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Abstract.

We consider large two-dimensional arrays where each row and each column must satisfy
certain constraints.  We relate this problem to an assertion made by Shannon regarding the
existence of large two-dimensional crossword puzzles.

One-dimensional constrained sequences.

We begin by considering an alphabet containing M symbols and one-dimensional sequences
of these symbols that satisfy a set of well defined constraints. To narrow the focus of this
paper we will concentrate on a special class of such one-dimensional constrained sequences
which consist of concatenations of isolated words from some dictionary. Details of this
special class follow.

We first assume that one of the M symbols is of special significance and is called the space
symbol. The collection of the remaining (M-1) symbols will be called non-space symbols.
We assume that we have a dictionary of Q allowable words. The words in this dictionary are
assumed to be sequences of the (M-1) non-space symbols. We assume that the i-th word of
the dictionary is of length Li and that all the words in the dictionary are distinct. Finally we
assume that the constraints allow for every concatenation of words from the dictionary
provided that consecutive words are separated by one (or in some cases more than one) space
symbol.

One example of such a constrained system would be the sequences of English words in the
rows or columns of a crossword puzzle as contained in many American newspapers or
magazines. Here M=27, the black space between words is considered the space symbol and
there are 26 non-space symbols. In this case, we allow for one or more than one space symbol
between words in the dictionary to allow for one or more than one black square between
consecutive words.

A second example of such a constrained system would be binary (d,k) sequences. The
alphabet consists of the two symbols 0 and 1. The usual description of such binary sequences
is that the symbols must satisfy the following two constraints.

(1) d-constraint:  Two consecutive 1’s must be separated by a run of at least d consecutive
0’s.

(2) k-constraint:  The maximum length of a run of consecutive 0’s is k.



Note, however, the following equivalent description of such (d,k) binary sequences which
applies when d > 1. The M=2 binary symbols are the space symbol “1” and the non-space
symbol “0”.  The dictionary contains the Q=(k-d+1) code words consisting of runs of j  0’s
where j takes on the (k-d+1) values from d to k. Furthermore, every word in the dictionary
can be followed by exactly one space symbol (i.e., one “1”). The modifications to this
description that must be made for the case of d=0 are straightforward.

If any concatenation of the M symbols is allowable, there are exactly Mn distinct sequences of
length n. It is desirable to know how many distinct sequences of length n can be formed for
the constrained system. Shannon [1] provided us with several methods of computing this
quantity. One method is very easy to understand in terms of our dictionary description of
these constrained sequences.

Assume first the case where there is one and only one space between adjacent code words.
Let N(n) be the number of distinct sequences of length n in our constrained system. Note that
any sequence of length n can be thought of as a sequence of length (n-j-1) followed by a
space followed by a code word of length j > 1. Then, if N(n-j-1) is the number of distinct
sequences of length (n-j-1) and if Aj denotes the number of distinct words in our dictionary of
length j, then the number of distinct sequences of length N(n) would equal the sum over all
code word lengths j of the product of Aj and N(n-j-1).

From the standard theory of linear difference equations one knows that the solution for N(n)
is a sum of exponentials of the form γn which for large n is dominated by the largest real root
of an algebraic equation found by substituting γj for N(j) in the original linear difference
equation.

For the case of binary (d,k) codes, the value of the limit as n approaches infinity of
log2[N(n)]/n  has been computed by many authors. We will denote this quantity by C1(d,k).
C1(d,k) has been referred to as the capacity (or the maximum entropy) of the constrained
system. For our purposes, we need only know that C1(d,k) can be computed for all values of d
and k and that the value of C1(d,k) is non-zero for all d and k provided that k > d. One more
fact that will be useful later is that C1(1,2)= C1(2,4).

For the case of an arbitrary concatenation of English words as in the rows and columns of a
crossword puzzle, one must take into account the fact that one can have more than one space
between words. In that case, the above-mentioned difference equation is modified by adding
the additional term N(n-1) to the sum of products of Aj and N(n-j-1). The method of solution,
however is identical to that described previously.

For this case, the value of the limit as n approaches infinity of log2[N(n)]/n has been
computed by Gilbert [2] by counting the number of English words of each length in two
different English dictionaries. Calling this quantity C1(English), Gilbert computed
C1(English) to be 2.444 bits/letter  for a dictionary of size 34,897 and computed C1(English)
to be 2.782 bits/letter for a dictionary of size 233,614. Again, C1(English) has been referred
to as the capacity or the maximum entropy of the constrained system.

