
The measure of mutual dependence we propose is similar in 
spirit to the measure of statistical dependence proposed by Fine 
[3] on the basis of the Solomonoff-Kolmogorov-Chaitin com- 
plexity measure. However, Fine’s measure is not computable and 
hence not operational. 

VI. CONCLUDING REMARKS 

We have presented a conceptually new framework for measur- 
ing dependence between two time series. Unlike the framework 
developed by Geweke, which is limited to the AR and ARK class 
of models, and the framework developed by Fine, which is not 
operational, our framework is both very general in its applicabil- 
ity and straightforward operationally. All one needs to compute, 
say, the measure of unidirectional causal dependence from y to x 
are the two predictive densities P(x,+ilx’) and P(~,+~lx',y'). 

These densities need not be fully specified in advance; the 
parameters of these densities and even the number of parameters 
is determined as an integral part of the computation of the 
measure. Obviously, the value of the resulting measure depends 
critically on the class of predictive densities selected. A good 
selection gives a sharp measure of causal dependence whiIe a bad 
one masks a possible causal dependence, which of course is just 
as it should be. 
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For RLL charge-constrained systems with parameters (d, k;, c), the binary 
capacity is irrational for all values of (d, k; c),O I d < k,2c 2 k + 1, ex- 
cept (0,l; 1) and (1,3;3), which both have binary capacity l/2. 

I. INTRODUCTION AND BACKGROUND 

In this correspondence we show that lOO-percent efficient 
fixed-rate codes are impossible for most run-length-limited (d, k) 
and run-length-limited charge-constrained (d, k; c) channels. 
More precisely, we prove that, among these channels, only the 
(0,l; 1) and (1,3; 3) have Shannon capacities which permit lOO- 
percent efficient codes. 

Run-length-limited (RLL) codes are widely used in magnetic 
and optical data recording channels. These constrained codes are 
characterized by two parameters (d, k),O < d < k, which specify 
the minimum and maximum allowable run-lengths of zeros be- 
tween consecutive ones in the constrained binary sequences. 

RLL charge-constrained systems combine run-length con- 
straints with the bounded running digital sum (RD$) constraint 
to ensure a spectral null at dc, as we now describe in more detail. 

In data recording, constrained sequences { bj }, j 2 0, with sym- 
bols {O,l} are typically converted to a two-level channel input 
signal { sj }, j 2 0, via a preceding convention called non-return- 
to-zero-index (NRZI), defined by 

and 
k+l 

G(2nf) = c X-jexp(2rrijf), i=\/-l. (5) 
j=d+l 

From (3)-(S), it can be seen that Q(O) f 0 for all (d, k),O I d 
< k. In certain applications, however, it is required that the code 
power spectrum Q(f) have a null at f = 0 (dc), that is Q(O) = 0. 
It is well-known that the code spectrum has a null at dc if for 
each finite code sequence { b,, b,, . . ., bN } the running digital 
sum of the associated channel input sequence { sO, si, . . ., s, }, 
denoted RDS, ( sO, si , . . . , sN), is bounded by a fixed constant. 
That is, 

RDS,(s,,s,,... (6) 

for some constant B, and all finite allowable input strings {sj}. 
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In fact, Pierobon [13] recently proved that the bounded RDS, 
condition is necessary as well as sufficient for a constrained 
system, generated by a finite-state transition diagram (FSTD), to 
have a spectral null at dc. 

The RLL charge-constrained systems are characterized by 
parameters (d, k; c), where (d, k) are the RLL constraints, and, 
the RDS,, value of any finite channel input sequence { sj } falls in 
the range [ - 2c, 2 c]. The RLL (d, k) and (d, k; c) constraints are 
often represented by an FSTD, introduced by Shannon into the 
study of discrete noiseless channels [15]. For example, Fig. 1 
shows the FSTD G for the RLL (0,l) constraint. State diagrams 
for general (d, k) and ,(d, k; c) constraints will be discussed in 
Section III. 

