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Abstract—A write-once memory (WOM) is a storage device
that consists of cells that can take on � values, with the added con-
straint that rewrites can only increase a cell’s value. A length-�,
�-write WOM-code is a coding scheme that allows � messages
to be stored in � cells. If on the �th write we write one of ��

messages, then the rate of this write is the ratio of the number
of written bits to the total number of cells, i.e., ���

�
����. The

sum-rate of the WOM-code is the sum of all individual rates
on all writes. A WOM-code is called a fixed-rate WOM-code if
the rates on all writes are the same, and otherwise, it is called a
variable-rate WOM-code. We address two different problems when
analyzing the sum-rate of WOM-codes. In the first one, called
the fixed-rate WOM-code problem, the sum-rate is analyzed over
all fixed-rate WOM-codes, and in the second problem, called the
unrestricted-rate WOM-code problem, the sum-rate is analyzed
over all fixed-rate and variable-rate WOM-codes. In this paper,
we first present a family of two-write WOM-codes. The construc-
tion is inspired by the coset coding scheme, which was used to
construct multiple-write WOM-codes by Cohen et al. and recently
by Wu, in order to construct from each linear code a two-write
WOM-code. This construction improves the best known sum-rates
for the fixed- and unrestricted-rate WOM-code problems. We
also show how to take advantage of two-write WOM-codes in
order to construct codes for the Blackwell channel. The two-write
construction is generalized for two-write WOM-codes with �
levels per cell, which is used with ternary cells to construct three-
and four-write binary WOM-codes. This construction is used
recursively in order to generate a family of �-write WOM-codes
for all �. A further generalization of these �-write WOM-codes
yields additional families of efficient WOM-codes. Finally, we
show a recursive method that uses the previously constructed
WOM-codes in order to construct fixed-rate WOM-codes. We
conclude and show that the WOM-codes constructed here outper-
form all previously known WOM-codes for � � �� for both
the fixed- and unrestricted-rate WOM-code problems.

Index Terms—Coding theory, flash memories, write-once mem-
ories (WOMs), WOM-codes.
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TABLE I
WOM-CODE EXAMPLE

I. INTRODUCTION

W RITE-ONCE-MEMORY (WOM) codes were first in-
troduced in 1982 by Rivest and Shamir [23]. They make

it possible to record binary data more than once in a so-called
write-once storage medium, such as a punch card or ablative
optical disk. These media can be represented as a collection of
write-once bit locations, each of which initially represents a bit
value 0 that can be irreversibly overwritten with a bit value 1. A
WOM-code allows the reuse of a write-once medium by intro-
ducing redundancy into the recorded bit sequence and, in subse-
quent write operations, observing the state of the medium before
determining how to update the contents of the memory with a
new bit sequence.

A simple example, presented in [23], enables the recording
of two bits of information in three memory elements twice. The
encoding and decoding rules for this WOM-code are described
in a tabular form in Table I. It is easy to verify that after the first
2-bit data vector is encoded into a 3-bit codeword, if the second
2-bit data vector is different from the first, the 3-bit codeword
into which it is encoded does not change any code bit 1 into a
code bit 0, ensuring that it can be recorded in the write-once
medium.

Flash memories impose constraints on recording that are sim-
ilar to those associated with write-once memories. This connec-
tion was first brought in [3], [16], [17]. Flash memories contain
floating gate cells. The cells are electrically charged with elec-
trons and can represent multiple levels according to the number
of electrons they contain [5]. The most conspicuous property
of flash-storage technology is its inherent asymmetry between
cell programming and cell erasing. While it is fast and simple to
increase a cell level, reducing its level requires a long and cum-
bersome operation of first erasing its entire containing block

and only then programming the cells [5]. Such
block erasures are not only time consuming, but also degrade the
lifetime of the memory. A typical block can generally tolerate
at most – erasures. A WOM-code can be applied in this
context to enable additional writes without first having to erase
the entire block. The deferral of a block erasure is beneficial to
the lifetime of the device. The cost associated with this increase
in the endurance is the redundancy and the additional com-
plexity associated with the encoding and decoding processes.
For more details on the implementation of WOM-codes in flash
memories, the reader is referred to [14] and [32].

0018-9448/$31.00 © 2012 IEEE
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TABLE II
PRIOR BEST-KNOWN SUM-RATES FOR THE UNRESTRICTED-RATE AND FIXED-RATE WOM-CODE PROBLEMS

The most fundamental problem in the WOM model is to max-
imize the total amount of information that can be written into
memory cells in writes, while preserving the constraint that on
each write one can only change cells in the zero state to the one
state. We say that a binary WOM-code
can write messages on binary cells, where during the th
write, , one of possible messages is written. The
rate of the th write is the ratio between the number of bits that
can be written during that write to the total number of cells used

The sum-rate of the WOM-code is the sum of all the individual
rates for each write

It is proved in [10] and [15] that the capacity region of a binary
-write WOM-code is

It is also proved that the maximum achievable rate for a binary
WOM-code with writes is .

