
836 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

Constrained Codes that Mitigate
Inter-Cell Interference in Read/Write Cycles for

Flash Memories
Minghai Qin, Student Member, IEEE, Eitan Yaakobi, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—Inter-cell interference (ICI) is one of the main ob-
stacles to precise programming (i.e., writing) of a flash memory.
In the presence of ICI, the voltage level of a cell might increase
unexpectedly if its neighboring cells are programmed to high
levels. For q-ary cells, the most severe ICI arises when three
consecutive cells are programmed to levels high - low - high, rep-
resented as (q − 1)0(q − 1), resulting in an unintended increase
in the level of the middle cell and the possibility of decoding it
incorrectly as a nonzero value. ICI-free codes are used to mit-
igate this phenomenon by preventing the programming of any
three consecutive cells as (q − 1)0(q − 1).

In this work, we extend ICI-free codes in two directions. First,
we consider binary balanced ICI-free codes which, in addition
to forbidding the 101 pattern, require the number of 0 symbols
and 1 symbols to be the same. Using combinatorial methods,
we determine the asymptotic information rate of these codes
and show that the asymptotic rate loss due to the imposition
of the balanced property is approximately 2%. Extensions to q-
ary cells, for q > 2 are also discussed. Next, we consider q-ary
ICI-free write-once-memory (WOM) codes that support multiple
writes of a WOM while mitigating ICI effects. These codes forbid
the appearance of the (q − 1)0(q − 1) pattern in any codeword
used in any writing step. Using properties of two-dimensional
constrained codes and generalized WOMs, we characterize the
maximum sum-rate of t-write ICI-free WOM codes or, equiva-
lently, the t-write sum-capacity of an ICI-free WOM.

Index Terms—Constrained codes, flash memories, write-once
memories

I. INTRODUCTION

IN RECENT years, non-volatile memories — in particu-
lar, flash memories — have attracted considerable attention

due to their high data-transfer rate and low power consump-
tion [1]. Flash memory cells consist of floating gate transistors,
in which the amount of trapped charge determines the cell volt-
age, referred to as the cell level. A flash memory cell is written

Manuscript received May 15, 2013; revised October 1, 2013 and December
10, 2013. This research was supported in part by the ISEF Foundation, the
Lester Deutsch Fellowship, the University of California Lab Fees Research
Program, Award No. 09-LR-06-118620-SIEP, the National Science Founda-
tion under Grant CCF-1116739, and the Center for Magnetic Recording Re-
search at the University of California, San Diego.

M. Qin and P. H. Siegel are with the Department of Electrical and
Computer Engineering and the Center for Magnetic Recording Research,
University of California, San Diego, La Jolla, CA 92093, U.S.A. (e-mail:
{mqin,psiegel}@ucsd.edu).

E. Yaakobi is with the Department of Electrical Engineering, Cal-
ifornia Institute of Technology, Pasadena, CA 91125 USA (e-mail:
eyaakobi@ucsd.edu). He is also with the Department of Electrical and Com-
puter Engineering and the Center for Magnetic Recording Research, Univer-
sity of California, San Diego, La Jolla, CA 92093 USA.

Digital Object Identifier 10.1109/JSAC.2014.140504.

to, or “programmed,” by applying a suitable voltage to the cell
in order to inject the desired amount of charge to reach a cer-
tain cell level. Programming precision is an important factor
governing the achievable capacity of flash memory storage.
Another is inter-cell interference (ICI), caused by the para-
sitic capacitance between adjacent cells, as a result of which
the voltage level of a so-called victim cell may be increased
when a high voltage is applied to neighboring cells [2], [3].

As an example of ICI, consider a single-level cell (SLC)
flash memory, meaning a memory whose cells supports only
two levels. (The SLC designation is somewhat of a misnomer.)
We denote the low level by the symbol 0 and the high level
by the symbol 1. Now, if a group of three consecutive cells in
a row are programmed with the 101 pattern, the level of the
middle cell may be inadvertently increased due to the effect of
ICI. During data recovery, the level of the victim cell may be
erroneously interpreted as representing a programmed symbol
1. To combat this effect, the use of a constrained code that pre-
vents the appearance of the ICI-prone symbol pattern 101 has
been proposed. Similar ICI-mitigating constraints for multi-
level flash memory cells, preventing the appearance of, say,
the pattern (q−1)0(q−1) in consecutive q-ary cells, have also
been considered [4], [5]. We will refer to constrained codes
that eliminate these ICI-inducing patterns as ICI-free codes.

In this paper, we investigate the application of ICI-
free codes in two flash memory settings. First, we study
information-theoretic limits on the efficiency of binary
ICI-free codes that are also balanced, meaning that code-
words have an equal number of 0’s and 1’s. These codes are
of interest when a dynamic read threshold is used to reduce
the number of errors caused by cell-level drift resulting from
charge leakage. Specifically, we determine the asymptotic
information rate of ICI-free balanced codes.

We then consider codes that allow for the efficient re-use
of a binary ICI-free write-once-memory (WOM), that is, a bi-
nary WOM that does not support codewords containing the
101 pattern. The ICI-free WOM provides a model for a flash
memory system that uses a multiple-write WOM code to ex-
tend the device lifetime, with the added constraint that none
of the codewords contain the ICI-inducing 101 pattern. Our
main result is a characterization of the t-write, sum-rate ca-
pacity of an ICI-free WOM, as well as an explicit numerical
evaluation for 2 � t � 7.

We now discuss these two applications in more detail.

0733-8716/14/$31.00 c© 2014 IEEE

QIN et al.: CONSTRAINED CODES THAT MITIGATE INTER-CELL INTERFERENCE IN READ/WRITE CYCLES FOR FLASH MEMORIES 837

A. ICI-free Balanced Codes for Dynamic Threshold Detection
Charge leakage, which results in a downward drift in cell

voltage levels in a flash memory, can lead to errors in the data
retrieval process when the read threshold(s) are fixed. In [6], a
dynamic read threshold was proposed as a means to compen-
sate for cell-level drift in SLC flash memory. The threshold
adaptation is facilitated by the use of a balanced code. (See,
for example, [7].) (Of necessity, the codeword length is even.)

Under the assumption that the cell-level drift is essentially
uniform across all cells, the relative ranking of cell levels is
largely preserved. Therefore, by adjusting the threshold value
to the point where half of the cell levels are above the thresh-
old and half fall below, the cells programmed to a 1 or a 0
may still be correctly identified with high probability. Since
the asymptotic information rate of balanced binary codes is
1, the rate penalty associated with the use of a balanced code
can be made negligibly small with proper code design.

The construction of efficient balanced codes has been ex-
tensively studied in [7]–[12], and extensions to non-binary
and two-dimensional balanced codes have been considered
in [13]–[16]. Codes that combine the balanced property with
certain other constraints, such as runlength limitations, have
also been addressed in, for example, [17].

We are specifically interested in binary codes that are both
balanced and ICI-free, as defined above. These codes can be
used with a dynamic threshold scheme, while also mitigating
ICI effects.

B. Coding for an ICI-Free Write-Once-Memory (WOM)
One of the most conspicuous properties of flash memory

cells is the asymmetry in the programming process. Cell lev-
els can be easily increased by injecting additional charge into
them [1]. In contrast, to decrease the level of even a single
cell, the whole block of cells (∼ 106 cells) containing it has
to be erased and then reprogrammed accordingly. These block
erasures not only introduce significant latency into the writ-
ing process, but also degrade the floating gate cells, thereby
shortening the usable lifetime of the device. Therefore, it is
desirable to reduce the number of these block erasures in order
to enhance the endurance of the flash memory and increase
its lifetime storage capacity, which is the total amount of in-
formation that can be stored.