Associated to an FSTD G with n vertices is the state-transi- 
tion matrix T, an n X n matrix defined by 

tij = number of edges in G from state i to state j. 

Thus T is the adjacency matrix of the directed graph underlying 
the FSTD. For example, for the (0,l) constraint, 

is the state-transition matrix associated to the diagram in Fig. 1. 
According to Shannon, if the FSTD G has distinct code 

symbols on outgoing edges from each state, the base b capacity 
of the constrained system S represented by G is 

C, ( S) = log, X b-ary digits/symbol (7) 

where X is the largest real eigenvalue of the matrix T associated 
to the FSTD G. We will use the notation C(S) to denote the base 
2, or binary, capacity of S. As an example, the largest real 
eigenvalue of T for the (0,l) constraint is the golden mean, 
X = (1 + \15)/2, so the binary capacity of the (0,l) constraint is 
C(RLL(O,l)) = log, (1 + J5)/2 = 0.6942. 

The Shannon capacity may be thought of. as the asymptotic 
growth rate of the number of constrained strings of length N, 
denoted xv : 

c(s)=Nhm;loglxN. 
-+ 

The rate r = m/n of a code which maps arbitrary binary se- 
quences (binary data) to the system of constrained sequences S is 
the ratio of the number of data bits to the number of code bits. 
The Shannon capacity C(S) therefore represents an upper bound 
on achievable code rates, and code efficiency E = r/C is the ratio 
of the actual code rate to the Shannon capacity. 

The construction of efficient codes, that is, codes with E close 
to one, is an important problem in data recording technology, 
since recording density is directly proportional to the code ef- 
ficiency. Marcus [lo] and Adler et al. [l] devised a systematic 
code construction algorithm for finite memory constraints, in- 
cluding (d, k). constraints. The algorithm produces a code with 
finite-state machine encoder and sliding block decoder (ensuring 
limited error propagation) at any code rate r = m/n I C. Re- 
cently, Karabed and Marcus [9] extended these results to a class 
of infinite memory constraints, including the (d, k; c) con- 
straints. 

These techniques permit the code designer to balance the 
requirements of high code efficiency, low implementation com- 
plexity, and small error propagation. It is therefore of interest to 
find constraint parameters (d, k) and (d, k; c) with Shannon 
capacity C equal to, or closely approximated by, a rational rate 
m/n, with m and n relatively small. In particular, if the capac- 
ity is rational, C = m/n, the techniques permit the construction 
of lOO-percent efficient practical codes. This correspondence 
investigates the existence of (d, k) constraints and (d, k; c) con- 
straints with rational capacity. 

Section II presents the lemma which is the key to the main 
result. It uses the Perron-Frobenius theorem for irreducible 

0 
1 

Fig. 1. FSTD for (0,l) channel. 

nonnegative matrices [14] to derive a necessary condition on the 
periodic structure of the FSTD when the Shannon capacity is 
rational. In Section III, it is shown that the capacity of RLL 
(d, k) constraints is neuer rational. It is then proved that among 
charge-constrained RLL (d, k; c) constraints, the only con- 
straints with rational capacity are (d, k; c) = (0,l; 1) and (1,3; 3), 
both of which have binary capacity l/2. 

We close the introduction with a few remarks regarding practi- 
cal codes achieving lOO-percent efficiency for the constraints 
(0,l; 1) and (1,3; 3). For (0,l; l), a simple rate l/2 block code is 
possible. In fact, simple rate l/2 (0,l; 1) codes were early stan- 
dards in digital magnetic recording applications, and were known 
variously as frequency modulation (FM), phase encoding (PE), 
and Manchester code, among other names. See, for example, 
Jorgensen [7]. For the (1,3; 3) constraint, Hong and Ostapko [5] 
described rate l/2 codes which, however, suffered from un- 
limited error propagation. Pate1 [12] constructed the zero-mod- 
ulation (ZM) code which limited error propagation by reducing 
the rate slightly below l/2. (In the construction, the rate reduc- 
tion could in fact be made arbitrarily small, although not zero, by 
use of unboundedly increasing lookahead in the encoder.) Re- 
cently, the technique of [9] has been used to construct a (1,3; 3) 
code which has lOO-percent efficiency, a finite-state encoder, and 
a sliding block decoder (limited error propagation) [8]. 

