sum the
outputs of the transmit antennas at each time epoch. This
specializes the EEM to , where

, and we denote the
nonzero elements of matrix by

. The single eigenvalue for the AWGN case is obtained
by taking the trace of

. It follows that the exact PEP in

AWGN is . At

each time epoch, we can compute the measure recursively as
.

2) Example: Independent Fading Model: In indepen-
dent fading, each channel is spatially and temporally in-
dependent. This reduces to the identity matrix, and
the EEM simplifies to , where

, and is defined in Section II.
The th eigenvalue of is , where

is the th row of matrix
. The form of permits the calculation of an eigen-

value at each successive epoch of an error event. Thus, at each
time epoch, we compute .

3) Example: Quasi-static Fading Model: For the case of
quasi-static fading, the attenuation coefficients are constant
over the duration of one codeword of symbol epochs, i.e.,

. In quasi-static fading,
is a block diagonal matrix of all-ones matrices. Thus,
we can write the EEM as where

. If we define the codeword
matrix as , the same expression for
the EEM can be obtained by as in [30]. Since

and have the same nonzero eigenvalues,
we can redefine the expression for the EEM in quasi-static
fading to be , which can be computed using

, where and
. This expression suggests

an efficient epoch-by-epoch approach to computing , i.e.,
. Also note that in this

case . The measure on , denoted
, is the product of the nonzero eigenvalues and is

computed after the error event has terminated. The trace of
in quasi-static fading is important at low SNR and is computed
as .

C. ST Measure Spectrum for Block Codes in Quasi-static
Fading

We contrast the terminated trellis form of block code to ST
block codes, which have a different codeword definition, but can
be cast into the traditional block-code model. ST block codes,
such as those based on orthogonal designs [33], are defined as a
transmission matrix of size with entries from a given mod-
ulation alphabet, where usually equals the number of transmit
antennas. For example, the Alamouti orthogonal design [5] has
the form

where the are two symbols from an -phase-shift keying
(PSK) or -quadrature amplitude modulation (QAM) complex
constellation. In order to compute the ST error events, we must
compute the EEMs for all these distinct transmission matrices
over a given constellation alphabet. For an alternative method,
see [34].

The measure spectrum for ST block codes in quasi-static
fading can be computed by comparing all possible distinct
codeword matrices. The task is much simpler than the ST
trellis code case, since we only have the equivalent of two
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Fig. 1. FER quasi-static fading simulations and conventional union bounds
using the exact PEPs of three 4-state, 4-PSK, L = 2;M = f1; 2g; N = 130

symbols. The PEP bounds are computed using all measuresm < 16 and m <

300.

states and trellis iterations. Therefore, the multiplicity is
scaled by , where is the number of symbols in the
modulation alphabet and . Suppose we transmit over

time epochs a ST block code containing symbols from
an -PSK or -QAM constellation. The rate of this system is
then with possible codeword
matrices. Thus, the complexity of computing the measure
spectrum grows rapidly, as larger transmission matrices are
used and as the alphabet size increases. Fortunately, as we will
show in the next section, this complexity can be reduced, since
only a small number of error events contribute to accurately
estimating the simulated quasi-static fading FER performance.

IV. PROBABILITY OF FRAME ERROR IN QUASI-STATIC FADING

In this section, we derive a numerically computable upper
bound for the FER of ST trellis and block codes in quasi-static
fading that coincides empirically with the actual FER for the full
range of SNR.

A. FER Upper Bounds

Upper bounds on the FER are

(8)

(9)

where a derivation for the first upper bound can be found in [31],
and the second upper bound is obtained by expanding (8) as a
binomial series and keeping only the first-order term.

