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Abstract—The bit-channels of finite-length polar codes are not
fully polarized, and a proportion of such bit-channels are neither
completely “noiseless” nor completely “noisy”. By using an outer
low-density parity-check code for these intermediate channels, we
show how the performance of belief propagation (BP) decoding
of the overall concatenated polar code can be improved. A simple

example reports an improvement in
Eb

N0
of 0.3 dB with respect

to the conventional BP decoder.

I. INTRODUCTION

Polar codes were proposed in [1] as a coding technique

that provably achieves the capacity of symmetric binary-input

discrete memoryless channels (B-DMCs) with low encoding

and decoding complexity. The analysis and construction of

polar codes are based on a successive cancellation (SC)

decoder. Since then, decoders with better finite-length per-

formance have been proposed. In [2], successive cancellation

list (SCL) decoder was proposed and the performance was

comparable to that of low-density parity-check (LDPC) codes.

Belief propagation (BP) decoding of polar codes was proposed

in [3], [4] with parallel and sequential message scheduling,

respectively. Sequential BP was shown to perform better than

parallel BP [4] over the polar code factor graph. BP decoding

is also relevant in setups where soft-outputs need to be passed

to other detectors in iterative processing structures, like in

inter-symbol interference or multiple-antenna channels.

Concatenated polar codes with SC decoding have been con-

sidered. In particular, [5] reports near-exponential rate of decay

of the error probability through a concatenation with outer

Reed-Solomon codes. Instead, [6] proposes a concatenated

code employing an outer polar code and inner block codes.

In this paper, we propose a concatenated polar coding

scheme employing an inner polar code and an outer LDPC

code for intermediate-quality bit-channels coupled with BP

decoding. Fig. 1 shows the frame error rate (FER) and bit

error rate (BER) for codes of length N = 212 = 4096 and rate
R = 1

2 with different decoders. An instance of a concatenation

with a Tanner code exhibits an improvement of over 0.3 dB

over standard BP decoding of polar codes.

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, the Spanish Ministry of Economy
and Competitiveness under grant TEC2012-38800-C03-03, NSF Grant CCF-
1116739, and a Qualcomm Innovation Fellowship.
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Fig. 1. Error rates of polar codes with N = 4096 and R = 1
2
with various

decoders over the AWGN channel. Bit-channels are sorted according to [7]

at
Eb

N0
= 0 dB.

II. PRELIMINARIES

Throughout the paper, we define [b]
def
= {1, . . . , b} for b ∈ Z.

We use xb
1 to denote a length-b vector (x1, . . . , xb) and A

⊤

denotes the transpose of matrix A. Row vectors are assumed.

Let W : X → Y denote a B-DMC, with input alphabet

X = {0, 1}, output alphabet Y , and transition probability

W (y|x), x ∈ X , y ∈ Y . The channel mutual information with
equiprobable inputs is denoted by I(W ) and the corresponding
Bhattacharyya parameter by Z(W ). LetN be the block length,

xN
1 , yN1 be the channel input and output sequences, and the

corresponding vector channel be WN
(
yN1 |x

N
1

)
.

A. Channel polarization
Consider the matrix G2 = [ 1 0

1 1 ], and let GN = G
⊗n
2 be the

N ×N matrix corresponding to the Kronecker product of G2

with itself n = log2 N times. Information bits are denoted by

uN
1 ∈ {0, 1}

N . We defineWN

(
yN1 |u

N
1

)
= WN

(
yN1 |u

N
1 GN

)

as the vector channel induced from the information bits. Then,

out of WN
(
yN1 |u

N
1

)
, a SC decoder defines the channels

W
(i)
N

(
yN1 , ui−1

1 |ui

)
=

∑

uN
i+1

1

2N−i
WN

(
yN1 |u

N
1

)
(1)



for i ∈ [N ]. The channel polarization theorem [1] states that

I
(
W

(i)
N

)
converges to either 0 or 1 as N tends to infinity.