II. THE KEY LEMMA 

This section proves the lemma which is the key ingredient in 
the determination of the rationality of capacities of the run-length 
constrained systems discussed in the Introduction. It is an appli- 
cation of the expression (7) for Shannon capacity and the Per- 
ron-Frobenius theory of nonnegative matrices [14]. 

Definition 1: A nonnegative n X n real matrix T is irreducible 
if, for any 1 I i, j < n, there is an integer m (possibly dependent 
on i and j) such that 

(T”‘)ij>O. 

A directed graph G is irreducible if its state transition matrix T is 
irreducible. 

We need one more definition before stating the key lemma. 
Definition 2: The period of an irreducible nonnegative n X n 

matrix T is the greatest common divisor (gcd) of cycle lengths, 
that is, 

gcd(k](Tk)ii>O,forsomei,l<i<n}. 

The period of an irreducible directed graph G is the period of its 
state transition matrix. The matrix T (or graph G) is called 
aperiodic when the period is one. 

Lemma I: Let S be a constrained system of sequences, repre- 
sented by an irreducible FSTD G with distinct labels on the 
edges emanating from any single state. If the base b capacity of 
S satisfies 

CL(S) = m/n 

where gcd (m, n) = 1 and b is not an nth power of an integer, 
then the period of G is a multiple of n. 

Proof We give a proof for the case b = 2. The general 
proof follows easily. Since C(S) = m/n, the expression for 
Shannon capacity (7) shows that the largest real eigenvalue of the 
transition matrix T associated to G is given by X = 2”/“, where 
2”‘” denotes the real nth root of 2”. In particular, h satisfies the 
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polynomial equation 
x” -2m = 0. 

The polynomial x” -2” is irreducible over the integers for 
integral values of m > 0 relatively prime to n, since the constant 
term of any factor of x” - 2”, being a product of some k roots 
of xn -2” = 0, has modulus 2km/n, which is not an integer 
unless k = n or 0. Therefore, x” -2” must be a factor of the 
characteristic polynomial of T, pr( x), whose roots constitute the 
eigenvalues (with multiplicities) of T. In particular, J+(X) must 
have among its roots the n values 

where 

p/no.i, j=O,l;..,n-1 

The Perron-Frobenius theorem [14] states that an irreducible 
nonnegative matrix T, of period q, has precisely q eigenvalues of 
maximum modulus, one of which is a positive real number r. 
These eigenvalues are rei2rk/q, k  = O,l, . . . , q - 1, which are the 
q roots of x4 - rq = 0. In particular, 2m/nei2n’n = reiznkOlq for 
some 0 < k, 5 q - 1, giving n = q/k,,, showing that q is a multi- 
ple of n. 

III. CAPACITY OR RLL (d, k) AND (d, k; c) 
CONSTRAINTS 

In this section, we apply Lemma 1 to investigate the rationality 
of the capacity of (d, k) and (d, k; c) constraints. The base b of 
the capacity is taken to be b = 2 when not otherwise specified. 
An FSTD G, s for (2,5) constraints is shown in Fig. 2. In 
general, we define an FSTD Gd, k for (d, k) constraints contain- 
ing k + 1 states, denoted 1,2,, . . ., k + 1, with state transitions 
described by the associated matrix Td, k defined by 

ti,i+1 =l, l<i<k 

fi,l =l, d+lsisk+l 

t;, j = 0, otherwise. 

Denote by e( i, j) the label on the edge from state i to state j, 
when there is a transition from i to j. Then labels on G,,, are 
given by 

e(i,i+l) =O, I<i<k 

e(i,l) ==l, d+l<i<k+l. 

It is easy to verify that Gd, k is irreducible. For example, from 
state i,l<t<k+l,thereisapathoflengthnomorethan d+l 
to state 1, and from state 1 to state i, 15 i I k + 1 there is a path 
of length no more than k + 1. 