The original motivation for the use of rewriting codes came
from storage media such as punch cards, optical disks, elec-
tronically programmable memories, and paper tapes, all of
which consisted of “write-once” bits, or “wits,” whose phys-
ical states could be changed only once. These technologies
could be modeled as a write-once memory (WOM), that is,
a binary storage medium consisting of cells supporting two
states, designated as 0 and 1, such that during the recording
process, a cell can remain in its existing state or, if it is in
state 0, can be irreversibly changed to state 1.

Rivest and Shamir [18] showed that, through the use of
properly designed codes, a WOM can store multiple genera-
tions of information much more efficiently than might have
been expected.

Wolf et al. [19] studied binary WOMs from an information-
theoretic perspective under various assumptions about state in-
formation available at the encoder and decoder. Heegard [20]

determined the capacity region of achievable rates for binary
WOMs with state information at the encoder, while also intro-
ducing several generalized models that allowed for noise, non-
binary input and output alphabets, and different types of cell
level transitions. The capacity region of non-binary WOMs
with cell-state transitions described by an arbitrary directed
acyclic graph was found by Fu and Han Vinck [5]. On the
other hand, a WOM can be viewed as a special type of write-
efficient memory (WEM) [21]. Within this framework, Fu and
Yeung [22] derived the sum-capacity of deterministic WOMs
described by a more general graph.

Several other works pertaining to WOMs and WOM codes
have appeared, a number of them motivated by the relevance
of the WOM model to flash memory devices [23]–[29].

In view of the distinct and complementary performance
benefits offered by multiple-write WOM codes and ICI-
mitigating codes, we investigate their combination in the
framework of coding for an input-constrained WOM. Broadly
speaking, an input-constrained WOM is a WOM that re-
stricts the input words that it can store by forbidding the
appearance of certain symbol patterns. In this framework, an
ICI-free WOM is one that does not allow the pattern 1 0 1 to
be written at any time.

C. Outline of the Paper

In Section II-A, we present the derivation of an exact ex-
pression for the generating function of the number of binary
ICI-free balanced sequences, as well a combinatorial formula
for its coefficients. From each of these, we deduce the asymp-
totic information rate of ICI-free balanced sequences. In Sec-
tion II-B, we describe a heuristic, probabilistic argument that
yields the same rate. Section III-A gives background on input-
constrained WOMs and two-dimensional constraints. In Sec-
tion III-B, we prove that the t-write sum-capacity of the input-
constrained WOM is equal to the capacity of a correspond-
ing two-dimensional constraint defined on an infinite t-row
strip. Section III-C describes a construction of 2-write ICI-
free WOM codes based upon covering subset partitions of
bipartite graphs. Section IV concludes the paper.

II. ICI-FREE BALANCED CODES

In this section, we study information-theoretic properties of
ICI-free balanced codes. We derive the asymptotic information
rate of ICI-free balanced codes over the binary alphabet us-
ing combinatorial properties of walks on the two-dimensional
lattice Z

2. We then present a heuristic, probabilistic argument
that yields the same result.

We begin with some definitions.

Definition 1. A length-2n binary sequence u ∈ {0, 1}2n is said
to be ICI-free balanced if

1) it contains exactly n symbols that are 0 and n symbols
that are 1;

2) ui−1uiui+1 �= 101, for all i such that 2 � i � 2n− 1.

We refer to a set of ICI-free balanced sequences of the same
length as an ICI-free balanced code.

838 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

Definition 2. Let Cn be the set of all binary ICI-free balanced
sequences of length 2n. The asymptotic information rate of
Cn is defined as

C〈2〉 = lim sup
n→∞

log2 |Cn|
2n

.

Remark 1. It can be deduced from Lemma 3 and Lemma 4
that limn→∞

log2 |Cn|
2n exists.

Referring to Definition 2, let C(x) be the generating func-
tion of |Cn|, that is,

C(x) =
∑
n�1

cnx
n,

where cn = |Cn| for n � 1. Our main contribution in this
section is the following theorem, which gives a closed-form
expression for C(x) and determines precisely the asymptotic
information rate C〈2〉.

Theorem 1. The generating function C(x) is given by

C(x) =

√
1 + x

1− 3x
− 1,

and the asymptotic information rate of binary ICI-free balanced
codes is

C〈2〉 =
1

2
log2 3.

A. Derivation of the Asymptotic Information Rate

This section is devoted to the proof of Theorem 1.
Let Sn denote the set of binary balanced sequences of

length 2n. We denote by An the set of all ICI-free balanced
sequences of length 2n that start with a 1 and by Bn the
set of all ICI-free balanced sequences of length 2n that start
with a 0. Finally, the cardinalities of these subsets are de-
noted by An = |An| and Bn = |Bn|, and the corresponding
generating functions of the cardinalities are denoted by A(x)
and B(x), respectively.

The derivation of C(x) will make use of the close con-
nection between ICI-free balanced sequences and paths in the
integer lattice Z

2. The following definition introduces several
types of paths that will play a role in the analysis.

Definition 3. A path of length n is an n-step walk on Z
2, start-

ing at (0, 0), such that every step is either an upstep obtained
by adding U = (1, 1) or a downstep obtained by adding D =
(1,−1), respectively, to the current position. If the path is at
(xi, yi) after i steps, the height at step i is defined to be yi.

A path of length n is called a symmetric path if it ends in
(n, 0).

A path is called a UDU-free path if UDU is not a subse-
quence of the path.

A symmetric path is called a Dyck path if it never goes be-
low the horizontal axis y = 0, i.e, the heights are non-negative
after every step.

Let P denote the set of all symmetric paths, including the
empty path. Let F be the set of all UDU-free symmetric paths,
including the empty path. Let U ⊂ F be the set of non-empty
paths that start with a U, let D ⊂ F be the set of non-empty
paths that start with a D, and let H be the set of UDU-free
Dyck paths.

Now, let Pn ⊂ P be the set of symmetric paths of length
2n, for n � 0. Define Fn ⊂ F to be the set of UDU-free paths
of length 2n. We use Fn = |Fn| to denote the cardinality of
Fn, and F (x) to denote the corresponding generating function
of Fn.

We define in an entirely analogous manner the sets Un,Dn,
and Hn, their cardinalities Un, Dn, and Hn, and their gener-
ating functions U(x), D(x) and H(x).

The evident connection between balanced sequences and
symmetric paths, as well as between their subsets defined
above, is stated formally in the following lemma.

Lemma 1. There is a bijection between Sn and Pn. The bijec-
tion maps Cn to Fn and, more specifically,An to Un and Bn to
Dn.

Proof: The bijective mapping between balanced se-
quences and symmetric paths is obtained by identifying the
symbols 1 and 0 with steps U and D, respectively. It is clear
that this mapping establishes the bijection between Cn and
Fn, as well as between An and Un and between Bn and Dn.

�
The following lemma follows immediately from the defini-

tions above and the properties of the bijection established in
Lemma 1.

Lemma 2. The generating functions C(x) and F (x) can be
written as:

C(x) = A(x) +B(x) = U(x) +D(x)

and
F (x) = U(x) +D(x) + 1.

