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Abstract

In this paper, we evaluate truncated union bounds on
the frame error rate (FER) performance of selected
space-time codes for three di�erent channel scenarios
and compare them to results of computer simulation.
Channels with AWGN, uncorrelated Rayleigh fading,
and block Rayleigh fading are considered.

To calculate the bounds, we use a superstate trellis
approach to characterize codeword di�erences accord-
ing to performance measures derived from a general ex-
pression for the exact pairwise error probability (PEP)
[1]. We observe that the computed bounds are very
accurate for AWGN and uncorrelated fading, but quite
loose for block fading. We then generalize the results of
[2] to obtain a signi�cantly tighter bound for the block
fading case.

1. Introduction

Space-time coded modulation, introduced in [3], im-
poses a spatio-temporal structure onto the transmitted
signal by allocating di�erent symbols to di�erent an-
tennas. This structure is designed to guarantee a par-
ticular level of transmitter diversity, and to provide for-
ward error correction capability when communicating
over fading channels. To predict code performance, a
union bound on the frame error rate as a function of
signal-to-noise ratio (SNR) can be calculated by sum-
ming the exact pairwise error probabilities for all code-
word pairs.

In [3] and [4], the analysis of an upper bound on
the PEP identi�ed the structural properties that gov-
ern code performance over fading channels. This has
led to code construction methods that exploit these
properties (for example, see [5]). A general method for
computing the exact PEP for channels with di�erent
degrees of spatial and temporal correlation was pre-
sented in [1].

This research was supported by UC CORE Grant C98-07

and by NSF Grant NCR-9612802.

To evaluate the union bound for speci�c codes, the
pairwise codeword di�erences must be characterized ac-
cording to the appropriate performance measure for a
given channel model. The enumeration of the codeword
di�erence measures and their multiplicities is analogous
to the classical code �distance� spectrum. The de�ni-
tion of this measure is dependent upon the channel, and
with the exception of AWGN, is not a true distance in
the mathematical sense.

In the �rst part of this work, we extend to space-
time codes the �distance� spectrum evaluation meth-
ods outlined in [6] in order to accommodate the perfor-
mance measures for AWGN, uncorrelated Rayleigh fad-
ing, and block Rayleigh fading. In the case of block fad-
ing, we extend to space-time codes the modi�ed bound
of [2] which was shown to o�er signi�cantly improved
bounds for convolutional codes.

In the second part, we compare computer simu-
lations of speci�c space-time codes to the truncated
union bound. In AWGN and uncorrelated fading, ex-
act PEP-based bounds are asymptotically tight at high
SNR, but quite loose in block fading. We show that by
extending the block-fading bound in [2] to space-time
codes, we achieve a more accurate prediction of code
performance.

2. System Model

We consider a space-time coded system that em-
ploys L transmit antennas and M receive antennas such
that the fading is spatially uncorrelated across all the
antennas. The baseband constellation symbol trans-
mitted by antenna i during time epoch n is denoted
by

√
Esdi (n) where di (n) has normalized magnitude

with average symbol energy Es. Each codeword spans
N time epochs, and during each time slot, L symbols
are simultaneously transmitted from the L transmit
antennas. We let N be the frame size. Each receive
antenna observes a noisy superposition of the L trans-
mitted symbols impaired by Rayleigh fading. The unit



energy channel attenuation coe�cients between trans-
mit antenna i and receive antenna j at time epoch n
are γij (n). Thus, at receive antenna j, the post match-
�ltered sampled receive signal is

rj (n) =
√

Es

L∑
i=1

di (n) γij (n) + ηj (n)

j = 1, · · · ,M ; n = 1, · · · , N, (1)

where ηj (n) is zero mean additive complex Gaussian
noise with complex varianceNo/2. This general expres-
sion includes the cases of both uncorrelated and block
fading, where the latter assumes that the attenuation
coe�cients are constant over the duration of one code-
word of N symbol epochs, i.e., γij (n) = γij ∀i, j; n =
1, · · · , N . For a single receive antenna, j = 1, a code-
word a of code C, denoted Da = [Da (1) , · · · ,Da (L)],
is de�ned as an N×LN block matrix where each Da (i)
is an N ×N diagonal codeword matrix of complex con-
stellation symbols di (n) (see [1]). We may write (1)
in matrix form for one receive antenna (M = 1 and
ignoring index j), namely,

r = Daγ + η, (2)

where r = [r (1) , · · · , r (N)]T, � = [η (1) , · · · , η (N)]T,
and 
 =

�



T
1 , · · · ,
T

L

�T
with 
i = [γi (1) , · · · , γi (N)]T.

(The superscript T indicates transposition.) We as-
sume the receiver performs coherent detection and
maximum likelihood decoding with perfect channel
state information.