Polar codes of rate R = K
N

are constructed by selecting

the K indices i ∈ [N ] such that I
(
W

(i)
N

)
is highest; the

information bits corresponding to the remainingN−K indices

are frozen to zero. The set of frozen indices is the frozen set F ;
its complement is denoted by Fc. Equivalently, the generator

matrix GPC of a polar code is obtained by substituting the ith

row in GN with the all-zero vector for all i ∈ F .

B. Successive cancellation decoding
In SC decoding, the bits corresponding to indices i ∈ Fc

are estimated as

Ûi = arg max
ui=0,1

W
(i)
N

(
yN1 , ui−1

1 |ui

)
, i ∈ Fc. (2)

The decoding complexity of the SC decoder is O(N logN).
It was shown in [8] that the probability of error under SC

decoding decays as o(2−Nβ

) for any fixed β < 1
2 .

C. Belief propagation decoding
BP decoding is a message passing decoding algorithm that

has been extensively studied for decoding codes defined on

graphs. BP decoding of polar codes has been considered in [3],

[9], [10] and it was shown that the complexity of the BP

decoding is O(N logN).
The factor graph of a polar code is a graphical representation

of the generator matrix GN , interconnecting variable nodes

(VNs) and check nodes (CNs). An instance for N = 8 is

shown in Fig. 2.

Information bits Ui, i ∈ [N ], are represented as the set of

leftmost VNs and are partitioned in 2 sets, UF and UFc , de-

pending on whether the corresponding indices are in the frozen

set or not. Obviously, Z
(
W

(i)
N

)
6 Z

(
W

(j)
N

)
, ∀i ∈ Fc, j ∈ F .

Each column of VNs (CNs) is called a VN (CN) layer. The

number of VN layers is n + 1 and the number CN layers is

n, where n = log2 N . In the sequel, we assume the layers are

labeled from right to left as follows. Y N
1 (UN

1 ) forms the 0th
(nth) VN layer, and the CNs connected to Y N

1 (UN
1 ) form the

1st (nth) CN layer. Note that in the ith layer, i ∈ [n], there are
N
2 Z-shaped VN-CN connections, one of which is highlighted

in Fig. 2. The channel observation yN1 , is fed to the rightmost

VNs Yi, i ∈ [N ] and the BP decoder passes messages along

the graph in an iterative fashion according to the specific VN

and CN update rules (see e.g. [11, Ch. 2]).

III. ENHANCED BP WITH CONCATENATION

In this section, we introduce a concatenation scheme that

improves the performance of polar codes under BP decoding.

The Bhattacharyya parameters Z
(
W

(i)
N

)
, i ∈ [N ] of finite-

length polar codes no longer “fully” polarize, i.e., the pro-

portion of bit channels for which δ < Z
(
W

(i)
N

)
< 1− δ is not

negligible, for small δ. For the example of Fig. 1 and δ = 0.01,

it is observed that 1
N

∣∣{i : δ < Z
(
W

(i)
N

)
< 1−δ}

∣∣ ≈ 0.22. The
top and bottom thresholds in Fig. 3 illustrate this proportion

of channels.

Furthermore, the spread of the Z
(
W

(i)
N

)
, i ∈ [N ] implies

unequal protection of the corresponding information bits as

well as small differences between the highest quality frozen

channel and the lowest quality information channel.

A. Code construction and factor graph representation
For each channel W

(i)
N , i ∈ [N ], we have the following.

Definition 1. Given δ1, δ2 ∈ R such that 0 < δ1 6 δ2 < 1, for
all i ∈ [N ], we call a channelW

(i)
N good if Z

(
W

(i)
N

)
< δ1; we

call a channel W
(i)
N intermediate if δ1 6 Z

(
W

(i)
N

)
< δ2; and

we call a channel bad if Z
(
W

(i)
N

)
> δ2.

The main idea is the following. Uncoded data bits are trans-

mitted through good channels; the input Ui to bad channels

are frozen to 0; coded bits are transmitted through intermediate
channels so that they are almost equally as well protected as

the uncoded data bits on good channels.