For any n � 1, we will define a mapping from the subset
Un ⊂ Fn of length-2n, UDU-free symmetric paths that begin
with U to the subset Dn ⊂ Fn of length-2n, UDU-free sym-
metric paths that begin with D. We will then show that this
mapping is actually a bijection. In order to describe the map-
ping succinctly, we introduce the following terminology and
notation.

Definition 4. Let u = [u1, ..., u2n−1, u2n] be a path in Un. The
k-left cyclic shift of u, denoted by u(k), is the path obtained by
cyclically shifting u by k steps to the left. That is,

u(k) = [uk+1, . . . , u2n, u1, . . . , uk−1, uk].

Note that all shifts of u are symmetric paths because the
number of U steps and D steps remain equal. Define the map-
ping

φ : U �→ P

QIN et al.: CONSTRAINED CODES THAT MITIGATE INTER-CELL INTERFERENCE IN READ/WRITE CYCLES FOR FLASH MEMORIES 839

as follows: Given a path u ∈ U , let i be the index of the last
symbol D in u such that the path falls from height 1 to height
0. Then φ(u) = u(i−1), the (i− 1)-left cyclic shift of u.

Proposition 1. The restriction of the mapping φ to Un is a bi-
jection from Un to Dn, for all n � 1. Therefore, |Un| = |Dn|,
and U(x) = D(x).

Proof: We first show that φ(u) ∈ Dn, ∀u ∈ Un.
By construction, φ(u) is a symmetric path that starts with a

D, so we need to show that φ(u) is UDU-free. Since u ∈ Un,
this translates into showing that the UDU-free constraint is
not violated when u1 (which is a U) is cyclically shifted and
concatenated with u2n. Let i be the index of the last D that
causes the path to fall from height 1 to height 0. If u2n = D,
then i = 2n and the first two steps of φ(u) are DU; otherwise,
u2nu1 = UU. In either case, we conclude that φ(u) is UDU-
free. Hence, the image of φ lies in Dn.

We now prove the injectivity of φ, that is, if u, v ∈ Un and
u �= v, then φ(u) �= φ(v).

For any two distinct paths u ∈ Un and v ∈ Un, let
φ(u) = p, where p = [p1, . . . , p2n] and φ(v) = q, where
q = [q1, . . . , q2n]. Let iu, resp. iv, be the index of the last
D such that u, resp. v, falls from height 1 to height 0. If
iu = iv, then p �= q since, by definition of a left cyclic shift,
distinct paths that are left-shifted by the same amount must
yield distinct paths. On the other hand, suppose iu �= iv and,
without loss of generality, assume iu < iv.

Then we claim that at least one of the following statements
is true:
(a) There exists an index j ∈ {1, 2, . . . , (2n− iv +1)} such

that pj �= qj ;
(b) p(2n−iv+2) �= q(2n−iv+2).

Each of these statements implies that φ(u) �= φ(v), as de-
sired.

It suffices to prove that if (a) does not hold, then b) must.
To see this, note that q is obtained by the (iv − 1)-left
cyclic shift of v, implying that q(2n−iv+1) = v2n. There-
fore, q(2n−iv+2) = v1 = U . Meanwhile the height of q
after q(2n−iv+1) is −1. Now suppose (a) does not hold, i.e.,
[p1, . . . , p(2n−iv+1)] = [q1, . . . , q(2n−iv+1)]. Then, by con-
struction, p(2n−iv+1) = u(2n−iv+iu) and the height of u after
u(2n−iv+iu) is 0. Thus, p(2n−iv+2) = u(2n−iv+iu+1) = D
since, otherwise, the height of u after u(2n−iv+iu+1) is 1
and uiu would not be the last D corresponding to a fall from
height 1 to height 0 in u, contradicting the definition of iu.
Thus, p(2n−iv+2) = U and q(2n−iv+2) = D, confirming that
condition (b) holds.

This completes the proof that the mapping φ restricted to
Un is an injection into Dn, and so |Un| � |Dn|, for all n � 1.

In a similar manner, we define a mapping

γ : Dn → Un
as follows: Given a path d ∈ Dn, let i be the label of the first
U such that the path rises from height -1 to height 0. Then
γ(d) = d(i−1), the (i− 1)-left cyclic shift of d.

The proof that the restriction of the mapping γ to Dn is an
injection into Un, for all n � 1, is similar to that of φ being an

Last D from
height 1 to 0

First U from
height 1 to 0

Fig. 1. Bijection between U3 and D3

injection, so we omit the details. Consequently, |Dn| � |Un|,
for all n � 1.

In fact, one can see that γ and φ are inverse functions of
one another, so they in fact define bijections between Un and
Dn.

We can now conclude that |Un| = |Dn| for all n � 1, and,
therefore, U(x) = D(x). �

Example 1. Fig. 1 illustrates the bijection between U3 and D3.
There are 10 UDU-free paths of length 6 and the last D (or
first U) that the path falls from height 1 to 0 (or rises from -1
to 0) is circled for each path.

We are now in a position to prove the main result.
Proof of Theorem 1: Any path in U can be written in one of
the following two forms:

1) UDP, where P is empty or in D; or,
2) UPDQ, where P is a non-empty path in H, and Q is in
F .

(This is the so-called first return decomposition of a path in
U .)

This gives rise to the equation

U(x) = x(1 +D(x)) + x(H(x) − 1)F (x).

From Proposition 1, we have D(x) = U(x). Together with
Lemma 2, this implies that F (x) = 2U(x) + 1. Therefore,

U(x) =
xH(x)

1 + x− 2xH(x)
.

It was shown in [30] that

H(x) =
1 + x−√1− 2x− 3x2

2x
.

840 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

Therefore,

U(x) =
xH(x)

1 + x− 2xH(x)

=
1 + x−√1− 2x− 3x2

2
√
1− 2x− 3x2

=
1

2

√
1 + x

1− 3x
− 1

2
.

We conclude that

C(x) = 2U(x) =

√
1 + x

1− 3x
− 1.

If we treat C(x) as a complex function, the Cauchy-Hadamard
Theorem [31, p. 39], [32], [33] states that

lim sup
n→∞

|cn|1/n =
1

ρ
,

where ρ is the smallest modulus of a singularity of C(x).
From the expression for C(x) shown above, we see that

ρ =
1

3
.

Recalling that cn = |Cn|, we conclude that

C〈2〉 = lim
n→∞

log |Cn|
2n

=
1

2
log 3.

This completes the proof. �
Note that the proof of Theorem 1 above does not involve

explicit expressions for |Un| and |Dn|. However, Deutsch
(A005773, [34]) and Callan [35] have shown that

Un = Dn =
n−1∑
j=0

(
j

 j2�
)(

n− 1

j

)
(1)

and from this formula, one can obtain an alternative derivation
of the asymptotic information rate C〈2〉, as we now show.

From Callan’s formula, we have

C〈2〉 = lim
n→∞

log2 (Un +Dn)

2n

= lim
n→∞

1

2n

⎛⎝1 + log2

n−1∑
j=0

(
j

 j2�
)(

n− 1

j

)⎞⎠
= lim

n→∞
1

2n

⎛⎝log2

n−1∑
j=0

(
j

 j2�
)(

n− 1

j

)⎞⎠ .

The following lemma shows that replacing the summation
with a maximization does not affect the value of the limit in
the formula above.

Lemma 3.

C〈2〉 = lim
n→∞

1

2n
log2 max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
.