The encoding process is performed using a space-
time convolutional encoder with state space Q and B
state transitions (trellis branches) per state. Trellis
branches are labeled with the L encoder output words,
which are subsequently mapped to L constellation sym-
bols.

2.1. Codeword Di�erence Covariance Matrix

The PEP, denoted P (Da → Db), is the probability
of choosing codeword Db instead of codeword Da pro-
vided that Da and Db were the only two possible de-
coder outcomes. In [1], it was proved that the general
expression for the exact PEP is a polynomial function
of Es/No and the eigenvalues of the codeword di�er-
ence covariance matrix (CDCM),

CD = DbaCγDH
ba, (3)

whereDba = Db−Da is the codeword di�erence matrix
for codewords a and b, and C
 = E

�




H
	
is the chan-

nel covariance. (The superscript H indicates complex
conjugate transposition, and E denotes the expectation
operator.) By specializing Cγ for a particular channel
scenario, we modify the structure of CD, resulting in
di�erent polynomial equations for the exact PEP [1].

For multiple spatially independent receive anten-
nas, the CDCM is equal to

CD,M = diag (CD, · · · ,CD) . (4)

This has the e�ect of increasing the multiplicity of all
the roots of the exact PEP eigenvalue polynomial equa-
tion by M .

3. Space-Time Code Error-Event Characteriza-

tion

To characterize all error events (all pairwise code-
word di�erences) according to the value of the perfor-
mance measure, we choose to implement an extended
version of the �General Algorithm� discussed in [6]. The
complexity of this method grows with the square of the
number of encoder trellis states. The algorithm con-
siders all possible pairs of merged codeword paths by
operating on a superstate trellis with |Q|2superstates
σ̂mn corresponding to all pairs of states in the original
trellis. An error event in the original trellis, consisting
of a pair of paths diverging in state σm and remerging
in state σn, corresponds to a path in the new trellis
that starts in superstate σ̂mm and ends in superstate
σ̂nn.

The performance measures are a function of the
eigenvalues of CD. We denote the non-zero elements

of matrix Dba by d
(ba)
i (n), i = 1, · · · , L; n = 1, · · · , N ,

and the nth eigenvalue of CD as λn (CD). In the re-
mainder of this section, we describe the methods used
to compute these eigenvalues for the three di�erent
channel scenarios. In this analysis, we assume one re-
ceive antenna. Using (4), the results can be generalized
to multiple independent receive antennas.

3.1. AWGN Model

In AWGN, Cγ is an all-ones matrix. This spe-
cializes the CDCM to CD = edba

edH
ba, where edba =hPL

i=1 d
(ba)
i (1) , · · · ,

PL
i=1 d

(ba)
i (N)

iT
. Since the rank of

CD is one, it has a single non-zero eigenvalue, ob-
tained by taking the trace of CD, λ (CD) = tr (CD) =edH

ba
edba. To characterize error events in AWGN, we

compute the eigenvalue using the expression λ (CD) =PN
n=1

���PL
i=1 d

(ba)
i (n)

���2. Since tr (CD) is the Euclidean

distance between codewords Da and Db, it follows
that the exact PEP in AWGN is P (Da → Db) =

erfc
�q

tr (CD) Es
4No

�
/2, where erfc (·) is the Gaussian er-

ror function.

3.2. Uncorrelated Fading Model

In uncorrelated fading, each channel is spatially
and temporally independent. This reduces Cγ to
the identity matrix, and the CDCM simpli�es to
CD =

PL
i=1 Dba (i)DH

ba (i). The nth eigenvalue
of CD is λn (CD) = ‖dba (n)‖2, where dba (n) =



h
d
(ba)
1 (n) , · · · , d

(ba)
L (n)

i
is the nth row of matrix Dba.

(The notation, ‖·‖2, is the standard vector inner prod-
uct.) The measure for an error event is the product of
these eigenvalues for the corresponding time epochs.
The form of λn (CD) permits the calculation of an
eigenvalue at each successive epoch of an error event.

3.3. Block Fading Model

In block fading, Cγ is a block diagonal matrix of
N × N all-ones matrices. Therefore, the CDCM is
CD =

PN
n=1 CD (n), where CD (n) = dH

ba (n)dba (n).
This expression suggests an e�cient epoch-by-epoch
approach to computing CD. The measure of inter-
est for each error event is the product of the non-zero
eigenvalues of CD.

4. Probability of Frame Error in Block Fading

Terminated trellis codes of frame length N have a
frame error rate that can be upper bounded using (e.g.,
[7])

Pf (e) ≤ 1 − (1 − P (e))N ≤ NP (e) , (5)

where P (e) is the error-event probability. For space-
time codes, P (e) can be union bounded by

P (e) ≤
X

Da, Db ∈ C
Db �= Da

H (Da → Db) P (Da → Db) , (6)

where H (Da → Db) is the multiplicity of the PEP
P (Da → Db). We use the error-event characterization
method of Section 3.3 to determine the collection of
PEPs and multiplicities.