The first WOM-code construction, presented by Rivest and
Shamir, was designed for the storage of two bits twice using
only three cells [23]. In this work, they also reported on more
WOM-code constructions, including tabular WOM-codes and
“linear” WOM-codes. Merkx constructed WOM-codes based
on projective geometry [22]. In [6], using binary linear codes,
Cohen et al. introduced a “coset-coding” technique that is used
to construct WOM-codes, and in [13], an improvement to one of
the constructions in [6] was given by Godlewski. Recently, posi-
tion modulation codes have been introduced by Wu and Jiang in
order to construct multiple-write WOM-codes [30]. Wu found
WOM-codes for two writes in [29] which improved the best rate
previously known.

Wolf et al. discussed the WOM-codes problem from its infor-
mation-theoretic point of view [28]. In [9], the WOM model has
been generalized for multi-level cells and studied information
theory limits and code constructions for constrained sources.
Heegard studied the capacity of a WOM and a noisy WOM in

[15], and Fu and Han Vinck found the capacity of a nonbinary
WOM [10]. Error-correcting WOM-codes were first studied in
[34] and [35] and more constructions were recently given in
[33]. Jiang discussed in [16] the generalization of error-cor-
recting WOM-codes for the flash/floating codes model [17],
[18], [21].

While there are different ways to analyze the efficiency of
WOM-codes, we find that the appropriate figure of merit is to
analyze the sum-rate under the assumption of a fixed number of
writes. In general, the more writes the WOM-code can support,
the better the sum-rate it can achieve. The goal is to give upper
and lower bounds on the sum-rates of WOM-codes while fixing
the number of writes .

We also distinguish between two families of WOM-codes. If
the rates on all writes of a WOM-code are all the same then it
is called a fixed-rate WOM-Code, and otherwise it is called a
variable-rate WOM-code. We also address two different prob-
lems when analyzing the sum-rate of WOM-codes. In the first
one, called the fixed-rate WOM-code problem, the sum-rate
is analyzed over all fixed-rate WOM-codes, and in the second
problem, called the unrestricted-rate WOM-code problem,
the sum-rate is analyzed over all fixed-rate and variable-rate
WOM-codes.

Table II summarizes, for the two different problems, the best
previously known sum-rates for each number of writes , where

. The second column represents the best known
sum-rates for the unrestricted-rate WOM-code problem and the
third column gives the capacity, which is a tight upper bound on
the achievable sum-rate, , derived in [10] and [15].
Similarly, the fourth column represents the best known sum-rate
for the fixed-rate WOM-code problem and the last column is
the upper bound on the sum-rate, which was given in [15]. The
citation next to each sum-rate corresponds to the reference in the
bibliography where the WOM-code was first presented. Note
that a -write variable-rate WOM-code can also be used as a
(degenerate) -write variable-rate WOM-code, for larger than
, simply by not writing messages on the last writes. This

explains the equality of the entries for , 4, 5 writes in the
unrestricted-rate problem.

In this paper, we present WOM-code constructions which re-
duce the gaps between the upper and lower bounds on sum-
rates for the fixed- and unrestricted-rate WOM-code problems.
In Section II, we formally define the WOM-codes problem.
Section III reviews the previous works on WOM-codes that
give the currently known lower and upper bounds on sum-rates
for the fixed- and unrestricted-rate WOM-code problems. In
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Section IV, we present a two-write WOM-code construction
which improves the best known sum-rates for both cases and can
achieve each point in the capacity region of two-write WOM-
codes. Then, we discuss in this section the connection between
the Blackwell channel and two-write WOM-codes and show
how to take advantage of two-write WOM-codes in order to con-
struct codes for the Blackwell channel. In Section V, we gener-
alize the two-write WOM-code construction from Section IV
for nonbinary cells. Then, it is shown how to use ternary-cell
two-write WOM-codes in order to construct binary multiple-
write WOM-codes. We start with specific constructions for three
and four writes, and then show a general approach that works
for an arbitrary number of writes. We introduce another gen-
eral construction based upon concatenating WOM-codes which
provides us with more ways to construct families of WOM-
codes. In Section VII, we show a recursive method to construct
fixed-rate multiple-write WOM-codes. Finally, we summarize
our findings in Section VIII and show that the constructions
given in this paper outperform all previously known sum-rates
for for both cases of the fixed- and unrestricted-rate
WOM-code problems.

II. PRELIMINARIES

In this paper, the memory elements, called cells, have two
states: 0 and 1. At the beginning, all the cells are in their 0 state.
A cell can change its state from 0 to 1. This operation is irre-
versible in the sense that a cell cannot change its state from 1
to 0 unless the entire memory is erased. The memory-state vec-
tors are all the binary vectors of length ,

. For two memory-state vectors , , we de-
note by , if and only if for all and say
that covers .

Definition: An -write WOM-code is a
coding scheme which consists of cells and pairs of encoding
and decoding maps, denoted by and for . The
-write WOM-code satisfies the following properties:
1)
2) For

such that, for all
.

3) For

such that for all and
for , for all

.
The sum-rate of a -write WOM-code is defined to be

Remark 1: We assume that the write number on each write
is known. This knowledge does not affect the sum-rate. Indeed,
assume that there exists an -write WOM-

code where the write number is known. Assume also that the

sum-rate of is . It is possible to
change this WOM-code to an -write
WOM-code by having blocks of the -write WOM-code
and more cells indicating the write number. Then, the sum-rate
of is

Therefore, for large enough, it is possible to achieve the
sum-rate of the -write WOM-code . For simplicity, it will be
assumed in this paper that the write number is known in the en-
coding process.