Proof: Since all terms in the summation above are pos-
itive, we have

lim
n→∞

1

2n

⎛⎝log2

n−1∑
j=0

(
j

 j2�
)(

n− 1

j

)⎞⎠
� lim

n→∞
1

2n
log2 max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
.

On the other hand, by replacing the sum of terms with their
maximum, we have

lim
n→∞

1

2n

⎛⎝log2

n−1∑
j=0

(
j

 j2�
)(

n− 1

j

)⎞⎠
� lim

n→∞
1

2n
log2

(
n max

0�j�n−1

(
j

 j2�
)(

n− 1

j

))
� lim

n→∞
log2 n

2n
+ lim

n→∞
1

2n
log2 max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
= lim

n→∞
1

2n
log2 max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
Therefore,

C〈2〉 = lim
n→∞

1

2n
log2 max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
.

�
The next lemma gives the limit of the normalized value of

argument j that achieves the maximum in Lemma 3.

Lemma 4.

lim
n→∞

1

n
arg max

0�j�n−1

(
j

 j2�
)(

n− 1

j

)
=

2

3
.

Proof: Note that(
j

 j2�
)(

n− 1

j

)
=

(
n− 1

 j2�, � j2, n− 1− j

)
.

If n − 1 is a multiple of 3, then this quantity is maximized
when
 j2� = � j2 = n− 1− j = n−1

3 , i.e., when j = 2(n−1)
3 .

Similar reasoning shows that the maximizing values of j for
all n � 1 satisfy limn→∞ j

n = 2
3 . �

From Lemma 3 and Lemma 4, we conclude that

C〈2〉 =
1

2
log2 3.

Remark 2. The capacity of the constraint that forbids 101
is approximately 0.8114. Thus, the value of C〈2〉 shows that
there is a 2% rate loss due to the additional balanced con-
straint. Balanced codes are special types of constant weight
codes [36], where the weight is half of the code length 2n.
In general, constant weight codes can be used to adapt to the
voltage drift during read cycles as well. It might be better to
use constant weight codes with weight less than n if rate opti-
mization is the only figure of merit; however, balanced codes
have the advantage of easy encoding and decoding, while sac-
rificing only a small portion (2%) of the rate.

QIN et al.: CONSTRAINED CODES THAT MITIGATE INTER-CELL INTERFERENCE IN READ/WRITE CYCLES FOR FLASH MEMORIES 841

B. Heuristic Probabilistic Derivation

We now provide a heuristic probabilistic argument that
yields the result derived in the previous section, namely
C〈2〉 = 1

2 log2 3.
Let S be the set of all balanced sequences of length 2n. It is

evident that |S| = (
2n
n

)
. Now, let Z be a randomly chosen se-

quence in S, and let Zi be the i-th entry in Z , for 1 � i � 2n.
Clearly P(Zi = 1) = P(Zi = 0) = 1

2 and, if n is sufficiently
large, P(Zi−1 = Zi+1 = 1|Zi = 0) is approximately 1

4 . Define
a sequence of events Ei

def
= {(Zi−1ZiZi+1) �= 101|Zi = 0},

for 2 � i � 2n− 1. Then P(Ei) ≈ 3
4 . The number of 0’s in Z

is n, so if we treat the events Ei as independent (though, in
reality, they are not), then the probability that Z satisfies the
ICI-free balanced constraint is approximately

(
3
4

)n. Thus, the
number of ICI-free balanced sequences in S is approximately(
2n
n

) (
3
4

)n. That is,

log2 |Cn|
2n

≈ log2
((

2n
n

) (
3
4

)n)
2n

n→∞−−−−→ 1

2
log2 3.

Although the independence assumption is not valid, this line
of reasoning yieds the correct answer because the dependency
of Ei and Ej decreases as |i− j| increases.

Now, recall that, for q-level flash cells, ICI arises when three
consecutive cells are programmed to the levels (c1, c2, c3) such
that c1 and c3 are much larger than c2. It is expected that the
most severe ICI will occur when three consecutive cells are
programmed to the levels ((q−1), 0, (q−1)). We now extend
the definition of ICI-free balanced sequences to the q-ary case
to avoid the most severe ICI pattern.

Definition 5. A q-ary sequence u ∈ {0, 1, . . . , q − 1}qn is said
to satisfy the q-ary ICI-free balanced constraint if

1) ∀j such that 0 � j � q − 1, the number of j’s in u is n;
2) (ui−1uiui+1) �= (q − 1)0(q − 1), ∀i such that 2 � i �

qn− 1.

Let C〈q〉n be the set of all q-ary ICI-free-balanced sequences
of length qn. The asymptotic information rate of C〈q〉n is de-
fined as

C〈q〉 = lim
n→∞

log2 |C〈q〉n |
nq

.

By direct analogy to the heuristic argument used in the bi-
nary case, q = 2, one might conjecture that the asymptotic
information rate is

C〈q〉conj = log2 q +
1

q
log2

(
q2 − 1

q2

)
.

However, based on [37], C〈3〉 ≈ 1.5258 while the heuristic
argument overestimates C〈3〉, yielding C〈3〉conj ≈ 1.5283.

III. ICI-FREE WOM CODES

In this section, we study the WOM model with certain in-
put constraints. We first present the definition of an input-
constrained WOM and then provide a derivation of the t-write
sum-capacity. Finally, we give code constructions based on
coverings of bipartite graphs.

A. Definitions

Suppose the number of cells is n and the number of rewrit-
ing cycles is t. The cell levels of a generalized q-level WOM
after the i-th write are denoted by yni,1 ∈ [0 : q − 1]n, for

i ∈ [1 : t], where [k1 : k2]
def
= {k ∈ Z|k1 � k � k2} and

yk2

i,k1

def
= (yi,k1 , yi,k1+1, . . . , yi,k2). We will use [n] as a short-

hand for [1 : n] when no confusion could occur. Furthermore,
for vectors xn

1 = (x1, ..., xn) and yn1 = (y1, ..., yn), we write
xn
1 � yn1 if and only if ∀i ∈ [n], xi � yi. We can describe

the discrete memoryless generalized WOM by a directed graph
G = (V , E), where V is the set of vertices and E ⊆ V×V is the
set of edges. For a q-level WOM, V = {0, 1, . . . , q−1}. If the
level can be changed directly from s1 to s2, where s1, s2 ∈ V ,
then there exists an edge from s1 to s2 and we denote it by
(s1, s2) ∈ E . For a state sequence (s0, s1, . . . , st), if ∀i ∈ [0 :
t − 1], (si, si+1) ∈ E , then we say the path (s0, s1, . . . , st)
exists and we denote it by s0 → s1 → · · · → st. For two
vectors (xn

1,1, x
n
2,1) ∈ [0 : q − 1]n × [0 : q − 1]n, we write

xn
1,1 ⇒ xn

2,1 if and only if ∀i ∈ [n], (x1,i, x2,i) ∈ E . The tran-
sition matrix A = (ai,j) ∈ {0, 1}q×q is defined as follows.
For i, j ∈ [0 : q− 1], aij = 1 if (i, j) ∈ E ; otherwise, aij = 0.