Two-dimensional constrained arrays and crossword puzzles.



We next consider two-dimensional arrays of symbols from an alphabet of size M where the
arrays are such that every row and every column must individually satisfy the previously
described constraint for one-dimensional sequences. That is, every row and every column of
the array must be a concatenation of words from a dictionary where adjacent words are
separated by one or possibly more than one space. Two examples of such arrays which are
the two-dimensional extension of the one-dimensional examples are:

1. Two-dimensional crossword puzzles as found in many American newspapers or
magazines where every row and every column consists of a sequence of words from an
English dictionary and such that every pair of consecutive words in every row and every
column are separated by one or more spaces (i.e., black squares).

2. Binary two-dimensional (d,k) arrays where each element of the array is a “0” or a “1” and
such that every row and every column satisfies the previously specified d-constraint and
k-constraint.

For a specified constraint we are interested in how many such distinct arrays can be
constructed for an array with m rows and n columns. We call this number N(m,n).

It is clear that for large m and n, for every constraint for which the one-dimensional capacity
is non-zero, N(m,n) must grow at least exponentially with m or with n. This is the case since
if one chooses the first column (or row) to satisfy the one-dimensional constraint, one can
always have the rows (or columns) satisfy the constraint by choosing each subsequent column
(or row) as a shift by one symbol up or down (or to the left or right) of the previous column
(or row).

However, one might suspect that in some cases, that for large m and n, N(m,n) might grow
exponentially with the product of m and n.  Indeed let us define the two-dimensional capacity
or maximum entropy of the array as the limit as m approaches infinity and as n approaches
infinity of log2[N(m,n)]/mn. For the case of two-dimensional crossword puzzles of English
words we call this quantity C2(English), while for the case of two-dimensional binary (d,k)
arrays we call this quantity C2(d,k).

It is of specific interest to us that Shannon discussed two-dimensional crossword puzzles of
English letters in his 1948 paper [1].  In part, Shannon stated:

“The ratio of the entropy of a source to the maximum value it could have
while still restricted to the same symbols will be called its relative entropy.”

“One minus the relative entropy is the redundancy.”

“The redundancy of a language is related to the existence of crossword
puzzles. If the redundancy is zero any sequence of letters is a reasonable text
in the language and any two dimensional array of letters forms a crossword
puzzle. If the redundancy is too high the language imposes too many
constraints for large crossword puzzles to be possible. A more detailed
analysis shows that if we assume the constraints imposed by the language are
of a rather chaotic and random nature, large crossword puzzles are just



possible when the redundancy is 50%. If the redundancy is 33%, three
dimensional crossword puzzles should be possible, etc.”

No further explanation of these remarks has been found in the subsequent publications of
Shannon nor in the work of other authors. As a result of one of the authors having presented
some of this material at the Shannon Day Symposium at Bell Laboratories on May 18, 1998,
a letter and other correspondence [2] was received from Edgar Gilbert reporting on some
previous work that he had done on the subject and on his recollection of some discussions he
had  had with Shannon related to this work. The following argument was completed before
having received the correspondence from Gilbert but seems to be corroborated by its
contents.

In order to proceed we will make some conjectures as to how to interpret Shannon’s
statements. We first conjecture that Shannon’s words “large crossword puzzles” are
“possible” should be interpreted to mean that the two-dimensional capacity of the system is
strictly greater than 0. Conversely, when Shannon states that, if the redundancy is too high,
large crossword puzzles are not possible, we assume that Shannon meant that in that case the
two-dimensional capacity is equal to 0.

We go on to conjecture that Shannon’s description of the constraints as being of a “chaotic
and random nature” refers to the fact that the joint statistics that govern the entries of the
array are such that all of the rows and all of the columns are statistically independent of one
another.

We now give a plausibility argument for Shannon’s conclusion based upon these conjectures.
We first note that the number of distinct arrays having m rows and n columns with elements
from an alphabet with M symbols is equal to Mmn. For crossword puzzles made up of English
words, M=27. There are N(n) distinct sequences of length n (or N(m) sequences of length m)
that satisfy the constraint. For any of the Mmn arrays previously constructed, the probability
that any row satisfies the constraint is N(n)/Mn, and the probability that any column satisfies
the constraint is N(m)/Mm. Invoking our conjecture as to the meaning of “chaotic and
random”, the probability that every row and every column of the array satisfies the constraints
is [N(m)]n[N(n)]m/M2mn. Under this assumption, the average number of arrays for which all
of the rows and all of the columns satisfy the constraints is equal to [N(m)]n[N(n)]m/Mmn.

