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Abstract— For one-dimensional (1-D) recording channels, the
detector performance can be assessed by the distance properties
of the channel, which are defined in terms of the maximum-
likelihood decoding trellis. Error events with minimum and near
minimum distances play an important role in the performance
of the recording system particularly at moderate to high signal-
to-noise ratio (SNR). In this paper, we analyze the distance
properties of two-dimensional (2-D) inter-symbol interference
channels, in particular the 2-D PR1 channel which is an extension
of the 1-D PR1 channel. The minimum distance of this channel is
proved to be 2 and a complete characterization of the distance-2
error events is provided. Also, the error events with squared-
Euclidean distance 6 are partially characterized. Analogous to
1-D channels, error-state diagrams for 2-D channels can be
constructed to characterize the error events. We propose an
efficient error event search algorithm operating on the error-
state diagram that is applicable to any 2-D channel.

I. INTRODUCTION

Detection and coding for 2-D inter-symbol interference (ISI)

channels have been the subject of much research recently

because of advances in holographic storage technology. A

generalization of 1-D detection and coding methods to 2-D

channels is not trivial due to the lack of convenient graph-

based descriptions of such channels. In particular, there is no

simple trellis-based maximum-likelihood detection algorithm

analogous to the 1-D Viterbi algorithm. Signal processing

and coding aspects of holographic storage systems have been

studied by several authors [1], [2], [3].

However, there are suboptimal detection techniques such as

the iterative multi-strip (IMS) algorithm for 2-D ISI channels

that demonstrate very good error-rate performance and appear

to approximate the performance of a maximum-likelihood

(ML) detector [4]. The IMS algorithm is a message-passing

algorithm operating on soft-input, soft-output detectors, such

as the maximum a posteriori (MAP) detector. It is therefore of

interest to identify the dominant 2-D error events, where we

define an error event as the difference between the recorded

and the decoded data arrays. In the 2-D setting, error events

can be classified as closed or open depending on whether

the area of the smallest square region containing nonzero

differences is bounded or unbounded. Empirical evidence has

shown that data arrays forming dominant error events for the
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IMS algorithm generate channel outputs with small squared-

Euclidean distance. Therefore, it is important to characterize

the 2-D error events with small squared-Euclidean distance,

so that 2-D distance-enhancing constrained codes can be

designed to improve system performance [3]. The design of 2-

D distance-enhancing constrained codes will not be elaborated

upon this paper.

Chugg investigated the performance of an ML page detector

in the presence of ISI and additive white Gaussian noise [5]. If

the channel impulse response has finite support size, then the

channel output can be characterized as a Markov random field.

The bit error rate performance of an ML page detector can be

bounded from above by a union bound, which is computed

by using the fundamental error patterns in the channel input

arrays. In this work, we refer to fundamental error events as

connected error events. In Section V, we compute some terms

of the union bound for the 2-D PR1 channel.

Karabed et al. introduced an analytic method to characterize

the distance properties of some 1-D partial-response channels

[6]. In this paper, we extend this method to characterize the

closed error events of some 2-D ISI channels. In particular, we

study the 2-D PR1 channel whose impulse response is given

by

h =
[ 1 1
1 1

]
. (1)

This impulse response is observed to be a good ISI model

for holographic storage systems when there is a half-period

sampling shift between the read-back signal and detector.

The analytic method used for characterizing error events for

the 2-D PR1 channel is tedious to apply for most 2-D channels,

particularly for the channels whose impulse responses span

p × q arrays where p, q > 2. For 1-D ISI channels, efficient

search algorithms working on error-state diagrams have been

developed to characterize error events for high-order partial

response channels [7], [8]. Error-state diagrams for 2-D ISI

channels can be generated by fixing the size of the error

event in the horizontal or vertical direction. In this paper, we

propose a bounded depth-search algorithm for finding closed

and connected error events for any 2-D ISI channel. The

complexity of the algorithm solely depends on the underlying

2-D ISI channel.

The organization of the paper is as follows. In Section II,

we present a 2-D ISI channel model and define its distance

properties. In Section III, the characterization of minimum and

near-minimum distance error events of the 2-D PR1 channel is
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Fig. 1. A 2-D ISI channel model.

investigated by studying the channel impulse response in the

spectral domain. By generalizing this concept, some distance

properties of the channels other than the 2-D PR1 channel can

be found.