Definition 6. Let yni,1 denote the cell-state vector after the i-th
write, for i ∈ [t]. An [n, t; 2nR1 , . . . , 2nRt] q-ary WOM code
Cq,G described by the graph G is a coding scheme consisting
of n cells and t pairs of encoders and decoders (Ei,Di), where
∀i ∈ [t], the encoder is a mapping

Ei : [1 : 2nRi]× Im{Ei−1} → [0 : q − 1]n,

such that ∀(m, yni−1,1) ∈ [1 : 2nRi]× Im{Ei−1},
yni−1,1 ⇒ yni,1 = Ei(m, yni−1,1),

where, by abuse of notation, we use Im{E0} to represent the
initial cell-state vector {(0, ..., 0)}. The decoder is a mapping

Di : Im{Ei} → [1 : 2nRi],

such that ∀m ∈ [1 : 2nRi],

Di(Ei(m, yni−1,1)) = m.

Let w be a q-ary sequence. An input-constrained WOM
code CSw,q,G avoiding w is a q-ary WOM code such that w is
not a subsequence of any codeword in CSw,q,G .

Definition 7. A rate tuple (R1, . . . , Rt) is said to be achiev-
able if there exists a sequence of [n, t; 2nR1 , . . . , 2nRt] WOM
codes. The capacity region is defined as the closure of the set
of all achievable rate tuples. The sum-capacity is defined as the
supremum of achievable sum-rates

∑t
i=1 Ri.

To mitigate ICI, the sequence is chosen such that w def
= 101

and the corresponding input-constrained WOM code is called
the binary ICI-free WOM code. In this section, we are in-
terested in the sum-capacity of the ICI-free binary WOM, i.e.,
the supremum of achievable sum-rates of CS101,2,G , where G =
(V , E), V = {0, 1}, E = {(0, 0), (0, 1), (1, 1)}, and, therefore,
A = [1 1

0 1]. We will first provide general results for an arbi-
trary constraint S and arbitrary number of levels q, and then
apply them in the binary ICI-free WOM setting.

842 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

There is a connection between two-dimensional constrained
codes and codes for input-constrained WOMs. Specifically, ev-
ery t-write WOM code of length n can be expressed as a set
of t× n arrays where the i-th row, i ∈ [t], corresponds to the
memory state after the i-th write. We will exploit this fact in
our derivation of the t-write sum-capacity. Let us first recall
the definition of the capacity of a two-dimensional constraint.

Definition 8. Given a two-dimensional constraint S2D, its ca-
pacity is defined to be

C2D(S2D) = lim
m,n→∞

log2 NS(m,n)

mn
,

where NS(m,n) is the number of m× n arrays that satisfy the
constraint S2D. The t-write column capacity is defined to be

C(t, S2D) = lim
n→∞

log2 NS(t, n)

n
.

Remark 3. The exact capacity of most non-trivial two-
dimensional constraints is not known. However, the t-write
column capacity can be calculated numerically with the aid
of the characteristic function of the adjacency matrix associ-
ated with the constraint S2D when we fix one dimension of
the 2-D array to be of size t [38].

There are a number of two-dimensional constraints that
have been extensively studied, e.g., 2-D (d, k)-runlength-
limited (RLL) [39], no isolated bits [40], [41], and checker-
board [42], [43]. For the input-constrained WOM codes
CSw,q,G , where G = (V , E), we define a constraint on two-
dimensional arrays, denoted by S2D

w , that is used to calculate
the sum-capacity. Specifically, in a q-ary two dimensional
array B = {bi,j}m×n, we must have

(bi,j , bi+1,j) ∈ E , ∀i ∈ [m− 1], j ∈ [n]

and the pattern w must not be a subsequence in any row of
B. We denote the two-dimensional constraint corresponding
to the ICI-free WOM by S2D

101.

B. Sum-Capacity

The following theorem characterizes the t-write sum-
capacity of an input-constrained WOM in terms of the t-write
column capacity of an associated two-dimensional constraint.

Theorem 2. The t-write sum-capacity of the q-ary input-
constrained WOM that does not allow w is C(t, S2D

w).
In particular, for the binary ICI-free WOM, the t-write sum-

capacity is C(t, S2D
101).

In order to prove Theorem 2, we will make use of the
characterization of the sum-capacity of a WOM described by
a general directed graph G, as presented in [22, Prop. 2].
The derivation in [22] uses results about the sum-capacity of
write-efficient memories [21]. Here we will present an alter-
native derivation based upon the Markov-chain WOM model
from [20].

Lemma 5. The sum-capacity Csum(t,G) of the generalized dis-
crete memoryless q-level WOM described by graph G is the
base-2 logarithm of the number of length-t paths that start from
state 0, i.e.,

Csum(t,G) = log2(δ
T
0,q ·At

G · 1q),

where AG is the transition matrix of the graph G, and δi,q =
(0, . . . , 0, 1, 0, . . . , 0)T , 0 � i � q − 1, is a column vector of
length q such that the (i + 1)-st entry is 1 and the remaining
entries are 0’s.

Proof: We adopt the notation used in [20]. According to
Theorem 3 in [20], the sum-capacity equals

Csum =

t∑
i=1

Ri

=

t∑
i=1

H(Yi|Yi−1)

= H(Y1, Y2, . . . , Yt),

where Yi, i ∈ [t] is a random variable representing the state of
the WOM after the i-th write. The last equality follows from
the fact that Y1 → Y2 → · · · → Yt form a Markov chain.

First we prove Csum � log2(δ
T
0,q · At · 1q). The random

vector Y t
1 = (Y1, . . . , Yt) corresponds to a path in G; thus, the

cardinality of Y t
1 is upper bounded by the number of length-t

paths from state 0. Therefore, H(Y t
1) � log2(δ

T
0,q ·At · 1q).

Next we prove achievability. Let p(yt1) be the joint
probability mass function of Y t

1 . Let p(yt1) be factored as
p1(y1), p2(y2|y1), . . . , pt(yt|yt−1), where pi(yi|yi−1) is the
conditional transition probability for the i-th write. We show
that by appropriately choosing p1(y1), p2(y2|y1), . . . , pt
(yt|yt−1), (Y1, . . . , Yt) is uniformly distributed on its support.
Let

p1(y1 = j) =

⎧⎨⎩
δT
j,q·At−1·1q

δT
0,q·At·1q

, if (0, j) ∈ E ;
0, otherwise,

for all j ∈ [0 : q − 1]. For 2 � i � t, let

pi(yi = j|yi−1 = �) =⎧⎨⎩
δT
j,q·At−i·1q

δT
�,q·At−i+1·1q

, if (�, j) ∈ E , {Ai−1}0,� = 1;

0, otherwise,

for all j, � ∈ [0 : q − 1].
Then, for a state sequence (s1, s2, . . . , st), we have

P (Y1 = s1, Y2 = s2, . . . , Yt = st)

=p1(y1 = s1)p2(y2 = s2|y1 = s1)

· p3(y3 = s3|y2 = s2) · · · pt(yt = st|yt−1 = st−1)

=
δTs1,q · At−1 · 1q

δT0,q · At · 1q

· δ
T
s2,q · At−2 · 1q

δT
s1,q · At−1 · 1q

· δ
T
s3,q · At−3 · 1q

δTs2,q · At−2 · 1q

· · · δ
T
st,q · A0 · 1q

δTst−1,q · A · 1q

=
1

δT0,q · At · 1q

QIN et al.: CONSTRAINED CODES THAT MITIGATE INTER-CELL INTERFERENCE IN READ/WRITE CYCLES FOR FLASH MEMORIES 843

0 1 2

Fig. 2. Generalized WOM with state transition diagram

if the path s1 → · · · → st exists; otherwise,

P (Y1 = s1, Y2 = s2, . . . , Yt = st) = 0.