B. Evaluation of the Conventional Union Bound on FER

We motivate the need for finding alternative bounding
methods to the conventional union bound by observing the
evaluation of the looser bound in (9) using the exact PEP
equations in (5). In Fig. 1, we compare computer simulation to
the loose FER bound in the presence of quasi-static Rayleigh
fading of three 4-state, 4-PSK codes: the delay diversity code

Fig. 2. Quasi-static fading measure spectrum for the three 4-state, 4-PSK, two
transmit-antenna ST trellis codes.

of [4, Fig. 4], an improved code found in [35, eq. (14)], and an
“optimal” quasi-static fading code discussed in [10, Table I],
denoted ATT, BLUM, and BLUM-opt, respectively. Analysis is
performed with two transmit antennas, and one or two receive
antennas. Now we denote the performance measure
on the error event described by as . We compare these
simulations to two loose bounds based on (9) using the exact
PEPs from (5). The first is computed with all measure spectrum
elements having measure , and the second having all
measures . The frame length is symbols. For
one receive antenna, simulations of the ATT and BLUM-opt
display comparable behavior, providing a 1-dB improvement
over the BLUM code at high SNR. However, the exact PEP
bounds with and demonstrate conflicting
performance outcomes, where the ATT has worst performance
with , but the best, by far, when . This also
indicates that the bounds do not converge as the number of
code measure spectrum elements is increased, since we obtain
progressively larger upper bounds. Similar observations can
be made when comparing simulation results with computed
bounds for two receive antennas. In summary, we observe that
in this instance, it is difficult to predict relative performance
gains using the exact PEP in the loose FER bound of (9).

To help explain this lack of convergence, we consider in
Fig. 2 the quasi-static fading measure spectra multiplicity
versus nonzero eigenvalue product of the three 4-state, 4-PSK,
two transmit-antenna trellis codes. Because of the more com-
plex structure of the two BLUM codes, we observe in these
plots a more rapid exponential increase in their multiplicity
over that of the simpler delay diversity ATT code. Clearly, if
the corresponding PEPs in (5) do not decrease at rates larger
than their multiplicities, then the conventional union bound will
diverge.

C. Improved FER Bound in Quasi-Static Fading

We discuss here a bound that does converge as we increase
the number of measure spectrum elements in the calculation of
the FER bound. In the quasi-static fading case, all antennas, both
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transmit and receive, are spatially independent. For ease of ex-
position, we modify the nomenclature. The th EEM of the mea-
sure spectrum is denoted with corresponding av-
erage multiplicity , and the elements of the measure spectrum
are ordered according to the measure of .

The main problem to overcome with the conventional union
bound is that the first error-event probability for a particular
fading vector realization may be larger than one. Any improved
bounding method in quasi-static fading must limit the use of the
union bound when it is unreliable. The authors in [23] used a
truncation of the union bound before averaging over the fading
probability distribution, for the case of convolutional codes over
parallel channels. To extend this technique to ST codes over
arbitrary channels, we substitute the conditional PEP (3) into the
union bound (7), then into the tighter bound on FER (8). Then,
we use a minimum function to prune the unreliable union bound
realizations before averaging over the fading process [16]. Thus,
for the FER, we obtain

(10)

where the approximation in (10) is a result of the truncation
of the measure spectrum to distinct EEMs, , where

is the SNR, and is the multivariate PDF of .
Clearly, (10) exists since the minimum function bounds the in-
tegrand between zero and . This integration can be per-
formed numerically, using multidimensional Monte-Carlo inte-
gration methods by estimating by

where is the th vector realization of realizations of
the -dimensional complex Gaussian random process with zero
mean and unit complex variance elements.

The quadratic form in (10) can be expanded as

where are elements
of the Gram matrix , and
are the independent complex Gaussian fade terms.

1) Analysis of the Improved FER Bound: As part of the anal-
ysis of the improved FER bound, we study the contribution
of single error events to the overall bound. Let

, and let a single term of be
denoted . The density of is determined in the
following proposition.

Proposition: Given the PDF in (4) and the transfor-
mation , we have for (11), shown at the
bottom of the page, where is defined in (4) and are the
nonzero eigenvalues of matrix . Also, is the inverse

-function and has the following definition:

where is the inverse of the standard error function,
.