In block fading, evaluation of the union bound using
the exact PEP yields a very loose estimate of the FER.
However, a tight bound can be obtained by extending
the results of [2]. To this end, we use the conditional
pairwise error probability for block fading derived in
[3],

P (Da → Db|
) =
1

2
erfc

 s
Es

4No

HDH

baDba


!
. (7)

Let CH
D = DH

baDba = [cmn], where cmn ∈ C and
m,n ∈ {1, · · · , LM}, and write the complex fade terms
in their polar form, γk = ake−jθk ; θ ∈ (−π, π) for
k = {1, · · · , LM}. De�ning θmn = θm − θn, and mak-
ing use of the Hermitian properties of CD, we obtain



HDH

baDba
 =
LX

m=1

a2
mcmm (8)

+2
LX

m=1

LX
n=1, n>m

amanRe
n
e−jθmn cmn

o
.

In (8), the am are Rayleigh distributed random vari-
ables with unit variance, and the θmn have the density

fθmn (θ) = 1
2π

�
1 − θ sign(θ)

2π

�
for θ ∈ κ, and fθmn (θ) = 0

Code AWGN Uncor. Fading Block Fading

Trace Mult.
Q

k λk Mult.
Q

k λk Mult.

A 4 4 4 2 4 2

8 20 16 5 12 4

B 4 1 16 1 4 0.5

8 14 36 2 12 4.5

C 2 0.1875 16 1 8 1.5

4 0.984 24 1 12 2.125

Table 1: Two lowest error-event measures and their
multiplicities for Codes A, B, C.

for θ /∈ κ where κ = {ν| ν ∈ (−2π, 2π)}. (The function
sign (x) = 1, ∀x ≥ 0 and sign (x) = −1, ∀x < 0.)

Combining (5) through (8) and averaging over the
fading magnitudes a and phases θ, we have

Pf (e) ≤ 1 − R
a

R
�

[1 − min (1, P (e|a,�))]N

·fa (a) f� (�) d�da, (9)

where the minimization limits the conditional error-
event probabilities before averaging over the fading pro-
cess. This integration is M

�
L2 + L

�
/2-fold and is per-

formed numerically using the algorithm discussed in
[8].

5. Results

In this section, we evaluate the upper bounds on the
FER for three 4-state, 4-PSK codes: the delay diversity
code of [3, Fig. 4], an improved minimum determinant
code found in [9, (14)], and an optimal block fading
code discussed in [5, Table I]. These are identi�ed as
Code A, Code B, and Code C, respectively. We list in
Table 1 the two lowest error-event measures and their
multiplicities for each of the example codes in all three
channel scenarios for error-event lengths l ≤ 100.

For AWGN, we computed truncated union bounds
on FER, using error events of length l ≤ 6, for one re-
ceive antenna, as well as for two receive antennas. As
shown in Figure 1, there is excellent agreement with
computer simulation results. As expected, the code
performance is governed by the magnitude and multi-
plicity of the error events with the minimum trace.

For the uncorrelated fading channel, we computed
truncated union bounds on FER, using error events of
length l ≤ 3, for one receive antenna, as well as for two
receive antennas. As shown in Figure 1, there is ex-
cellent agreement with computer simulation results. In
addition, one can see that performance in uncorrelated
fading is governed by the minimum eigenvalue product,
shown in Table 1.

For block fading, we computed the exact-PEP
bound for Code A and Code B using error events of
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Figure 1: FER performance in AWGN and uncorre-
lated fading.

length l ≤ 6. As shown in Figure 2, these bounds are
extremely loose, even at high SNR. We believe that this
re�ects the fact that in block fading there is no domi-
nant error event, as was observed in [2]. Nevertheless,
the bounds provide insight into relative performance.
Figure 2 also shows modi�ed bounds for Code A and
Code B, computed using error events of length l ≤ 2
and l ≤ 4. For Code A, both bounds are very accurate
over the full range of SNR, for both one and two receive
antennas. For Code B, however, we observe that longer
error events contribute signi�cantly to the accuracy of
the improved bound.

6. Conclusions

In this paper, we investigated the accuracy of trun-
cated union bounds on the frame error rate (FER) for
selected space-time codes in several channel conditions.
For AWGN and uncorrelated Rayleigh fading channels,
we show that bounds based upon the exact pairwise er-
ror probability (PEP) [1] are very tight at high SNR.

For the block fading channel, however, the PEP-
based bound was found to be generally quite loose. Ex-
tending the results of [2], we derived a modi�ed bound
for the block fading case, and demonstrated its accu-
racy at both high and low SNR.
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