This proves that (Y1, . . . , Yt) is uniformly distributed on its
support set. Since the cardinality of the support set is δT0,q ·
At · 1q , then H(Y1, . . . , Yt) = log2(δ

T
0,q · At · 1q). �

Example 2. For the state transition diagram in Fig. 2, sup-
pose the number of writes is t = 4. We set the conditional
probabilities as follows:

p1(y1 = 0) =
7

11
, p1(y1 = 1) =

4

11
.

p2(y2 = 0|y1 = 0) =
4

7
, p2(y2 = 1|y1 = 0) =

3

7
.

p2(y2 = 1|y1 = 1) =
3

4
, p2(y2 = 2|y1 = 1) =

1

4
.

p3(y3 = 0|y2 = 0) =
1

2
, p3(y3 = 1|y2 = 0) =

1

2
.

p3(y3 = 1|y2 = 1) =
2

3
, p3(y3 = 2|y2 = 1) =

1

3
.

p3(y3 = 2|y2 = 2) = 1.

p3(y4 = 0|y3 = 0) =
1

2
, p3(y4 = 1|y3 = 0) =

1

2
.

p3(y4 = 1|y3 = 1) =
1

2
, p3(y4 = 2|y3 = 1) =

1

2
.

p3(y4 = 2|y3 = 2) = 1.

Then, each possible state sequence has probability 1
11 , which

means the 4-write sum-capacity is log2 11.

Now we are ready to prove Theorem 2. We give the
proof for the case of a binary ICI-free WOM, i.e., the tran-
sition diagram G = (V , E) is defined by V = {0, 1} and
E = {(0, 0), (0, 1), (1, 1)}, and the input constraint is given by
w = 101. The generalization to an arbitrary input-constrained
WOM follows a similar line of reasoning.

Proof of Theorem 2:
Proof of achievability:
Let n and m be two positive integers such that n is a multi-
ple of (m + 2), i.e., n = �(m+ 2). The memory consists of
n cells, denoted by (c1, . . . , cn), which are partitioned into �
blocks, each with (m+2) cells. When the messages are writ-
ten into the memory, within each block, the last 2 cells are
kept at level 0, i.e., ci(m+2) = ci(m+2)−1 = 0, ∀i ∈ [�]. In this
way, it can be guaranteed that no 3 consecutive cells at the
boundaries of adjacent blocks are 101. Each block of m cells
constitutes the same t-write WOM code that avoids 101. To
be more precise, we first introduce the following definitions.

Let b : Z+ �→ {0, 1}m be the function that maps a non-
negative integer M ∈ [0, 2m − 1] to its binary representa-
tion of length m, and let b−1(x) be the inverse function for
x ∈ {0, 1}m.

The following construction yields a sequence of binary ICI-
free WOM codes with the claimed sum-rate efficiency.

Construction 1 Let n, m and � be positive integers such that
n = �(m + 2). Suppose the cell-state vector is cni,1 ∈ {0, 1}n
after the i-th write, for i ∈ [t]. Let y�i,1 ∈ [0 : 2m − 1]� satisfy
yi,j = b−1(c

(j−1)(m+2)+m
i,(j−1)(m+2)+1), for j ∈ [�].

A directed graph Gm = (V , E) with 2m vertices/states is
defined as follows. The vertex set is V = [0 : 2m − 1], and
∀i, j ∈ V , (i, j) ∈ E ⇔ b(j) � b(i) and 101 is not a subse-
quence of b(j). Let Am be the transition matrix for Gm.

Let CW be an [�, t; 2�R1, 2�R2 , . . . , 2�Rt] t-write 2m-ary
WOM code of length � described by Gm. Let Ei(mi, y

�
i−1,1) be

its encoder on the i-th write, for i ∈ [t]. An [n, t; 2�R1 , . . . , 2�Rt]
binary ICI-free WOM code CICI of length n is constructed as
follows. On the i-th write, the encoder uses the following rules:

1) in each block of size (m + 2), the last two cells are kept
as 0, i.e., c(m+2)j

i,(m+2)j−1 = c
(m+2)j
i−1,(m+2)j−1 = 0, ∀j ∈ [�].

2) write the message Mi ∈ [1 : 2�Ri] to the remaining m�
cells. Specifically, let y�i,1 = Ei(Mi, y

�
i−1,1), and write

the remaining m� cells such that c
(j−1)(m+2)+m
i,(j−1)(m+2)+1 =

b(yi,j), ∀j ∈ [�].
The decoder can be designed accordingly and we omit the de-
tails.

If CW is sum-rate optimal, then the sum-rate of CICI is

Rm,ICI(t) =
�
∑t

i=1 Ri

�(m+ 2)

=
Csum(t,Gm)

m+ 2

=
log2(δ

T
0,q ·At

m · 1q)

m+ 2

=
log2(δ

T
0,q ·At

m · 1q)

m
· m

m+ 2
.

Note that δT0,qA
t
m1q counts the number of binary arrays B =

{bi,j}t×m such that bi+1,j � bi,j , ∀i ∈ [t − 1], j ∈ [m], and
the pattern (101) is not a subsequence of any row in B.

Letting m go to infinity, we see that there exists a sequence
of t-write ICI-free WOM codes with rates

RICI(t) = lim
m→∞Rm,ICI(t)

� lim
m→∞

log2(δ
T
0,q ·At

m · 1q)

m
· m

m+ 2

= C(t, S2D
101).

The existence of the limit can be shown by the sub-additive
property [44] of binary arrays B.
Proof of converse:

The converse can be easily proved by noting that if there
exists a genie that, at decoding step j ∈ [t], can provide all of
the sequences written into the WOM from the first to the (j−
1)-st write, then the sum-capacity equals the t-write column

844 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

TABLE I
SUM-CAPACITY OF ICI-FREE WOM

t 2 3 4 5 6 7
CICI(t) 1.264 1.584 1.831 2.035 2.207 2.356

log(t + 1) 1.585 2 2.322 2.585 2.807 3

capacity, which is C(t, S2D
101). However, this genie does not

exist, so for any t-write ICI-free WOM code with sum-rate
RICI(t), it follows that

RICI(t) � C(t, S2D
101). �

Example 3. Table I shows the t-write sum-capacity CICI(t)
of the ICI-free WOM, calculated using the techniques in [45].
Also shown is the t-write capacity of an unconstrained WOM,
which is log(t+1), for 2 � t � 7. An interesting observation
is that CICI(t)

log(t+1) is close to 0.79 in general.

C. Code Constructions

We now proceed to the construction of some input-
constrained WOM codes. In particular, we construct binary
ICI-free WOM codes for t = 2 writes. The construction tech-
nique generalizes to q-ary alphabets with q > 2, t > 2 writes,
and more general input constraints.

Let C be the set of binary vectors of length n that avoid
101. Let C = L∪R be a partition of C. For a pair of vectors
(�, r) ∈ L×R, we say r covers � if r � �. A bipartite graph
B = (L ∪ R, E) is defined where L and R are the sets of
left and right nodes, respectively. An edge (�, r) connecting
� ∈ L and r ∈ R exists if r covers � and we denote such an
edge by (�, r) ∈ E . For R̂ ⊆ R, the covering of R̂, denoted
by CV(R̂), is defined as {� ∈ L : ∃r ∈ R̂, r covers �} and
the covering cardinality of R̂ is defined as |CV(R̂)|. We say
that R̃ ⊆ R is a covering subset if CV(R̃) = L. A partition
R = ∪ki=1Ri is called a covering subset partition of R if
Ri is a covering subset for all i ∈ [k].