Proof: We note that is monotonically decreasing for
. Thus, we may transform the density using

where

and (11) follows.
The mean of the quadratic form process, , is the sum

of the eigenvalues of . Since is a transformation of
, we expect to have this same functional dependence

on the eigenvalues. In Fig. 3, we plot for two different
constant nonzero eigenvalue products (determinant, in this case,
since is assumed full rank), but vary the eigenvalues at an
SNR of dB for transmit antennas and multiplicity

. The mean for each of these densities is simply the exact
PEP expression in (5) weighted by . For a given value of
determinant, we observe that the density with the largest mean
has identical eigenvalues. This behavior is a confirmation of the
fact that the mean of the distributions is a function of the sum of
the eigenvalues. Mathematically, this behavior is a consequence
of the arithmetic-geometric mean (AMGM) inequality applied
to the eigenvalues of positive definite matrices [36, eq. 7.8.1].
Since is a function of , given a particular value
of determinant, the mean of process is maximized when the
sum of the eigenvalues is minimized. Thus, for fixed ,
by the AMGM inequality, , and
equality is achieved when the Gram matrix is diagonal with
all diagonal elements equal to . We note that these
eigenvalues of matrix are a function of the interactions

(11)
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Fig. 3. Density function of p (y) for L = 2 transmit antennas with
multiplicity h = 2 at SNR = �2 dB. (a) Determinant = 4. (b) Determinant
= 36.

among the ST code, number of receive antennas, and channel.
The plots in Fig. 3 indicate that for the same multiplicity ,
the EEM with smaller determinant and smaller trace, and cor-
respondingly larger mean, will contribute more significantly to
the overall density of . This property of the eigenvalues
for a single term of was arrived at from a different per-
spective and denoted as the equal eigenvalue criterion in [30],
where this interaction between eigenvalue geometric mean and
trace are exploited for optimal trellis-code design in quasi-static
and independent fading.

V. DISCUSSION AND RESULTS

In this section, we evaluate the tight upper bound on the FER
for a sampling of ST trellis and block codes from the literature,
and demonstrate that a small subset of quasi-static fading error
events dominate the bound calculation.

We assume now that all EEMs for the codes of interest are full
rank. Thus, for quasi-static fading, we use the determinant as the
measure to classify EEMs: for ,
where is the maximum measure index of interest. We let

be the set of all possible determinants of a
given code of frame length ordered such that for

. Let be an arbitrary subset of .
If denotes the set of indexes of all EEMs with determinants
in the set , then

is the partial FER computed with the determinant set at SNR
. Now we let denote an ordered

subset of , truncated to determinant . In Fig. 4,
we evaluate for where is the
index associated with the largest determinant of interest, and
plot versus , the maximum determinant in each

Fig. 4. Quasi-static fading ST convergence behavior.FER (K) atK = 15
dB per receive antenna versusm ofA = fm ;m ; . . . ;m g of four 4-PSK,
L = 2, and M = 1 ST codes with N = f10; 50;130;500g.

TABLE I
DOMINANT ERROR-EVENT MEASURES IN QUASI-STATIC FADING, AWGN, AND

INDEPENDENT FADING AND THEIR MULTIPLICITIES FOR FOUR 4-PSK CODES

AND N > 20. ORDERED IN DECREASING DOMINANCE

set . For our examples in Fig. 4, the determinant set in-
cludes all determinants less than or equal to 100. The satura-
tion phenomenon of all the curves in Fig. 4 demonstrates the
convergence behavior of the estimated FER of four ST 4-PSK
codes with varying frame lengths at an SNR of 15 dB and one
receive antenna. This convergence behavior is maintained even
if the truncation length, quantified by the maximum measure,
is increased. We make two critical observations. First, in all the
codes considered, a small subset of dominant error events ap-
pears to contribute to the limit of the truncated bound. For short
frame lengths, more error events contribute to the bound. How-
ever, the number of dominant error events is only two or three for
longer, more realistic frame lengths. Table I lists the four domi-
nant error events for these codes in quasi-static fading. Second,
the relative value of the bounds is a function of the frame length.
For example, when , the ATT and BLUM-opt codes
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Fig. 5. Normalized Efp (y)g �m versus measure m for the three 4-state,
4-PSK, two transmit-antenna ST trellis codes. First three dominant measures
are indicated in bold type.

have similar performance, as noted in the code simulations of
Fig. 1. However, when , the ATT code has better per-
formance. We observed similar convergence behavior for two or
more receive antennas.