Moreover, G,, k is aperiodic. This follows from the fact that 
Gd, k contains cycles of length d + 1 and d + 2, and gcd (d + 1, d 
+2) =l, for d2 0. 

Denote the binary capacity of the (d, k) channel by C(d, k). 
Propdsition I: C(d, k) is irrational for all (d, k),O I d i 

k<oo. 
Pioof: By Lemma 1 and the aperiodicity of Gd k, if C( d, k) 

is rational, it must be of the form C(d, k) = log, 2”“i = m for 
some positive integer m. However, the (d, k) constrained system 
is a proper shift invariant subset of the system of unconstrained 
binary sequences, which has,capacity 1. Therefore, C(d, k) < 1~ 
m , all m 2 1. See, for example, Coven and Paul [2]. It follows that 
C( d, k) is irrational. 

We can extend this result to the class of RLL constraints with 
parameters (d, ce). These constraints have been discussed by 
Franaszek [3] and Freiman and Wyner [4]. Fig. 3 shows an FSTD 
G s, m for the (3, cc) constraint. In general, for d 2 1 an FSTD 
G ,.,. m can be defined using d + 1 states, 1,2; . ., d + 1, with state 

Fig. 2. FSTD for (2,5) channel. 

Fig. 3. FSTD for (3,m) channel. 

transitions given by 

I,,1 = 1 

t t/+1.1 =1 

ti,j+l =l* l<i<d 

ti j=o, otherwise. 

The labels on G,,, are given by 
e(l,l) =O 

e(d+l,l) =l 
e(i,i+l) =O, l<i<d. 

Corollary 1: C( d, cc) is irrational for d 2 1. 

Proof: Note that unconstrained binary sequences con- 
stitute the RLL (0,~) constraint, which has capacity exactly one. 
For the (d, cc) constraint with d 2 1, we have 

C(d,oo) =log,p 

where p is the largest real root of 

P,,,(X) =xd+i-X4-1. 

The capacity of the RLL (d, k) constraint, k < co, is given by 
C(d,k) =log,X 

where X is the largest real root of 
pd,k(x)=xk+l-xk-d-xk-d-l- . . . -x-l 

(the characteristic polynomial of the matrix Td, k). 
For d =l, we find 

Pl.m(X> = PO,l(X>. 

It is easy to verify that, for d 2 2, 

Pd-1,2d-l (8) 

The second factor on the right-hand side of (8) factors over the 
complex numbers as 

where a! = ei2n/d. Since all of the .j have modulus 1 and the 
largest real root of the polynomial Pd-l,Zd-l is greater than 1 
(because C(d -1,2d -1) > 0), it follows that Pd-1,2d-1(~) and 
Pd, m (x) have the same largest real root. Therefore, 

C(d,w) =C(d-1,2d-1). 

(For example, the constrained channels represented by Figs. 2 
and 3 have the same Shannon capacity.) The corollary now 
follows directly from Proposition 1. 



604 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 4, JULY 1987 

The charge-constrained RLL systems with parameters (0,l; 1) 
and (1,3; 3) are described by the irreducible FSTD’s G~O,l,l) and 
G  1 s,s) shown in Fig. 4. We now define an FSTD Gcd,k; c 
&k ) 

for 
,c constraints with O<d<k<oo and 2c>k+1. k ote 

that the restriction on c is not artificial; any smaller value of c 
would restrict the maximum achievable run-length of zeros to 
strictly less than k. 

The states in Gckig are described by two parameters (s, t), 
where s may be t ou t of as the “accumulated charge” and t 
represents the run-length of zeros. Specifically, the FSTD Gcd, k; c) 
contains states (s, t) with 

subject to 

- c+l<s-t<c-d 

and 

- c+l<s<c 

O<t<k. 
The state transitions are described by the rules 

(s,t)+(s+l,t+l), 

with edge label e((s, t); (s + 1, t + 1)) = 0, whenever the destina- 
tion state is a valid state, and 

(s,t> ‘(--s+1,0), 
with edge label e((s, t); (- s + LO)) =l, whenever d I t I k. 