Lemma 6. Let R = ∪ki=1Ri be a covering subset partition.
Then there exists a 2-write ICI-free WOM code of length n
with rate pair (log |L|

n , log k
n).

For a bipartite graph, finding the maximum number of sub-
sets, k, in a covering subset partition is an interesting problem
in its own right. In [46], a greedy algorithm is proposed to
find covering subset partitions. We extend the greedy algo-
rithm in [46] by adding another parameter g that controls the
level of greediness. The algorithm in [46] would coincide with
the following algorithm for g = 1.

Algorithm 1. FINDING COVERING SUBSETS OF A BIPARTITE
GRAPH

Input:
a bipartite graph B = (L ∪R, E), where L = {�1, . . . , �n}

R = {r1, . . . , rm};
a positive integer g that measure the extent of greediness

in searching for a covering subset;
Output:
a partition of R = ∪ki=1Ri such that Ri is a covering sub-

set for all i ∈ [k].

1: k ← 0;
2: Runused ←R;
3: Mark all �i ∈ L, i ∈ [n] as “uncovered”;
4: Rtemp ← ∅;
5: if Runused = ∅
6: return (R1, . . . ,Rk−1,Rk ∪Rtemp);
7: end if
8: Choose R̂ ⊆ Runused such that |R̂| � g and R̂ has

the largest covering cardinality |CV(R̂)|; /* In case of a tie,
choose R̂ with minimum cardinality |R̂|; if there is still a tie,
choose any.*/

9: Rtemp ←Rtemp ∪ R̂;
10: Runused ←Runused \ R̂;
11: Mark �i ∈ CV(R̂) as “covered”;
12: If for all i ∈ [n], �i are covered,
13: k ← k + 1;
14: Rk ←Rtemp;
15: Go to Step 3;
16: else
17: Go to Step 5;
18: end if

The following construction uses Algorithm 1 to construct a
two-write ICI-free WOM code.

Construction 2 Let m,n, n′, � be integers such that m � n
and n′ = (n + 1)�. Let Cn be the set of binary vectors that
avoid 101 of length n, and let Cn = L ∪ R be a partition of
Cn such that L = {x ∈ Cn : wt(x) � m} and R = Cn \ L.
Let M1 = |L| and f1 : [0 : M1 − 1] → L be an arbitrary
bijective function. Let R = ∪k−1

i=0Ri be a covering subset par-
tition ofR obtained by running Algorithm 1. Suppose the cell-
state vectors are yn′

1,1 and yn′
2,1 after the first and second write,

respectively. A two-write ICI-free WOM code of length n′ is
constructed as follows:

1) On the first write, let m ∈ [0 : M �
1 − 1] be the informa-

tion message. Suppose (m1,m2, . . . ,m�) is the M1-ary
representation of m, i.e., m =

∑�
i=1 miM

�−i
1 . Then for

each i ∈ [1 : �], write y
i(n+1)−1
1,(i−1)(n+1)+1 according to the

following rule,

y
i(n+1)−1
1,(i−1)(n+1)+1 = f1(mi), ∀i ∈ [1 : �];

and write y1,i(n+1) according to the following rule

y1,i(n+1) =

{
1, if y1,i(n+1)−1 = 1 and y1,i(n+1)+1 = 1;

0, otherwise .

2) On the second write, let m ∈ [0 : k� − 1] be the infor-
mation message. Suppose (m1,m2, . . . ,m�) is the k-ary
representation of m, i.e., m =

∑�
i=1 mik

�−i. Then for
each i ∈ [1 : �], write y

i(n+1)−1
2,(i−1)(n+1)+1 according to the

following rule,

y
i(n+1)−1
2,(i−1)(n+1)+1 = xi ∈ Rmi ,

such that xi covers yi(n+1)−1
1,(i−1)(n+1)+1;

and write y2,i(n+1) according to the following rule

y2,i(n+1) =

{
1, if y2,i(n+1)−1 = 1 and y2,i(n+1)+1 = 1;

0, otherwise .

QIN et al.: CONSTRAINED CODES THAT MITIGATE INTER-CELL INTERFERENCE IN READ/WRITE CYCLES FOR FLASH MEMORIES 845

Decoding is simply implemented by reversing the steps of the
encoding procedure.

Remark 4. Construction 2 is a realization of Construction 1
for t = 2. The extension to t > 2 is straightforward. Only
one “buffer” cell is used to avoid the ICI between adjacent
blocks. Note that in Construction 1, it is possible to decrease
the number of “buffer” cells from two to one. Two “buffer”
cells are used to simplify the proof in Construction 1 since the
number of “buffer” cells does not affect the asymptotic rate.

The following table shows the best rate we found using
Algorithm 1 for selected values of n. From the table, we see
that there exists a sequence of two-write ICI-free WOM codes
of rate R = 1.105× 16

17 ≈ 1.04, which represents 82% of the
sum-capacity listed in Table I.

n 10 14 16
m 2 3 3
|L| 48 336 513
k 46 139 1103

sum-rate 1.111 1.108 1.105

IV. CONCLUSIONS

ICI-free codes are used to mitigate the ICI during program-
ming of flash memories. We extended ICI-free codes in two
directions. First, we considered ICI-free balanced codes, which
can be used with a dynamic read threshold to adapt to cell-
level drift, and determined their asymptotic information rate.
We then considered ICI-free WOM codes, which can be used
to prolong the flash memory lifetime by reducing the number
of block erasures. We calculated the sum-capacity of an ICI-
free input-constrained WOM and provided simple code con-
structions that were used to design several codes with short
block lengths. The derivation of the sum-capacity can also be
generalized to WOMs with other input constraints.

V. ACKNOWLEDGMENT

The authors would like to thank David Callan for the
proof of Equation (1) and would like to thank Aman Bhatia,
Ryan Gabrys, and Anxiao Jiang for helpful discussions.

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories.
Kluwer Academic Publishers, 1st Edition, 1999.

[2] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[3] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and pre-
distortion to tolerate cell-to-cell interference in MLC NAND flash mem-
ory,” IEEE Trans. Circuits Syst., vol. 57, no. 10, pp. 2718–2728, October
2010.

[4] Q. Li, “WOM codes against inter-cell interference in NAND memories,”
in Proc. 49-th Annual Allerton Conference on Communication, Control
and Computing, Monticello, IL, September 2011, pp. 1416–1423.

[5] A. Berman and Y. Birk, “Constrained flash memory programming,” in
Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia, July -
August 2011, pp. 2128–2132.

[6] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with dy-
namic thresholds in nonvolatile memories,” in Proc. IEEE Int. Symp.
Inform. Theory, St. Petersburg, Russia, July–August 2011, pp. 2143–
2147.

[7] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory,
vol. 32, no. 1, pp. 51–53, January 1986.

[8] P. Henry, “Zero disparity coding system,” U.S. Patent No. 4,309,694,
1982.

[9] L. G. Tallini and B. Bose, “Balanced codes with parallel encoding and
decoding,” IEEE Trans. Comput., vol. 48, no. 8, pp. 794–814, August
1999.

[10] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new effi-
cient balanced codes,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 790–
802, May 1996.

[11] K. Immink and J. Weber, “Very efficient balanced codes,” IEEE J. Sel.
Areas Commun., vol. 28, no. 2, pp. 188–192, February 2010.