III. PREVIOUS WORK

It is proved in [10] and [15] that the capacity region of a binary
-write WOM-code is

(1)

It has been shown that all points in the capacity region can be
achieved by random coding with either fixed-rate or variable-
rate WOM-codes. The sum-rate of the WOM-code is given by

It is proved in [15] that the sum-rate is maximized when

for , and the maximum sum-rate is . For
example, for , the maximum sum-rate, , is achieved
for . Intuitively, this upper bound is plausible. During
the course of the writes, a particular cell can be programmed
at some time or not programmed at all. Thus,
there are possible scenarios, so the amount of information
that can be stored in each cell is no greater that . Of
course, the result above indicates that this is a tight upper bound.

The case of fixed-rate WOM-codes was discussed in [15]. In
this setting, we consider those points on the boundary of the
capacity region satisfying . The maximum
sum-rate, denoted by , is given by the recursion in the
following theorem [15].

Theorem 1: The values of for satisfy the fol-
lowing recursive formula:
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TABLE III
UPPER BOUNDS ON THE SUM-RATE OF FIXED-RATE WOM-CODES

where is the minimum positive value of such that
.

As mentioned above, random coding achieves capacity and
thus the upper bound is tight. Using the recursion in
the theorem, the following results are obtained for in
Table III.

The upper bounds presented previously on the sum-rates
for the fixed- and unrestricted-rate WOM-codes problems
have been shown to be achievable in theory. However, finding
specific WOM-code constructions that achieve these max-
imum possible sum-rates remains an open problem. In the
rest of this section, we give a brief summary of the highest
known sum-rates that were achieved by previously published
WOM-code constructions.

Rivest and Shamir, 1982 [23]: Rivest and Shamir constructed
the first WOM-code (sum-rate ),
that stores two bits twice using only three cells. They
constructed other WOM-codes, including a
WOM-code which has a slightly better
sum-rate, a WOM-code , and
a WOM-code . They
also described construction methods for various classes of
WOM-codes, including tabular WOM-codes and “linear”
WOM-codes. In their paper, they also mentioned specific
WOM-codes as well as some classes of WOM-codes designed
by others, with the following parameters:

1) WOM-code , by David
Klaner.

2) WOM-code , by David
Leavitt.

3) WOM-code , by James
B. Saxe.

4) WOM-code,
even ( for large enough), by James B.

Saxe.
Merkx, 1984 [22]: Merkx constructed WOM-codes based on

projective geometry codes. Parameters of some of his WOM-
codes are as follows:

1) WOM-code .
2) WOM-code

.
3) WOM-code .
4) WOM-code .
5) WOM-code .
6) WOM-code

.
7) WOM-code

.

Cohen et al. 1986 [6]: Cohen et al. introduced the “coset-
coding” technique, which uses binary linear codes in the con-
struction of WOM-codes. This approach yielded WOM-codes
with the following parameters:

1) WOM-code .
2) WOM-code .
3) WOM-code .
4) WOM-code

, for .
Godlewski 1987 [13]: Godlewski improved upon the last re-

sult in [6] by constructing WOM-codes with parameters:
1) WOM-code

, for .
Wu and Jiang 2009 [30]: Recently, position modulation

codes have been used by Wu and Jiang in order to construct
multiple-write WOM-codes. Their construction can produce
many WOM-codes, among them WOM-codes with the fol-
lowing parameters:

1) WOM-code
.

2) WOM-code
.

3) WOM-code
.

4) WOM-code
.

5) WOM-
code .

6)
WOM-code .

Wu 2010 [29]: Wu designed two-write WOM-codes that had
the highest sum-rates of any such WOM-codes known at the
time. His best construction gave a WOM-code

. He also presented a construction of “ -error”
two-write WOM-codes for which the second write is not guar-
anteed in the worst case, but is allowed with high probability.

The results of the best previously known sum-rates both for
the fixed- and unrestricted-rate WOM-code problems as well as
upper bounds for each case are summarized in Table II.

IV. TWO-WRITE WOM-CODES

In this section, we present a two-write WOM-codes construc-
tion that reduces the gap between the upper and lower bound on
the sum-rates for both fixed- and unrestricted-rate WOM-code
problems. The construction is inspired by the “coset-coding”
scheme which was used in [6] and [13] and recently in [29]. In
[6] and [13], multiple-write WOM-codes are constructed where
on each write the “coset-coding” scheme is used. In [29], the
“coset-coding” is used only on the second write in order to gen-
erate an -error two-write WOM-codes. In -error two-write
WOM-codes the second write is not guaranteed in the worst
case but is allowed with high probability. Here, it is shown how
to generate from every linear code a two-write WOM-code. As
in [29], we use the “coset-coding” scheme only on the second
write, and the first write is modified such that the second write
is guaranteed in the worst case. We show two specific exam-
ples of WOM-codes having better sum-rates than the previously
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best known ones. We also show that by choosing uniformly at
random the parity-check matrix of the linear code, there exist
WOM-codes that achieve all points in the capacity region of
two-write WOM-codes. Finally, we discuss the connection be-
tween the Blackwell channel [1] and two-write WOM-codes.
We show how to generate from each two-write WOM-code a
code for the Blackwell channel.