The method of precoding is commonly used in 1-D record-

ing channels to invert the ISI effect of the channel. In Section

IV, we discuss the effect of a precoding scheme on error

events for the 2-D PR1 channel. Section V discusses the union

bounds for the unprecoded and precoded 2-D PR1 channel.

Error-state diagrams and a bounded depth-search algorithm

are introduced in Section VI. Analytical results are compared

with the computed results for the 2-D PR1 channel.

II. THE 2-D ISI CHANNEL

Consider a 2-D ISI channel with bipolar input array x =
{xi,j}, channel impulse response h = {hi,j}p−1,q−1

i=0,j=0 , and

output y = x ∗ h (see Fig. 1). Additive white Gaussian noise

η = {ηi,j} with zero mean and variance σ2 is added to the

channel output array to obtain the received array r = {ri,j}.

For a channel output array y and its estimated array y′, the

normalized squared-Euclidean distance is defined as

d2(y, y′) �
∑
i,j

[(yi,j − y′
i,j)/2]2

which is taken to be ∞ if the sum is unbounded. Normalized

squared-Euclidean distances will be referred as squared dis-
tances. The quantity d2(y, y′) can be expressed in terms of

the corresponding input arrays x and x′, respectively,

d2(y, y′) = d2(ε ∗ h, 0)

where ε = (x − x′)/2 is the normalized channel input error

array. The normalized channel input error arrays are called

error events, whose elements are commonly represented by

the symbols {0, +,−}. The input arrays x and x′ are called

supporting arrays of ε. The distance of an error event ε is

defined as d(ε) �
√

d2(ε ∗ h, 0).
Analogous to the 1-D channels, the error events for 2-D

channels are classified as either open or closed. An error event

is closed if the area of the smallest square region containing

nonzero differences is bounded. Error events which are not

closed are called open. Let Eclosed be the set of closed error

events, Eopen be the set of open error events, and E = Eclosed∪
Eopen be their union. We define the minimum closed event
distance

d<> = min
ε �=0,ε∈Eclosed

d(ε)

and the minimum event distance

d< = min
ε �=0,ε∈E

d(ε).

1-D sequences are often represented in the D-transform

domain, which is equivalent to the z-transform where D =
z−1. Likewise, 2-D arrays can be represented in the (D,E)-
transform domain. For an array x, the (D,E)-transform of x
is defined as

x(D,E) �
∑
i,j

xi,jD
iEj .

In this representation, the impulse response of the 2-D PR1

channel is given by

h(D,E) = 1 + D + E + DE

and the channel input-output relationship becomes

y(D,E) = x(D,E)h(D,E). (2)

The minimum closed event distance of a 2-D ISI channel can

be expressed as

d<> = min
ε(D,E) �=0, ε∈Eclosed

‖h(D,E)ε(D,E)‖

where

ε(D,E) =
m−1∑
i=0

n−1∑
j=0

εi,jD
iEj , εi,j ∈ {−1, 0, +1} (3)

is the polynomial corresponding to an error event ε =
{εi,j}m−1,n−1

i=0,j=0 such that the edges of ε, ε0,∗, ε∗,0, εm−1,∗,

ε∗,n−1 contain at least one non-zero entry.

Here, we have defined error events for 2-D channels in a

way analogous to 1-D channels. However, error events for 2-D

channels cannot be interpreted as differences of paths in the

decoding trellis, since such trellis representations do not exist

for 2-D channels.

III. ERROR EVENT CHARACTERIZATION ON THE 2-D PR1

CHANNEL

The minimum and near-minimum distance error events can

be characterized by studying spectral properties of the channel

transfer function and the corresponding limitations on error

coefficients, {εi,j} [6, Sec. III.A]. Using this method, the

minimum distance error events (distance-2) are now com-

pletely characterized for the 2-D PR1 channel. In addition,

the error events with squared distance 0 and 6 are partially

characterized.

A. Minimum Distance Error Events

Proposition 1: The minimum closed event distance of the

2-D PR1 channel is 2. All distance-2 closed error events are

of the form

ε =

⎡
⎢⎢⎣

+ − · · · ε0,n−1

− +
...

...