Definition 2.We denote a bipartite graph by (V , C, E), where V
is the set of VNs, C is the set of CNs, and E is the set of edges

connecting V and C.
Let (Vstd, Cstd, Estd) be the standard BP decoding graph of a

polar code of length N . Let the set of VNs in the nth layer be

partitioned into Ugood,Uinter, and Ubad, such that Z
(
W

(i)
N

)
< δ1,

δ1 6 Z
(
W

(i)
N

)
< δ2, and Z

(
W

(i)
N

)
> δ2, respectively, and let

Fgood,Finter, and Fbad be the corresponding set of indices with

Fgood ∪ Finter ∪ Fbad = [N ].
Let (Vouter, Couter, Eouter) be a Tanner graph (bipartite graph)

of an LDPC code of length |Vouter|, rate Router, and normalized

degree distribution (λ, ρ).
The enhanced BP decoding graph (Vebp, Cebp, Eebp) is for-

malized such that Vebp = Vstd, Cebp = Cstd ∪ Couter, and
Eebp = Estd ∪ Eouter, where Vouter = Uinter.

According to the above definition, the rate of overall con-

catenated scheme is

R =

∣∣Fgood

∣∣+
∣∣Finter

∣∣ ·Router

N
, (3)

= RPC −

∣∣Finter

∣∣ · (1−Router)

N
, (4)

where

RPC =

∣∣Fgood

∣∣+
∣∣Finter

∣∣
N

. (5)

is the rate of the inner polar code.

Fig. 2 shows an example of the enhanced BP decoding graph

of a polar code of length N = 8. In layer n = log2 N = 3,
Ubad consists of the top two VNs, Uinter consists of the middle
five VNs, and Ugood consists of the last VN.

B. Decoding
Scheduling, i.e., the order in which nodes generate their

output messages, plays a key role in the performance and

complexity of BP decoders [10]. There are two main types

of scheduling to pass messages along the graph from Y N
1 to

UN
1 and back.
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Fig. 2. Extended factor graph for of concatenated polar codes.

One is called “flooding,” where messages are passed in

parallel from the 0th layer (VNs corresponding to received

codeword Y N
1 ) to the nth layer (VNs corresponding to data

bits UN
1 ). Each layer consists of N

2 Z-shaped VN-CN con-

nections (one such Z-shaped connection in the first layer is

highlighted in Fig. 2). Upon receiving messages on UN
1 , the

messages corresponding to VNs in Uinter are passed on as

observations to the outer code decoder.

The other is called “SCAN” decoding [4], where the

scheduling is similar to that of SC decoding. Note that SC

decoding can be viewed as a special BP scheduling over the

standard factor graph of polar codes [10], where the messages

passed from Y N
1 to UN

1 are real-valued and the messages

passed from UN
1 to Y N

1 are the 0-1 valued decisions on the

data bits. The SCAN decoder has the same scheduling as

the SC decoder, but instead of passing binary messages from

UN
1 to Y N

1 , soft messages are passed. It is shown in [4] that

SCAN decoders can improve the performance and reduce the

complexity of the decoder.

1) Enhanced flooding BP: Let LV→C(λ, i) and

LC→V (λ, i) be the messages from the VN on the ith

row of the λth VN layer to the CN on the ith row of the

(λ+1)th CN layer and the messages of the reverse direction,

respectively, for i ∈ [N ], λ ∈ [0 : n − 1]. Let LV→C(n, i)
denote the messages flooded from the nth VN layer to

Couter as the channel input messages to the outer LDPC

code, let LC→V (n, i) denote the combined messages from

CN in Couter to VN on the ith row in the nth VN layer,

which serve as the output messages from the outer code. Let

LLDPC
out =BP Decoder LDPC(LLDPC

in , I) be the BP decoding

function of the LDPC code with observation messages

LLDPC
in , number of iterations I and output messages LLDPC

out .