A. Two-Write WOM-Codes Construction

Let be a linear code with parity-check matrix . For
each , the matrix is defined as follows. The th
column of , , is the th column of if and
otherwise it is the zeros column. The set is defined to be

(2)

We first note the following claim.
Claim 2: If a vector belongs to , its weight is at most .
The support of a binary vector , denoted by , is the

set . The dual of the code is denoted by . The
next lemma is a variation of a well known result (see, e.g., [6]).

Lemma 3: Let be a linear code with parity-check ma-
trix . For each vector , if and
only if does not cover any nonzero codeword in .

Lemma 3 implies that if two matrices are parity-check ma-
trices of the same linear code , then their corresponding sets

are identical, and so the set is defined to be

The next theorem presents the two-write WOM-codes.

Theorem 4: Let be a linear code with parity-check
matrix and let be the set defined in (2). Then there exists
an two-write WOM-code of sum-rate

Proof: We need to show the existence of the encoding
and decoding maps on the first and second writes. First, let

be an ordering of the set . The first and
the second writes are implemented as follows.

1) On the first write, a symbol over an alphabet of size
is written. The encoding and decoding maps , are
defined as follows. For each ,

and .
2) On the second write, a vector of bits is written.

Let be the programmed vector on the first write and
, then

where is a solution of the equation .
For the decoding map , if is the vector of programmed
cells, then the decoded value of the bits is given by

The success of the second write results from the condition that
for every vector , rank .

There is no condition on the code and therefore we can use
any linear code in this construction, though we seek to find codes
that maximize the sum-rate . Next, we show two
examples of two-write WOM-codes that achieve better sum-
rates than the previously best known ones.

Example 1: Let us demonstrate how Theorem 4 works for
the first-order Reed–Muller code. Its dual code is the

second-order Reed-Muller, which is the extended
Hamming code of length 16. Hence, we are interested in the
size of the set

According to Claim 2, the set does not contain vectors of
weight greater than five. This extended Hamming code has 140
codewords of weight four and no codewords of weight five. The
set consists of the following vector sets.

1) All vectors of weight at most three. There are
such vectors.

2) All vectors of weight four that are not codewords. There
are such vectors.

3) All vectors of weight five that do no cover any codeword
of weight four. There are such
vectors. Since the minimum distance of the code is four, a
vector of weight five can cover at most one codeword of
weight four.

Therefore, we get and the
sum-rate is

It is possible to modify this WOM-code such that on the first
write only 11 bits are written. Thus, we achieve a two-write
fixed-rate WOM-code and its sum-rate is , which
is the best known fixed-rate WOM-code.

Example 2: In this example, we will use the Golay
code. Its dual code is the Golay code so we are inter-
ested in the size of the set

According to Claim 2, there are no vectors of weight greater
than 11 in the set . The Golay code has
codewords of weight seven, codewords of weight
eight, and codewords of weight 11. The set
consists of the following vector sets.

1) All vectors of weight at most 6. This number of vectors is
.

2) All vectors of weight between 7 and 10 besides those that
cover a codeword of weight 7 or 8. Since the minimum
distance of the code is 7 every vector can cover at most
one codeword. Hence, this number of vectors is

3) All vectors of weight 11 that are not codewords and do not
cover any codeword of weight either 7 or 8. This number
was shown in [7] to be 695520.
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Therefore, for the Golay code, we get

and thus the sum-rate is

B. Random Coding

The scheme we described in the previous section can work for
any linear code . Given a linear code with parity-check
matrix , we denote , so the
sum-rate of the generated WOM-codes is

Our goal in this section is to show that it is possible to achieve
all points in the capacity region defined in (1), by choosing
uniformly at random the parity-check matrix of the linear code

. We prove that in the following theorem.

Theorem 5: For any and , there exists
a linear code satisfying , .

Proof: Let be such that and
. Let for large enough and let us choose

uniformly at random an matrix . The matrix
will be the parity-check matrix of the linear code that will
be used to construct the two-write WOM-code. For each vector

, let us define the indicator random variable
on the space of all matrices as follows:

if
otherwise

where is the set defined in (2). Note that choosing the matrix
uniformly at random induces a measure on the set and thus

a probability distribution on the random variable . Then,
the number of vectors in is ,
and

(3)
We claim that depends on only through its
weight, . In this case, (3) simplifies to

because if then for all (Claim 2).
Now, let us determine the value of for a

vector of weight . Note that if and only
if the sub-matrix of size induced by
the zero entries of the vector is full rank. It is well known,
e.g., [4], that if we choose an matrix, where ,
uniformly at random then the probability that it is full rank is

. Therefore, if we choose an

matrix uniformly at random then the probability that it
is full rank is . Note that

and, hence, .
According to [25, lemma 4.8]

and, therefore, we get

It follows that there exists a parity-check matrix of a
linear code , such that the size of the set is at least

and

for large enough.

Random coding was proved to be capacity-achieving by
constructing a partition code [10], [15]. However, the above
random coding scheme has more structure that enables to
look for WOM-codes with a relatively small block length.
We ran a computer search to look for such WOM-codes. The
parity-check matrix of the linear code was chosen uniformly
at random and then the size of the set was computed. The
results are shown in Fig. 1. Note that if and
are two achievable rate points then for each the point

is an achievable rate
point, too. This can simply be done by block sharing of a large
number of blocks. Therefore, the achievable region is convex.