εm−1,0 · · · εm−1,n−1

⎤
⎥⎥⎦ (4)

and their negatives. Here εm−1,0 = + (ε0,n−1 = +) if m (n)

is odd; otherwise εm−1,0 = − (ε0,n−1 = −). The bottom right

entry is determined as εm−1,n−1 = εm−1,0ε0,n−1.
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The proof of the proposition is based on the expansion of

(2) using the definition of closed error arrays (3). The details

of the proof will not be given here.

Example 1: Flipping one bit in the input array changes the

four adjacent locations at the channel output by 1. Therefore

one of the minimum distance error events is [+] (or [−]). Some

other distance-2 error events are

[+−] ,
[ +
−

]
, [+ − +] ,

[ +
−
+

]
,
[ + −
− +

]
and their negatives.

There are only two supporting arrays of a distance-2 error

event. Therefore, the larger the error event area, the less

probable it is to encounter that error event. More precisely,

the probability of having a minimum distance error event of

size m × n is 2−mn+1.

B. Open Error Events

Proposition 1 implies that all error events with d < 2 are

open error events. This class of open error events is particularly

important for an ML detector using a finite window size which

is smaller than the decoding page size. In this case, the distance

between some ambiguous arrays can be less than 2, which

makes the detector performance worse. Here we give some

examples of open error events with squared distance 0, 1, 2

and 3.

Example 2: The channel output error array corresponding

to an open error event is given by

y(D,E) =
∞∑

i=−∞

∞∑
j=−∞

(εi,j+εi−1,j+εi,j−1+εi−1,j−1)DiEj .

In order to obtain a distance-0 error event, each term in this

sum has to be zero. Therefore the error coefficients for each

term have to be one of the following combinations[ 0 0
0 0

]
,
[ + 0

0 −
]
,
[ + 0
− 0

]
,
[ + +
− −

]
,
[ + −
− +

]
and their rotations and reflections.

Some distance-0 error events can be obtained by tiling

the plane with the same pattern vertically and horizontally.

Examples of such patterns include[ + 0
0 −

]
,
[ + −
− +

]
,
[ + + − +
− − + −

]
. (5)

One of the supporting arrays of the left-most error event in (5)

can be obtained by tiling the plane with the following pattern[ +1 +1
+1 −1

]
.

Example 3: A distance-1 open error event can be obtained

by tiling one quadrant of the plane with the following pattern[ + −
− +

]
. (6)

Similarly, an error event with squared distance 2 can be

obtained by tiling the region [a,∞) × [b1, b2] with the same

pattern where a, b1, b2 ∈ Z, b2 > b1 and b2 − b1 is even.

Note that tiling a bounded rectangle with this pattern gives a

minimum distance closed error event. Also note that tiling a

half plane with this pattern gives a distance-0 open error event.

Example 4: An error event with squared distance 3 is given

by the following form:

ε =

⎡
⎢⎢⎢⎣

+ − + − · · ·
− 0 0 0 · · ·
+ 0
− 0 ε1
...

...

⎤
⎥⎥⎥⎦

where ε1 is a distance-1 error event.

C. Error Events with Squared Distance 6

We now describe two classes of error events with squared

distance 6. The first class is obtained by combining two

distance-2 error events ε1 and ε2 in the following way[
ε1 0
0 ε2

]
(7)

where the bottom right corner of ε1 is the negative of the top

left corner of ε2. The second error event class has the following

form [ ε1 ε2
0 ε3

]
(8)

where ε1, ε2 and ε3 are distance-2 error events such that there

are no adjacent +’s and no adjacent −’s at the error event

boundaries, horizontally and vertically.

The following patterns are two examples of error events in

the first and the second classes, respectively:[ + 0
0 −

]
,
[ + −

0 +

]
.

D. Extension to Other 2-D Channels

The method mentioned for the 2-D PR1 channel can be

extended to prove the following results for general 2-D ISI

channels.

Proposition 2: A general 2-D channel with impulse re-

sponse h = {hi,j}1,1
i=0,j=0 achieves the matched-filter bound;

i.e., the minimum closed event distance of this channel is given

by

d<> =
√

h2
0,0 + h2

0,1 + h2
1,0 + h2

1,1.

Proposition 3: For a general 2-D channel with impulse

response h = {hi,j}p−1,q−1
i=0,j=0 , the minimum closed event

distance can be bounded from below by

d<> ≥
√

h2
0,0 + h2

p−1,0 + h2
0,q−1 + h2

p−1,q−1.