Algorithm 1 describes the enhanced flooding BP decoder.

Algorithm 1. ENHANCED BP DECODER BY FLOODING

Input:

Lin ∈ R
N : channel observation messages;

Imax: maximum number of iterations.

Output:

Lout : decoded output messages on VNs in the 0th layer.

For i = 1 to N

LV→C(0, i)← Lin(i)
end For

While number of iterations < Imax
For λ = 1 to n

For each Z-shaped connection in the λth layer

Update CN-to-VN message on the lower edge

Update VN-to-CN message on the diagonal edge

Update CN-to-VN message on the upper edge

Update CN-to-VN message on the diagonal edge

end For

For i = 1 to N

Update LV→C(λ, i)
end For

end For

LC→V (n, i)← BP Decoder LDPC(LLDPC
in , 1)

For λ = n− 1 down to 0
For each Z-shaped connection in the λth layer

Update VN-to-CN message on the upper edge

Update CN-to-VN message on the diagonal edge

Update VN-to-CN message on the lower edge

Update VN-to-CN message on the diagonal edge

end For

For i = 1 to N

Update LC→V (λ, i)
end For

end For

For i = 1 to N

If (LC→V (0, i)) + Lin(i)) > 0 then

X̂i ← 0
Else

X̂i ← 1
end If

end For

If Is Parity Check Satisfied(X̂N
1 ) = 1

Lout ← LC→V (0, i) + Lin(i) and return

end If

end While

It is not necessary to run all Imax iterations in Algorithm 1.

After each iteration, if the estimated codeword X̂N
1 satisfies

the parity-check equation, the algorithm will stop and output

the corresponding codeword. This early termination reduces

the decoding complexity and is based on the observation that

error events contain very few instances of decoding to a wrong

codeword. Most errors happen when no codeword is found

after running all Imax iterations. Algorithm 2 can be used to

check for early termination.

Algorithm 2. Is A Codeword = Is Parity Check Satisfied(XN

1 )

Input:

XN
1 ∈ {0, 1}N : a row vector to check if it is a codeword.

Output:



Is A Codeword: equals 1 if XN
1 is a codeword of polar

code, 0 otherwise.

ÛN
1 ← XN

1 ·GPC

s←HLDPC ·
(
ÛFinter

)⊤

If Ûi = 0, ∀i ∈ Ubad and s = 0

Is A Codeword ← 1
Else

Is A Codeword ← 0
end If

Since the parity-check matrix of a polar codes is not

sparse, the complexity of checking whether X̂N
1 is a codeword

would be O(N2) if it is accomplished by checking each

CN independently to verify if all parity-check equations are

satisfied. However, according to the following proposition,

Algorithm 2 has complexity O(N logN).

Proposition 1. Suppose GPC and HPC are the generator and

parity-checkmatrices of a polar code of lengthN and frozen set

F ⊂ [N ]. A binary row vector XN
1 ∈ {0, 1}N is a codeword,

i.e.,HPC ·
(
XN

1

)⊤
= 0, if and only if

Ûi = 0, ∀i ∈ F , (6)

where ÛN
1 = XN

1 ·GPC.

2) Enhanced SCAN BP: We next give details of the SCAN

BP decoder. In general, LV→C(n, i), i ∈ [N ], are obtained

sequentially and thus sequential message-passing decoding of

the outer code is used. Several sequential message-passing

decoding schemes of LDPC decoding schemes that use par-

titioning of the CNs have been studied in [12], [13]. We

describe the message update algorithm on edges connecting

to a particular VN Vi ∈ Uinter in Algorithm 3.

Algorithm 3. Sequential message-passing of Vi ∈ Uinter.

Input:

LV→C(n, i): message from the ith VN in the nth layer,

serving as the channel input message to the outer code.

Output:

LC→V (n, i): combined message from Couter to the ith VN

in the nth layer.