We ran a computer search to find more two-write
WOM-codes with high sum-rates. For fixed-rate WOM-codes,
the best construction achieved by a computer search has
sum-rate and for variable-rate WOM-codes the
best computer search construction achieved sum-rate 1.4928.
The number of cells in these two constructions is 33.

Remark 2: The encoding and decoding maps of the second
write are implemented by the parity-check matrix of the linear
code as described in the proof of Theorem 4. A naive scheme
to implement the encoding and decoding maps of the first write
is simply by a lookup table of the set . However, this can be
done more efficiently using algorithms to encode and decode
constant weight binary codes. There are several works which
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Fig. 1. Capacity region and achieved rates of two-write WOM-codes.

efficiently encode and decode all binary vectors of length and
weight ; see for example [2], [8], [20], [26], [27]. These works
can be easily extended to construct efficient encoder and de-
coder maps to the set of all binary vectors of length and weight
at most , denoted by

The set is a subset of the set . Therefore, we can
use these algorithms while constructing a smaller table, only
for the vectors in the set as follows. Assume that

is a one-to-one and onto
map such that the calculation of and its inverse is practi-
cally feasible. List all the vectors in according to
a linear ranking of their corresponding values of . Then,
a mapping is constructed such that for
all , , where is the
number of vectors in of value less than . The
time complexity to calculate is
since this list is sorted. Similarly, for all ,

.
In many cases, the size of the set will be signif-

icantly smaller than the size of . For example, for the Golay
code , the size of is 3300179, while the size of

is

Similarly, for the Reed–Muller code , the size of the set
is 5065 while the size of the set is 1820.

C. Application to the Blackwell Channel

The Blackwell channel, introduced first by Blackwell [1], is
one example of a deterministic broadcast channel. The channel

Fig. 2. Blackwell Channel.

is composed of one transmitter and two receivers. The input to
the transmitter is ternary and the channel output to each receiver
is a binary symbol. Let be the ternary input vector to the trans-
mitter of length . For , is
a binary vector of length two defined as follows (see Fig. 2):

The binary vectors , are defined to be

and are the output vectors to the two receivers.
The capacity region of the Blackwell channel was found by

Gel’fand [12] and consists of five subregions, given by their
boundaries:

1) .
2) .
3) .
4) .
5) .

The connection between the Blackwell channel and two-write
WOM-codes was suggested by Roth [24]. The next theorem
shows that from every two-write WOM-code of rate it
is possible to construct codes for the Blackwell channel of rates

and .
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Fig. 3. Capacity region and the achieved rates for the Blackwell channel.

Theorem 6: If is an achievable rate of a two-write
WOM-code, then and are achievable rates
for the Blackwell channel.

Proof: Assume that there exists a
two-write WOM-code and let , and , be its en-
coding and decoding maps. We claim that there exists a
coding scheme for the Blackwell channel of rate . Let

be two messages
and let and . Let be a
ternary vector of length defined as follows. For ,

. The vector is well-defined since for all
, and hence .

The vector is the input to the transmitter. Then, the vector
is transmitted to the first receiver and the vector

to the second receiver. Note that and .
Therefore, the first receiver decodes its message according to

and the second receiver decodes
its message according to .

Similarly, it is possible to achieve the rate . Now we
let and . The vector is defined
as for . The decoded message
by the first receiver is and is the decoded
message by the second receiver.

Remark 3: It is possible to define the Blackwell channel dif-
ferently such that the forbidden pair of bits is not but an-
other combination. Then, the construction of the codes can be
adjusted accordingly.

Now, we can use the two-write WOM-codes in order to de-
fine codes for the Blackwell channel. By using time sharing, we
see that the achievable region is convex. Fig. 3 shows the corre-
sponding capacity region and achieved rates for the Blackwell
channel.

V. MULTIPLE-WRITE WOM-CODES

In this section, we present WOM-code constructions which
reduce the gaps between the upper and lower bounds on the

sum-rates of WOM-codes for . First, we gener-
alize the two-write WOM-code construction from Section IV
for nonbinary cells. Then, we show how to use these nonbi-
nary two-write WOM-codes in order to construct binary mul-
tiple-write WOM-codes. We start with a specific construction
for three-write WOM-codes and the extension for four-write
WOM-codes as well as arbitrary number of writes will appear
in Appendix A.

A. Nonbinary Two-Write WOM-Codes

Suppose now that each cell has levels, where is a prime
number or a power of a prime number. We start by choosing a
linear code over with a parity-check matrix of
size . For a vector of length over , let
be the matrix with zero columns replacing the columns that
correspond to the positions of the nonzero values in . Then, we
define

(4)

Next, we construct a nonbinary two-write WOM-code
in a similar manner to the construction in

Section IV. Since the proof of the next theorem is very similar
to the proof of Theorem 4, we omit it. A complete proof can be
found in [19].

Theorem 7: Let be a linear code with parity-check
matrix over and let be the set defined in (4). Then,
there exists a -ary two-write WOM-code of
sum-rate

As was shown in the binary case, there is no restriction on the
choice of the linear code or the parity-check matrix . Every
such code/matrix generates a WOM-code. For a linear code

we define and so the
sum-rate of the generated WOM-code is . The
set of achievable rates by this construction is

The proof is also very similar to Theorem 5 in Section IV for the
binary case, and thus, we omit it as the complete proof appears
in [19].

Theorem 8: For any and , there exists
a linear code satisfying , .