The proofs of Propositions 2 and 3 will not be given here.

IV. THE EFFECT OF PRECODING ON THE 2-D PR1

CHANNEL

The precoded 2-D ISI channel model is shown in Fig. 2.

Let u be a binary unconstrained user data array at the input

to the precoder. A precoder complementing the effect of the

2-D PR1 channel is given by

ai,j = ui,j ⊕ ai−1,j ⊕ ai,j−1 ⊕ ai−1,j−1.
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Fig. 2. Precoded 2-D ISI channel model.

The channel input array is obtained from a using the binary-to-

bipolar conversion xi,j = 2ai,j −1. We now discuss threshold

and the IMS detectors for the precoded 2-D PR1 channel.
The user data array u is directly related to the channel output

array as follows
yi,j

2
≡ ui,j (mod 2). (9)

Threshold detection provides y′ using the received array r.

The user data array can be estimated by using (9) as follows

u′
i,j =

{
0, y′

i,j = −4, 0, 4
1, y′

i,j = −2, 2.

If the threshold detector makes an error, i.e., y′ 
= y, then it

is directly reflected in u′.
The IMS algorithm directly provides soft information for

x′. After hard decisions are made for x′, u′ is given by

u′
i,j = a′

i,j ⊕ a′
i−1,j ⊕ a′

i,j−1 ⊕ a′
i−1,j−1 (10)

where a′
i,j = (1 + x′

i,j)/2.
For a precoded system, a user data error event εu is defined

as the difference between a given and estimated user data

array; i.e., εu = u − u′. In fact, εu and ε = (x − x′)/2 are

related to each other according to the following relationship.
Proposition 4: εu = sgn(ε ∗ h)[ε ∗ h (mod 2)], where the

multiplication between sgn(ε ∗ h) and [ε ∗ h (mod 2)] is

element-wise.
The proof of the proposition is based on (10) and will not

be discussed here.
A m × n distance-2 error event ε in a channel input array

corresponds to the following (m + 1)× (n + 1) error event in

the user data array

εu =

⎡
⎢⎢⎣

ε0,0 0 · · · ε0,n−1

0 0
...

...

εm−1,0 · · · εm−1,n−1

⎤
⎥⎥⎦ .

The Hamming weight of εu is always 4 due to the one-to-one

relationship between y and u given in (9). Likewise, for all

error events with squared distance 6, the corresponding user

data error events have constant Hamming weight 6.
Example 5: The following are two examples of user data

error events corresponding to error events with squared dis-

tance 4 and 6, respectively.

εu =

[ + 0 −
0 0 0
− 0 +

]
↔ ε =

[ + −
− +

]
,

εu =

[ + + 0
+ 0 −
0 − −

]
↔ ε =

[ + 0
0 −

]
.

V. THE PROBABILITY OF ERROR

Chugg [5] proved that if the entries of input arrays x (or u
for the precoded case) are equally probable and independent,

the bit error probability under ML detection can be bounded

from above by the union bound:

Pb ≤
∑

d

KdQ

(
d

2σ

)
.

Here Q(·) is the complementary distribution function of a

zero-mean and unit variance Gaussian random variable, and

Kd is the average multiplicity of bit errors of distance d, given

by

Kd =
∑

ε:d(ε)=d

w(ε)2−w(ε),

where w(ε) is the Hamming weight of ε. The error events

counted in this upper bound have to be connected, as defined

below, and only one of the different shifts of ε should be taken

into account.

Definition 1: An error event ε is connected if the error event

cannot be divided into two separate error events ε1 and ε2 such

that d2(ε) = d2(ε1) + d2(ε2). The error events which are not

connected are called disconnected.

Connected error events are referred to as fundamental error
patterns in [5]. A condition for connected error events is also

given in that paper.

Example 6: The following error events are two examples

of connected and disconnected error events for the 2-D PR1

channel, respectively:[ + − +
0 0 0
+ − +

]
,

[ + 0 +
0 − 0
+ 0 +

]
.

For a precoded system, Kd becomes

Kd =
∑

ε:d(ε)=d

w(εu)2−w(ε),

where εu is the user data error event corresponding to ε.

The bit error multiplicity generating function is defined as

gb(z) =
∑
d∈D

Kdz
d2

where D is the set of all distances, and Kd and z take non-

negative values.