In Fig. 5, we display the predicted dominant quasi-static
fading error events of the 4-state, 4-PSK, two transmit-antenna
ST trellis codes found in Fig. 2. For each measure from a
particular code’s measure spectrum, we compute the mean of

using the exact PEP expression (5), assuming identical
eigenvalues and scaled by . We use the identical eigen-
value expression, since it upper bounds the mean of for
each . As noted in Fig. 5, for low measure error events, we
can quickly identify the two to three dominant error events from
the measure spectrum. (Note that in Fig. 5, we normalize each
plot to the most dominant error event.) We can then rapidly
compute the tight bound using only these dominant error events,
obtaining a very accurate estimate of the FER for the full range
of SNR. These predicted dominant error events are consistent
with those identified in Fig. 6(b). We also observe that the
dominant events are of low measure, but are not necessarily the
lowest measure events. Thus, not surprisingly, multiplicity is
an important factor in determining these dominant error events,
unlike in the AWGN case.

In Fig. 6(a), we evaluate both for each ,
and for the BLUM 4-PSK trellis code with one re-
ceive antenna. Note that , which is computed with
the entire measure spectrum truncated to a maximum measure
of 100, accurately estimates the computer simulation of the FER
performance over the full range of SNR. We note that if ad-
ditional measure spectrum elements are incorporated into the
bound computation, they do not noticeably increase the bound.
The bound, in fact, appears to converge in the measure spec-
trum to the simulated FER. In addition, we observe that each

lower bounds the true FER.
In Fig. 6(b), we evaluate the expression

in order to demonstrate the relative contribution of
each determinant to the bound. We observe that the

Fig. 6. (a) Bound evaluation of FER (K) for measures m 2 A;A =
f4; . . . ; 100g of BLUM code and comparison with both full boundFER (K)
and actual FER. (b) Relative contributions of measures m 2 A of BLUM code
to full FER bound, (FER (K))=(FER (K)).N = 130 symbols per frame
and one receive antenna.

Fig. 7. FER quasi-static fading simulations, improved bounds, and outage
capacities. (a) 16-QAM, 4 b/s/Hz Alamouti ST block code for M = f1;2g
and N = f10;130;1000g. (b) 4-PSK, 2 b/s/Hz BLUM ST trellis code
with L = 2;M = f1;2; 3; 4g, and N = 130. Only dominant error events
B = f12;4; 28g are used to compute the bounds.

zero slope at high SNR indicates that each error-event class
achieves the same diversity order as the overall FER upper
bound. Fig. 6(b) also exhibits the dominant EEMs with measure
12, 4, and 28. We observe similar dominant EEM behavior
with the ATT and BLUM-opt codes (see Table I), as well as
in a wide array of published ST trellis and block codes with
different numbers of states, numbers of transmit antennas, and
modulation alphabets.

For quasi-static fading, we computed the modified bound for
the BLUM 4-PSK ST trellis codes using the dominant error-
event set . Set , in this case, is ordered ac-
cording to decreasing dominance, as observed in Fig. 6(b). Only
these three error events are required to accurately estimate FER
performance over the full range of SNR. In Fig. 7(b), for the
BLUM code, we compare the improved bounds with computer
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simulations and outage capacity for one, two, three, and four
receive antennas and use a frame length of symbols.
All bounds are very accurate over the full range of SNR and are
within 2–5 dB of the Gaussian-input outage capacity.

In Fig. 7(a), we plot the performance of the 16-QAM Alam-
outi code for one and two receive antennas and different frame
lengths. We see that the improved bound tracks the reduction
in performance as the frame length increases. For , the
improved bound is a true upper bound, and tightens as frame
length increases.

Further research could provide a mathematical justification
for the observed tightness of this FER bound. This convergence
behavior with respect to dominant error EEMs over the full
range of SNR seems to be a property of the improved bound
on the FER, and not of a similarly constructed improved bound
on the bit-error rate; see [32].

VI. CONCLUSION

In this paper, we investigated the accuracy of truncated union
bounds on the FER for selected ST trellis and block codes. We
developed a general method of computing the measure spec-
trum of ST trellis codes for a variety of channel conditions and
number of receive antennas. Traditional ST code design and
FER bound analysis using PEPs for quasi-static fading were
found to be generally quite loose and nonconvergent in the mea-
sure spectrum. We derived a modified bound for the quasi-static
fading case, and demonstrated its high accuracy for the full
range of SNR. For a selection of ST trellis and block codes,
we observed that this improved bound contains dominant error
events when classified according to their determinant. This nu-
merical bound on the dominant error events provides a rapid
method of computing ST code FER performance in quasi-static
fading.
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