The next corollary provides the best achievable sum-rate of
the construction.

Corollary 9: For any -ary WOM-code generated using our
construction, the highest achievable sum-rate is .

Proof: First, note that
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and since the function is a concave function

Also, for the achievable sum-rate is .
Therefore, there exists a WOM-code produced by our construc-
tion with sum-rate .

On the other hand, any WOM-code resulting from our con-
struction satisfies the property that every cell is programmed at
most once. This model was studied in [10] and the maximum
achievable sum-rate was proved to be . Therefore,
the construction cannot produce a WOM-code with a sum-rate
that exceeds .

Remark 4: This construction does not achieve high sum-rates
for nonbinary two-write WOM-codes in general. While the best
achievable sum-rate of the construction is , the
upper bound on the sum-rate is ; see [10]. The de-
crease in the sum-rate in this construction results from the fact
that cells cannot be programmed twice. That is, if a cell was pro-
grammed on the first write, it cannot be reprogrammed on the
second write even if it did not reach its highest level. In fact, it
is possible to find nonbinary two-write WOM-codes with better
sum-rates. However, the goal in this paper is not to find efficient
nonbinary WOM-codes. Rather, as shown later, the nonbinary
codes that we have constructed can be used in the design of bi-
nary multiple-write WOM-codes.

For the construction of binary multiple-write in Section V-B,
we use WOM-codes over . We ran a computer search to
find such a ternary two-write WOM-code of sum-rate 2.2205,
and we will use this WOM-code in order to construct specific
multiple-write WOM-codes.

B. Three-Write WOM-Codes

We start with a construction for binary three-write WOM-
codes. The construction uses the WOM-codes found in the pre-
vious section over .

Theorem 10: Let be an two-write
WOM-code over constructed as in Section V-A. Then,
there exists a three-write WOM-code
of sum-rate .

Proof: We denote by and the encoding maps of
the first and second writes, and by and the decoding
maps of the first and second writes of the WOM-code , respec-
tively. The cells of the three-write WOM-code we construct
are divided into two-cell blocks, so the memory-state vector
is of the form . In this
construction, we also use a map
defined as follows:

The map extends naturally to ternary vectors
using the rule

On the pairs in the image of , we define to
indicate the inverse function. The map is extended simi-
larly to work over vectors of such bit pairs. We are now ready
to describe the encoding and decoding maps for a three-write
WOM-code.

1) On the first write, a message from the set
is written in the cells

The decoding map is defined similarly, where is the
memory-state vector

2) On the second write, a message from the set
is written in the cells as follows.

Let be the programmed vector on the first write. Then

That is, first the memory-state vector is converted to a
ternary vector. Then, it is encoded using the encoding
and the new message, producing a new ternary memory-
state vector. Finally, the last vector is converted to a -bit
vector. The decoding map is defined as on the first write

According to the construction of the WOM-code , no
ternary cell is programmed twice and therefore each of the

pairs of bits is programmed at most once.
3) On the third write, an -bit vector is written. Let

be the current memory-state
vector. Then

is a vector, defined as follows. For ,
if and otherwise . It is

always possible to program the pair of bits to be since
at most one cell in each pair was previously programmed.
The decoding map is defined to be

That is, the decoded value of each pair of bits is one if and
only if the value of both of them is one.

Corollary 11: The best achievable sum-rate of a three-write
WOM-code using this construction is .

Proof: Given a two-write WOM-code over with
rates , the constructed binary three-write WOM-code
has rates and its sum-rate is
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. This sum-rate is maximized when is maxi-
mized. But is the sum-rate of the two-write WOM-code
over , which was proven in Corollary 9 to be maximized
at . Then the maximum achievable sum-rate of the con-
structed binary three-write WOM-code is

Using the construction of WOM-codes over presented
in the previous section, we can construct a three-write WOM-
code of sum-rate .

The extension of the last construction for four and multiple
writes is similar and appears in Appendix A.

VI. CONCATENATED WOM-CODES

The construction presented in the previous section and
Appendix A provides us with a family of WOM-codes for all

. In this section, we will show a general scheme to con-
struct more families of WOM-codes. In fact, the construction
in the previous section and Appendix A is a special case of this
general scheme.

Theorem 12: Let be an binary
-write WOM-code where is an even integer. For

, let be an two-write
WOM-code over , as constructed in Section V-A. Then,
there exists an
binary -write WOM-code of sum-rate

Proof: For , let , be the encoding, de-
coding maps on the th write of the WOM-code , respectively.
The definition of , for extends naturally to
vectors by simply invoking the maps on each entry in the vector.
Similarly, for , let us denote by and the
encoding maps of the first and second writes, and by and

the decoding maps of the first and second writes of the
WOM-code , respectively. We will present the specification
of the encoding and decoding maps of the constructed -write
WOM-code.

In the following definitions of the encoding and decoding
maps, we consider the memory-state vector to have sym-
bols of bits each, i.e., . For , the

st write and th write are implemented as follows.
1) On the st write, a message

is written to the memory-state vector according to

The memory-state vector is decoded according to

2) On the th write, a message is
written according to

Fig. 4. ��� �� �� �� �� three-write WOM-code.

and the memory-state vector is decoded according to

We will demonstrate how this construction works in the fol-
lowing example.