Example 7: For the 2-D PR1 channel without precoding

and with precoding, K2’s are given by

K2 =
∞∑

m=1

∞∑
n=1

mn2−mn ≈ 4.052, (11)

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1098



K2 = 4
∞∑

m=1

∞∑
n=1

2−mn ≈ 6.4264, (12)

respectively. There are no simple closed form expressions for

the K2 expressions. The ratio test indicates that both sums

converge. The approximate value of the former, shown in (11),

was obtained numerically by summing over terms with m,n ≤
100. The latter is four times the Erdös-Borwein constant [9]

and an approximate value is shown in (12). Note that, the

coefficient K2 is larger for the precoded system. Therefore,

precoding increases the bit-error multiplicity of the minimum

distance error events.

VI. A BOUNDED DEPTH-SEARCH ALGORITHM

Error-state diagrams for 1-D channels cannot be directly

generalized to 2-D channels since there are no convenient

graph-based descriptions of such channels. However, when the

size of the error event is fixed in either of the dimensions,

error-state diagrams can be described as 1-D systems using a

higher order alphabet. In this section, we propose a bounded

depth-search algorithm for determining closed error events of

size m×n for 2-D ISI channels with impulse response of size

p×q. To reduce the complexity of the algorithm, the following

conditions are imposed on error events: (1) the edges of a error

event contain at least one non-zero element and (2) error events

are required to be connected.

A state σ in a error-state diagram is a sequence of p − 1
symbols, (e1, · · · , ep−1), from the alphabet Σ, which is the set

of all row vectors of length n with entries {0, +,−}. Note that

the memory of the equivalent 1-D channel is p−1. Each state

can be represented as a (p− 1)×n matrix whose row vectors

are (e1, . . . , ep−1). Therefore there are 3(p−1)n states in the

error-state diagram. An edge e has the initial state σ(e) =
(e1, · · · , ep−1) and the terminal state τ(e) = (e2, · · · , ep).
A closed error event of size m × n corresponds to the path

e0, · · · , em+p−1 in the error-state diagram that starts and ends

at the all-zero state σ = (z, · · · , z) without an intermediate

visit to that state, where z is the all-zero row vector of length

n. The algorithm searches for the connected error events of

size m × n whose distances are not larger than a specified

limit dmax.

Let ρ(l−1) be a path of length l < m + p − 1 ending with

the state σ. If a row vector e ∈ Σ is appended to this path,

the algorithm checks the following conditions on the new path

ρ(l) = (ρ(l−1), e):
• The distance associated with the new path satisfies

d2(ρ(l)) ≤ d2
max.

• When l = m, the error event associated with ρ(l) contains

at least one non-zero entry along its edges.

• ρ(l) gives a connected error event.

If any of these checks fails, then the algorithm will not extend

the path ρ(l). Further details of the algorithm will be given

elsewhere.

TABLE I

THE NUMBER OF ERROR EVENTS FOR THE 2-D PR1 CHANNEL

d2 = 4 d2 = 6

m × n 1 2 3 4 5 6 1 2 3 4 5 6

1 2 2 2 2 2 2 0 0 0 0 0 0

2 2 2 2 2 2 2 0 12 24 36 48 60

3 2 2 2 2 2 2 0 24 48 72 96 120

4 2 2 2 2 2 2 0 36 72 108 144 180

5 2 2 2 2 2 2 0 48 96 144 192 240

6 2 2 2 2 2 2 0 60 120 180 240 300

Example 8: Table I shows the number of error events for

the 2-D PR1 channel for d2 = 4, 6 and m,n ≤ 6. For d2 =
4, the results of the search algorithm are consistent with the

analytical results above. For d2 = 6, the number of error events

of the forms (7) and (8) are 4(m−1)(n−1) and 8(m−1)(n−
1), respectively. The number of distinct error events that the

algorithm produces is exactly 12(m−1)(n−1) for m,n ≤ 6.

This suggests that there may be no other error events with

squared distance 6.

Using the data given in Table I, the bit error multiplicity

generating function can be bounded from below by

gb(z) ≥ 3.800z4 + 34.73z6,

gb(z) ≥ 6.301z4 + 43.30z6

for the unprecoded and precoded cases, respectively. Here “≥”

signifies that the coefficient of each term on the right is less

than the corresponding one on the left. The computed values

of K2’s for both cases are close to the analytical values.
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