Assuming that we take m and n very large, and denote by C the appropriate capacity or
maximum entropy, we can use the approximation N(m)=2mC and  N(n)=2nC. Then writing
M=2log(M) (where the logarithm is taken base 2), we have that the average number of arrays
having  all  of  their  rows  and all  of  their columns  satisfying the constraints is equal to
2mn(2C-log(M)).  Thus if 2C-log(M) > 0 (or equivalently C/log(M) > 0.5), the average number of
arrays that have all rows and all columns satisfying the constraints grows exponentially with
the product mn. A similar argument follows for higher dimensional arrays.  This agrees with
Shannon’s conclusions.

We can improve on this result by first choosing arrays that satisfy only the constraints on the
rows. Using the above argument, the average number of arrays that have all of their m rows
satisfying the constraints is equal to [N(n)]m. These arrays will have the symbols in each
column occurring in accordance with their first order probability. Let H1 be the entropy
corresponding to their first order probability. The probability that any column in these



surviving arrays satisfies the constraints is then for large m approximately given by
N(m)/2mH1. The probability that all n columns of these surviving arrays satisfies the
constraints is then given by [N(m)]n/2mnH1. Thus the average number of arrays that will have
both their rows and columns satisfying the constraints is given by 2mn(2C-H1). Thus if 2C-H1 >
0 (or equivalently C/H1 > 0.5), the average number of arrays that have all rows and all
columns satisfying the constraints grows exponentially with the product mn. Again a similar
argument follows for higher dimensional arrays. Specifically, this argument says that large
three-dimensional crossword puzzles exist provided that C/H1 > 0.666.

Using the definition of redundancy as stated by Shannon and Gilbert’s estimate of the
maximum entropy of English words for the 233,614 word dictionary, one finds that the
redundancy of English words is about 0.415. Following Shannon, this would allow for the
construction of large two-dimensional crossword puzzles but not for large three-dimensional
crossword puzzles.

Ignoring the allowed multiplicity of spaces between words, the first order entropy of English
is known to be approximately 4.03 bits per symbol. Using Gilbert’s estimate of the entropy of
English words for the 233,614 word dictionary one finds that C/H1 = 0.690. Thus, large
three-dimensional crossword puzzles of English words indeed may exist.

Two-dimensional (d,k) arrays.

We are on somewhat shaky ground trying to apply the previous ideas to binary (d,k) arrays
since these constraints are far from being of a chaotic and random nature. However, it is of
some interest to see what Shannon’s ideas predict in that case.

Very little is known about the two-dimensional capacity, C2(d,k) of binary (d,k) arrays. In
fact the exact value of capacity, C2(d,k), has only been computed for the case when C2(d,k)=1
or C2(d,k)=0. The former case is the trivial case of unconstrained arrays (i.e., d=0 and
k=infinity). The latter case is known to occur [3]  if and only if d>1 and k=d+1. The case of
C2(d,k) =0 for d>1 and k=d+1 is predicted by Shannon’s theory since C1(1,2) =  0.4057 and
C1(d,d+1)  < .4057 for d > 1. Thus for these cases, the redundancy is greater than 0.5 so one
would not expect to be able to construct large two-dimensional arrays satisfying these
constraints.

As stated previously, C1(2,4)= C1(1,2) but also as stated previously C2(1,2)=0 and C2(2,4) >
0. Thus it is clear that Shannon’s argument cannot be applied since both constraints have the
same redundancy but one has a two-dimensional capacity equal to 0 and the other has a non-
zero two-dimensional capacity. Our hope was that the modified argument might predict the
correct behavior by taking into account the fact that the first order statistics for the two
constraints are not the same.  Indeed the (2,4) constraint has a higher value for C/H1 than
does the (1,2) constraint but unfortunately both have C/H1<  0.5. Thus our initial skepticism
in applying these ideas to this constraint was correct.

Concluding comments.

It is clear  that there is much to be learned regarding two-dimensional constrained arrays. One
possible avenue for future research is to attempt to improve further on the argument given
related to the existence of large two-dimensional arrays. In particular, it is clear that the rows



and columns of binary two-dimensional (d,k) arrays are not statistically independent so that
one might attempt to model the dependence in some manner.
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