Example 3: We choose a three-write
WOM-code as the code . This code is depicted in Fig. 4 by
a state diagram describing all three writes. The three-bit vector
in each state is the memory-state and the number next to it
is the decoded value. We need to find three more two-write
WOM-codes over , , and . For the code

over , we ran a computer search to find a two-write
WOM-code over of sum-rate 2.6862. For the code

over , we use the code with sum-rate 2.22 which
we found in Section V-A, and we use the binary two-write
WOM-code of sum-rate 1.4928 for the code . Then, the
sum-rate of the six-write WOM-code is

It is possible to construct a five-write WOM-code by writing a
vector of bits in the last write so its sum-rate is

Note that if one of the codes in the general construction is
binary then we can actually use a WOM-code that allows more
than two writes. That is, in this construction we can use any bi-
nary multiple-write WOM-code as the WOM-code . There-
fore, we can generate another family of WOM-codes for .
Their maximum achievable sum-rates are given by the following
formula:

for and is the maximum achievable sum-rate for
a -write WOM-code. Similarly, the constructed WOM-
codes which we obtain using the WOM-codes which we found
before have sum-rates
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TABLE IV
SUM-RATES OF CONCATENATED WOM-CODES

for , where is the best sum-rate of a constructed
-write WOM-code. Table IV summarizes these sum-rates.

Note that the construction in Section V and Appendix A is
a special case of the generalized concatenated WOM-code con-
struction in which the WOM-code is chosen to be a
binary two-write WOM-code.

The general scheme described in Theorem 12 provides many
more families of WOM-codes. However, in order to construct
WOM-codes with high sum-rates, the WOM-code has to be
chosen very carefully. In particular, it is important to choose
such a WOM-code with as few cells as possible, since the sum
of all sum-rates of the nonbinary two-write WOM-codes is av-
eraged over the number of cells of the WOM-code . As the
number of short WOM-codes is small, there are only a small
number of possibilities to check. However, our search for better
WOM-codes with between six and ten writes using WOM-codes
with few cells did not lead to any better results.

VII. FIXED-RATE WOM-CODES

The WOM-code constructions for more than two writes im-
proved the achieved sum-rates only in the case of unrestricted-
rate WOM-code problem. In this section, we present a method to
construct fixed-rate WOM-codes. The method is recursive and
is based on the previously constructed WOM-codes.

Theorem 13: Let be an
-write WOM-code. Assume that for , there exists

a fixed-rate WOM-code of sum-rate . Let be a
permutation of such that . Then,
there exists a fixed-rate -write WOM-code of sum-rate

Proof: For simplicity, let us assume that as
it will be clear from the proof how to generalize to the arbitrary
case. First, we add more cells in order to write

on the last write. This guarantees that the
rates on the last two writes are the same. Then, we add

more cells in order to write more
bits on each of the last two writes. This part of the last two
writes is invoked using the fixed-rate two-write WOM-code of
sum-rate , and therefore, the additional number of cells is

. This addition of cells guarantees that
the rates on the last three writes are all the same. In general, for

we add more cells such

that more bits are written on each of the
last writes and therefore the rates on the last writes are
all the same. These bits are written using the fixed-rate -write
WOM-code which is assumed to exist.

With the addition of these cells, the number of bits written on
the th write for is

Thus, the rates on all writes are the same and the generated
WOM-code is fixed-rate.

The total number of bits we add is

and thus the sum-rate is

Let us demonstrate how to apply the last theorem. We start
with the three-write WOM-code we constructed in Section V-B.
Its rates on the first, second, and third writes are 0.6291, 0.4811,
and 0.5, respectively. We add more cells in order to
guarantee that the rates on the last two writes are the same.
Then we use the fixed-rate two-write WOM-code constructed
in Section IV-A of sum-rate 1.4546. Hence, we add

more cells, yielding a fixed-rate three-write WOM-code of sum-
rate

If we used the best fixed-rate two-write WOM-code of sum-rate
1.546 and the best three-write WOM-code of sum-rate 1.66,
then we get a fixed-rate three-write WOM-code of sum-rate
1.6263.

Note that we could use a two-write WOM-code such that
bits are written on its first write and bits are

written on its second write. This will indeed add another small
improvement to the sum-rate; however, this scheme is not easy
to generalize. The goal here is to give a general scheme. We
are aware that for each individual case it is possible to use other
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TABLE V
SUM-RATES OF FIXED-RATE WOM-CODES

WOM-codes that will provide a WOM-code of the desired sum-
rate with slightly fewer cells.

Now we move to the four-write WOM-code from Section
A-A. Its component rates are 0.6291, 0.4811, 0.413, and 1/3.
Three more groups of cells are added as follows:

1) more cells, so that the last two
write have the same rate.

2) more cells, so
that the last three writes have the same rate.

3) more cells, so
that the last four writes have the same rate.

Then, a fixed-rate four-write WOM-code is achieved with
sum-rate

If we used the best fixed-rate two- and three-write WOM-codes
and the best variable-rate four-write WOM-code, then we obtain
a fixed-rate four-write WOM-code of sum-rate 1.8249. Fixed-
rate -write WOM-code for can be similarly obtained.
The results are summarized for the sum-rates that were actually
found and the best ones we could find in this method in Table V.