[12] J. Weber and K. Immink, “Knuth’s balanced codes revisited,” IEEE
Trans. Inf. Theory, vol. 56, no. 4, pp. 1673–1679, April 2010.

[13] R. Mascella and L. G. Tallini, “On symbol permutation invariant bal-
anced codes,” in Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Aus-
tralia, September 2005, pp. 4–9.

[14] ——, “Efficient m-ary balanced codes which are invariant under sym-
bol permutation,” IEEE Trans. Comput., vol. 55, no. 8, pp. 929–946,
August 2006.

[15] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Korea, June - July 2009, pp. 1564–1568.

[16] E. Ordentlich and R. M. Roth, “Two-dimensinal weight-constrained
codes through enumeration bounds,” IEEE Trans. Inf. Theory, vol. 46,
no. 4, pp. 1292–1301, July 2000.

[17] K. Immink, J. Weber, and H. Ferreira, “Balanced runlength limited codes
using Knuth’s algorithm,” in Proc. IEEE Int. Symp. Inform. Theory, Au-
gust 2011, pp. 317–320.

[18] R. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform.
and Contr., vol. 55, no. 1-3, pp. 1–19, December 1982.

[19] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-
once memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112,
1984.

[20] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, January 1985.

[21] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,” In-
form. and Comput., vol. 83, no. 1, pp. 80–97, October 1989.

[22] F. Fu and R. Yeung, “On the capacity and error-correcting codes of
write-efficient memories,” IEEE Trans. Inf. Theory, vol. 46, no. 7,
pp. 2299–2314, November 2000.

[23] F. Fu, “Maximum information bits stored in reusable memory,” Chinese
Science Bulletin, vol. 40, no. 15, pp. 1241–1244, August 1995.

[24] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write
once memory codes for multilevel flash memoriess,” in Proc. IEEE Int.
Symp. Inform. Theory, July-August 2011, pp. 2517–2521.

[25] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint infor-
mation storage in flash memories,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5300–5313, October 2010.

[26] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48-th Annual Allerton Conference on Com-
munication, Control and Computing, Monticello, IL, September 2010,
pp. 1062–1068.

[27] L. Wang and Y.-H. Kim, “Sum-capacity of multiple-write noisy mem-
ory,” in Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia,
July–August 2011, pp. 2494–2498.

[28] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3692–3697, June
2011.

[29] L. Wang, M. Qin, E. Yaakobi, Y.-H. Kim, and P. H. Siegel, “WOM
with retained messages,” in Proc. IEEE Int. Symp. Inform. Theory, Cam-
bridge, MA, USA, July 2012, pp. 1396–1400.

[30] Y. Sun, “The statistic “number of udu’s” in Dyck paths,” Discrete Math-
ematics, 287, pp. 177–186, July 2004.

[31] L. V. Ahlfors, Complex Analysis. New York: McGraw-Hill, 1966.
[32] A. Cauchy, Analyse algébrique, 1821.
[33] J. Hadamard, “Sur le rayon de convergence des séries ordonnées suivant

les puissances d’une variable,” C. R. Acad. Sci. Paris 106, pp. 259–262.
[34] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences,

https://oeis.org/.
[35] D. Callan, personal communication, October 2012.
[36] A. Brouwer, J. Shearer, N. Sloane, and W. Smith, “A new table of con-

stant weight codes,” IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1334–
1380, November 1990.

[37] R. Roth, personal communication, July 2013.
[38] J. Lee and V. K. Madisetti, “Constrained multitrack RLL codes for the

storage channel,” IEEE Trans. Magn., vol. 31, no. 3, pp. 2355–2364,
May 1995.

846 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

[39] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1527–
1540, July 1999.

[40] S. Forchhammer and T. V. Laursen, “A model for the two-dimensional
no isolated bits constraint,” in Proc. IEEE Int. Symp. Inform. Theory,
Seattle, Washington, July 2006, pp. 1189–1193.

[41] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 824–838, May 2004.

[42] Z. Nagy and K. Zeger, “Asympototic capacity of two-dimensional chan-
nels with checkerboard constraints,” IEEE Trans. Inf. Theory, vol. 49,
no. 9, pp. 2115–2125, September 2003.

[43] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the hard-square model,” IEEE Trans. Inf. Theory, vol. 47, no. 3,
pp. 1166–1176, March 2001.

[44] B. H. Marcus, R. M. Roth, and P. H. Siegel, Constrained Systems and
Coding for Recording Channels. Handbook of Coding Theory (V. S.
Pless and W. C. Huffman, eds.), ch. 20, Elsevier Science, 1998.

[45] W. Weeks and R. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1193–
1203, May 1998.

[46] Y. Wu, “Low complexity codes for writing write-once memory twice,”
in Proc. IEEE Int. Symp. Inform. Theory, Austin, Texas, June 2010,
pp. 1928–1932.

Minghai Qin (S’11) received the B.E. degree in
electronic and electrical engineering from Tsinghua
University, Beijing, China, in 2009. He is currently
pursuing the Ph.D. degree in electrical engineering
from the Department of Electrical and Computer En-
gineering at the University of California, San Diego,
where he is associated with the Center for Magnetic
Recording Research.

Eitan Yaakobi (S’07–M’12) received the B.A. de-
grees in computer science and mathematics, and
the M.Sc. degree in computer science from the
Technion-Israel Institute of Technology, Haifa, Is-
rael, in 2005 and 2007, respectively, and the Ph.D.
degree in electrical engineering from the University
of California, San Diego, in 2011.

He is currently a postdoctoral researcher in
electrical engineering at the California Institute
of Technology, Pasadena. His research interests
include coding theory, algebraic error-correction

coding, and their applications for digital data storage and in particular for
non-volatile memories. Dr. Yaakobi received the Marconi Society Young
Scholar in 2009 and the Intel Ph.D. Fellowship in 2010-2011.

Paul H. Siegel (M’82–SM’90–F’97) received the
S.B. and Ph.D. degrees in mathematics from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellow-
ship at the Courant Institute, New York University.
He was with the IBM Research Division in San
Jose, CA, from 1980 to 1995. He joined the faculty
at the University of California, San Diego in July
1995, where he is currently Professor of Electrical
and Computer Engineering in the Jacobs School of

Engineering. He is affiliated with the Center for Magnetic Recording Re-
search where he holds an endowed chair and served as Director from 2000
to 2011. His primary research interests lie in the areas of information theory
and communications, particularly coding and modulation techniques, with
applications to digital data storage and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE In-
formation Theory Society from 1991 to 1996 and from 2009 to 2011. He
was re-elected for another 3-year term in 2012. He served as Co-Guest Ed-
itor of the May 1991 Special Issue on Coding for Storage Devices of the
IEEE Transactions on Information Theory. He served the same Transac-
tions as Associate Editor for Coding Techniques from 1992 to 1995, and as
Editor-in-Chief from July 2001 to July 2004. He was also Co-Guest Editor
of the May/September 2001 two-part issue on The Turbo Principle: From
Theory to Practice of the IEEE Journal on Selected Areas in Communica-
tions.

Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Informa-
tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B.H. Marcus and J.K.
Wolf. With J.B. Soriaga and H.D. Pfister, he received the 2007 Best Paper
Award in Signal Processing and Coding for Data Storage from the Data Stor-
age Technical Committee of the IEEE Communications Society. He holds
several patents in the area of coding and detection, and was named a Master
Inventor at IBM Research in 1994. He is an IEEE Fellow and a member of
the National Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