Lemma 2: The graph Gtd, k; c) has period 2. 

Proof: Let zi be the sequence of length d + 1 consisting of 
d O’s followed by a 1: 

z1= (O,O,O; . * ,O,l) . 

d+l 
Let z2 be the sequence of length d + 2 consisting of d + 1 O’s 
followed by a 1: 

z2=(0,0,0;..,0,1). 

d+2 
If d is odd, then the sequence z1 is generated by a cycle 

starting at state (-(d - 1)/2,0), and the sequence z2zZ (that is, 
z2 repeated twice) is generated by a cycle starting at state 
(c - (d + l), 0). The lengths of these two cycles are 

I,=length(z,) =d+l 

I,=length(z,z,) =2(d+2) =2(d+1)+2 

with greatest common divisor 

.gcd(~,,1,)=gcd((d+1),2(d+1)+2) 
= 2. 

If d is even, we use the cycles zlzl, starting at (c - d,O), and 
z2, starting at (- d/2,0), with lengths 

Z3=length(z,zl)=2d+2 
and 

satisfying 

Z,=length(z,) =d+2 

gcd(l,,l,) =gcd(2d+2,d+2) 

=gcd(2(d+l),d+2) 
= 2. 

We have shown, therefore, that the period of Gcd,k; c) is a 
divisor of 2. However, it is easy to see that the period is at least 2, 
since the states Y of Gcd, k; c) can be partitioned into two subsets 
9, = {(s, t) E 9’1s = O(mod2)) and 9; = {(s, t) E 91s = 

1 

1 
0 A, I 

t 
1 

0 

1 

0 1 

s- 
(4 

3 

I 
t 

2 

0 

-2 -1 0 1 2 3 

s- 

(b) 
Fig. 4. (a) FSTD for (0,l; 1) channel. (b) FSTD for (1,3; 3) channel 

l(mod2)) such that any transition from a state (s, t) E yb ends 
in a state (s’, t’) E Yr, and vice versa. Therefore, Gcd, k; c) has 
period exactly 2. 

Corollary 2: The only rational binary capacity of a (d, k; c) 
constrained system is C = l/2. 

Proof: By Lemma 1, the only possible rational capacity of 
a period 2 system of binary sequences is C = 1 or C = l/2. Only 
the unconstrained binary system achieves capacity C = 1, so the 
only possible rational capacity of a constrained (d, k; c) channel 
is l/2. One can check that the (0,l;l) and (1,3;3) constraints 
provide examples which achieve C = l/2. It is computationally 
easier to verify this by using a variable-length symbol presenta- 
tion of the (d, k; c) constraint based on states (- c + LO), (- c 
+2,0),. *. , (c - d,O), with the edge labels corresponding to al- 
lowed runs of zeros followed by a one. Shannon [15] gives a 
determinantal equation for such a diagram whose largest real 
root X may be used to compute the capacity, as in (7). 

Finally, we show that the two constraints (0,l; 1) and (1,3; 3) 
are the only (d, k; c) systems with binary capacity l/2. 

Proposition 2: The only constrained (d, k; c) systems with 
capacity l/2--and therefore the only ones with rational capacity 
-are (d, k; c) = (0,l; 1) and (1; 3; 3). 

Proof: We make use of the table of computed (d, k; c) 
capacities in [ll]. Denote the capacity of the (d, k; c) constraint 
by C(d, k; c). Note that for a given value of d, the capacities 
C(d, k; c) in any column of the table, corresponding to a fixed 
value of c and increasing value of k, are strictly increasing since 
the (d, k; c) constraint is a proper subsystem of the (d, k  + 1; c) 
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constraint. Similarly, the capacities in any row of the table, 
corresponding to a fixed value of d and k and increasing value 
of c, are strictly increasing since the (d, k; c) constraint is 
contained in the (d, k; c + 1) constraint. 