VIII. SUMMARY AND COMPARISON

In this paper, we have presented several constructions for
multiple-write WOM-codes. First, we showed a method to con-
struct two-write WOM-codes. Using this method we found two-
write WOM-codes with better sum-rates than the previously
known codes. Then, we proved that it is possible to achieve each
point in the capacity region of two-write WOM-codes using this
scheme. Furthermore, we showed that each two-write WOM-
code generates a code for the Blackwell channel.

We then presented another method for constructing binary
multiple-write WOM-codes. The method made use of two-write
WOM-codes over , for which we generalized the binary
construction. While the nonbinary WOM-codes we constructed
do not achieve high sum-rate, they allowed us to construct bi-
nary -write WOM-codes for . We showed how to con-
struct WOM-codes for three and four writes, and then showed
that a recursive algorithm can be used to generate binary WOM-
codes that support any number of writes. We also described
a general concatenation scheme to construct other families of
WOM-codes. Applying this scheme, we found another family
of -write WOM-codes that gives the best known sum-rates for

for the unrestricted-rate WOM-code problem.
Lastly, we showed two methods to construct fixed-rate mul-
tiple-write WOM-codes.

TABLE VI
COMPARISON FOR THE UNRESTRICTED-RATE WOM-CODE PROBLEM

TABLE VII
COMPARISON FOR THE FIXED-RATE WOM-CODE PROBLEM

Table VI and VII show a comparison for be-
tween the sum-rates of the WOM-codes presented in this paper
and the best previously known sum-rates for both the fixed-
and unrestricted-rate WOM-code problems. The column labeled
“Best Prior” is the highest sum-rate achieved by a previously re-
ported -write WOM-code. The column “Achieved New Sum-
rate” gives the sum-rates that we actually obtained through ap-
plication of the new techniques. The column “Maximum New
Sum-rate” lists the maximum possible sum-rates that can be ob-
tained using our approach. Finally, the column “Upper Bound”
gives the maximum possible sum-rates for -write WOM-codes.

For the unrestricted-rate two-write WOM-code problem,
the results were found by the computer search method of
Section IV. For three and four writes, we used the WOM-codes
described in Section V, and for , we used the
WOM-codes discussed in Section VI. For the fixed-rate
two-write WOM-code problem, we again used the computer
search method of Section IV. The constructions for more than
two writes were obtained by application of Theorem 13.

APPENDIX

In this appendix, the extension of the WOM-codes construc-
tion presented in Section V-B for four and multiple writes is
presented.

A) Four-Write WOM-Codes: We next present a construc-
tion for four-write binary WOM-codes.

Theorem 14: Let be an two-write
WOM-code over constructed as in Section V-A. Let
be an binary two-write WOM-code. Then,
there exists a four-write
WOM-code of sum-rate .

Proof: The proof is very similar to the one used for
three-write WOM-codes in Theorem 10. We denote by ,

the encoding maps of the first and second writes, and by
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the decoding maps of the first and second writes of
the WOM-code , respectively. Similarly, the encoding and
decoding maps of the WOM-code for the first and second
writes are denoted by , and , , respectively.
Using the encoding and decoding maps of , we define the first
and second writes of this constructed four-write WOM-code
as we did for the first and second writes of the three-write
WOM-codes. The third and fourth writes are defined in a
similar way, as follows.

1) On the third write, a message from the set
is written. Let

and let be
the current memory-state vector. Then

where for , if and,
otherwise, . The decoding map

is defined to be

2) On the fourth write, a message from the set
is written. Let

where is the current
memory-state vector. Then

where for , if and,
otherwise, . The decoding map

is defined, as before, by

Remark 5: The last theorem requires both the binary
two-write and ternary two-write WOM-codes to have the same
number of cells, . However, we can construct a four-write
binary WOM-code using any two such WOM-codes, even if
they do not have the same number of cells. Suppose we have a
WOM-code over with cells and binary WOM-code
with cells. Both codes can be extended to use
cells. Then, the construction above will give a four-write
WOM-code.

Corollary 15: The best achievable sum-rate of a four-write
WOM-code using the construction in Theorem 14 is

.
Proof: According to Corollary 9, the maximum value of

is and the maximum value of
is . Therefore, the maximum sum-rate of the constructed
four-write WOM-codes is

If we use the WOM-code over of sum-rate 2.2205
found in Section V-A as the WOM-code and the binary two-
write WOM-code of sum-rate 1.4928 found in Section IV as
the WOM-code , then there exists a four-write WOM-code of
sum-rate .

B) Multiple-Write WOM-Codes: The construction of
three- and four-write WOM-codes can be easily generalized to
an arbitrary number of writes. We state the following theorem
and skip its proof since it is very similar to the proofs of the
corresponding theorems for three- and four-write WOM-codes.

Theorem 16: Let be an two-write
WOM-code over constructed as in Section V-A. Let
be an binary -write WOM-
code. Then, there exists a

-write WOM-code of sum-rate

Theorem 16 implies that if there exists a -write WOM-
code of sum-rate , then there exists a -write WOM-code
of sum-rate

The following corollary summarizes the possible achievable
sum-rates of -write WOM-codes.

Corollary 17: For , there exists a -write WOM-code
of sum-rate

odd

even

If we use again the two-write WOM-code over of sum-
rate 2.2205 and the binary two-write WOM-code of sum-rate
1.4928 from Section IV, then for we obtain a -write
WOM-code of sum-rate , where

odd

even
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