For each edge Ei,j connecting to Vi from CN Cj ∈ Couter
Update message on Ei,j from Cj to Vi

end For

LC→V (n, i)←
∑

j {message from Cj to Vi}
For each edge Ei,j connecting to Cj ∈ Couter from Vi

Update message on Ei,j from Vi to Cj

end For

The SCAN BP decoder of the concatenated code is complet-

ed by applying Algorithm 3 to VN Vi in nth layer whenever

LV→C(n, i) is obtained by SCAN. The updated LC→V (n, i)
is then fed back into the SCAN decoding of polar codes to

update LV→C(n, j) where j > i.

IV. NUMERICAL EXAMPLES

In this section, we describe the simulation setup and the

parameters corresponding to the performance results reported

in Fig. 1. The length of the polar code is N = 4096, so there
are n = 12 CN layers. The number of data bits is K = 2048
and thus the code rate is R = 1

2 .

A. Channel ordering
In our simulations, the channel qualities are measured by the

corresponding Bhattacharyya parameters Z
(
W

(i)
N

)
, i ∈ [N ]

obtained using the algorithm in [7] at Eb

N0
= 0 dB, which

is the Shannon limit for a rate- 12 code with unconstrained

inputs. The SNR region of interest (around 2.5 dB) does not

contain the SNR for which the polar code was designed (0

dB); that is, the codes reported upon here are all designed

for a mismatched SNR. Further simulation results, not shown

in this paper, indicate that our scheme consistently performs

better than standard polar coding and that the improvement

depends upon the mismatch between the design SNR and the

actual channel SNR.

From the definition of Z
(
W

(i)
N

)
, i ∈ [N ], an SC decoder

is implied. Instead, when BP decoding is used, SC decoding

ordering is not necessarily the best possible. We set the

thresholds δ1 = 0.5736, δ2 = 0.83 as illustrated in Fig. 3.

Then |Fgood| = |Ugood| = 1984, |Finter| = |Uinter| = 155, and
|Fbad| = |Ubad| = 1957. Bits Ui, i ∈ Fbad are frozen to 0;

uncoded data-bits are assigned to Ui, i ∈ Fgood; and LDPC

coded data-bits are assigned to Ui, i ∈ Finter. For comparison,

the threshold for a conventional rate- 12 polar code is shown to

be 0.70 in Fig. 3.
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B. Outer LDPC code
We use the (3, 5)-regular Tanner code, with |Vouter| = 155,

|Couter| = 93, and dmin = 20. Each VN is connected to 3 CNs

and each CN is connected to 5 VNs. With these parameters,

the rate of the overall concatenated code is R = 1
2 .



C. Results
Fig. 1 reports both BER and FER for the proposed polar

code concatenation over the binary-input AWGN channel.

Results are shown for both flooding and SCAN scheduling. For

comparison purposes, results for three other decoding schemes

are also shown, namely, conventional SC, BP, and SCAN.

2 2.5 3 3.5
5

6

7

8

9

10

11

E b

N 0
(dB)

A
v
er
ag
e 
n
u
m
b
er
 o
f 
it
er
at
io
n
s

(a) flooding

BP

 BP + Tanner

2 3 4
1

1.2

1.4

1.6

1.8

2

E b

N 0
(dB)

A
v
er
ag
e 
n
u
m
b
er
 o
f 
it
er
at
io
n
s

(b) SCAN

BP

BP + Tanner

Fig. 4. Average number of iterations for flooding and SCAN BP.
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Fig. 4 shows the average number of iterations needed to

decode a codeword corresponding to the BP decoding schemes

in Fig. 1. It is observed that the number of iterations needed

by the concatenation with the Tanner code is decreased for

SCAN, but increased for flooding.

Fig. 5 shows the performance of a polar code of length

N = 4096 over the AWGN channel with SNR = 4 dB under

standard SCAN BP decoding and SCAN BP decoding of the

concatenated scheme with the Tanner code. The concatenated

coding scheme with enhanced BP decoding offers an improve-

ment in BER and FER over a range of code rates, and the

absolute gain appears to be independent of the rate.
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