For (d, k; c) constraints with d = O,l, or 2, it then follows 
easily from the table that only the (0,l; 1) and (1,3; 3) constraints 
can have capacity l/2. For (d, k; c) constraints with d 2 3, note 
that 

C(3, co) = C(2,5) = 0.4057 < ; . 

Since C(d, a) is a strictly decreasing function of d, and 
C(d, k; c) is strictly less than C(d, cc) for finite k and c, we 
conclude that no-( d, k; c) constraint with d 2 3 has capacity I/2. 
This completes the proof. 

Remark: Similar arguments show that the base b capacities of 
the (d, k) constrained systems are irrational for all b and that 
the only (d, k; c) constrained systems with rational base b capac- 
ities are the (0,l; 1) and (1,3; 3) systems where the base is a 
power of two. 

IV. CONCLUSION 

This correspondence has investigated the rationality of the 
binary capacity of constrained noiseless channels relevant to data 
storage applications. Specifically, the binary capacity of run- 
length-limited (d, k) constrained channels is shown to be irra- 
tional for all parameters d = 0,O < k < 00 and all 1 I d < k I 00 
(that is, only the unconstrained binary channel with parameters 
(d, k) = (0, cc) has rational capacity, namely C = 1). For charge- 
constrained RLL channels with parameters (d, k; c), it is shown 
that only the (0,l; 1) and (1,3; 3) constraints have rational capac- 
ity, both exactly l/2. 
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Remarks on Codes from Hermitian Curves 

H.J.TIERSMA 

Abstruci-Parameters and generator matrices are given for the codes 
obtained by applying Goppa’s algebraic-geometric construction method to 
Hermitian curves in PG(2, q), where q = 22” for some s EN. Automor- 
phisms of these codes are also discussed, and some results on self-duality 
and weak self-duality are given. 

I. INTRODUCTION 

In [l] van Lint and Springer calculate the parameters of codes 
constructed from Hermitian curves. The remark that these 
codes are usually better than the corresponding Reed-Solomon 
codes with the same rate makes it appropriate to study these 
codes in greater detail. In Section II we will give the necessary 
algebraic-geometric tools. These tools will be used in Section III 
to prove some nice results for the codes constructed from Hermi- 
tian curves. In Section IV we will give a worked out example. 

II. BASICFACTSABOUTHERMITIANCURVESAND 
THEIRPOINTS 

For the definition of Hermitian curves we refer to [4, p. 1461 
and for the definition of genus of a curve, rational points, 
uniformizing parameter, differential, residue, L(D), and Q(D), 
we refer to [2] or [3]. Let 4 = r* be a power of two, and OL be a 
primitive element of IF,. The Hermitian curve H is given by the 
equation Xr+’ + Yr+t + Z’+‘= 0 (cf. [4, p. 1461). Since H has 
no multiple points, its genus is g = (r - 1) r/2. The number of 
rational points (over IF,) on H is r3 $1 (cf. [4, p. 1471). In what 
follows y, z will be defined as y = Y/X, z = Z/X. 

Lemma I: The only rational points (over F4) on H with 
corresponding umformizing parameters are 

a) uniformizing parameter t = l/y; 
points 

Q=(O,l,l), P~,y,i=(O,l,a(r-‘)‘), (i=l;..,r); 

b) uniformizing parameter t = y; 
points 

Py,i = (l,O, &-l)i), (i=O;..,r); 

c) uniformizing parameter t = z; 
points 

Pz,i=(l,a(r-l)‘,O), (i=O;..,r); 

d) uniformizing parameter t = by + z; 
points 

P r,ro,i, j = (1, a(r-W+i~, a(r-W+.iO), 

(i,=l;..,r-2;i=O;..,r;j=O;.,,r), 

j, and p are uniquely determined by the equations 
1+ &(r+l) = &d’+l) , 
p = a(r-1K-i)+(i0-k7)~ 

Proof: The fact that the equation 1+ &r+l) = &o(~+‘) 
uniquely determines j, follows from the fact that 1 + (Y’o(“+~) is 
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