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Abstract— This paper addresses the prediction of error floors
of low-density parity-check codes transmitted over the additive
white Gaussian noise channel. Using a linear state-space model
to estimate the behavior of the sum-product algorithm (SPA)
decoder in the vicinity of trapping sets (TSs), we study the
performance of the SPA decoder in the log-likelihood ratio (LLR)
domain as a function of the LLR saturation level. When applied
to several widely studied codes, the model accurately predicts a
significant decrease in the error floor as the saturation level is
allowed to increase. For nonsaturating decoders, however, we find
that the state-space model breaks down after a small number
of iterations due to the strong correlation of LLR messages.
We then revisit Richardson’s importance-sampling methodology
for estimating error floors due to TSs when those floors are too
low for Monte Carlo simulation. We propose modifications that
account for the behavior of a nonsaturating decoder and present
the resulting error floor estimates for the Margulis code. These
estimates are much lower, significantly steeper, and more sensitive
to iteration count than those previously reported.

Index Terms— Absorbing set, belief propagation (BP), error
floor, linear analysis, low-density parity-check (LDPC) code,
Margulis code, near-codeword, sum-product algorithm (SPA)
decoding, trapping set.

I. INTRODUCTION

Avery important class of modern codes, the class of
low-density parity-check (LDPC) codes, was first

published by Gallager in 1962 [1], [2]. LDPC codes are linear
block codes described by a sparse parity-check matrix. Decod-
ing algorithms for LDPC codes are generally iterative. The
renaissance of interest in these codes began with work by
MacKay and Neal [3] and Wiberg et al. [4], [5] in the
late 1990s. Progress has been rapid, with information-theoretic
channel capacity essentially reached for some channel models.
Additionally, standardization has been completed for com-
mercial applications of LDPC codes, e.g., DVB-S2 for video
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broadcast via satellite and IEEE 802.3an for 10 Gbit/s
Ethernet.

As a function of channel quality, the error rate performance
of an LDPC code under iterative decoding is typically divided
into two regions. The first region, called the waterfall region,
occurs at poorer channel quality, close to the decoding thresh-
old, and is characterized by a rapid drop in error rate as chan-
nel quality improves. The second region, called the error floor
region, is the focus of the present paper. The error floor appears
at higher channel quality and is characterized by a more
gradual decrease in error rate as channel quality improves.
For message-passing iterative decoders operating on a Tanner
graph representing the code, the error floor is largely attributed
to the effect of small structures, often referred to as trapping
sets (TSs), within the Tanner graph. The understanding of the
LDPC code error floor has progressed significantly during the
past 15 years, but a number of important challenges, such
as the accurate prediction of the error floor for an arbitrary
LDPC code, remain.

For the binary erasure channel (BEC), it is well known
that graphical structures, known as stopping sets, limit the
performance of message-passing iterative decoders as channel
conditions improve [6]. These sets have a simple combinatorial
description and can be enumerated to accurately predict the
observed error floors.

For other memoryless channels, the cause of error floors
is less well understood, and there is no simple method for
predicting the channel quality and error-rate level of their
onset. This situation has slowed the adoption of LDPC codes
in certain applications, such as magnetic recording. In other
examples, such as the DVB-S2 standard, an additional layer
of coding has been used to ensure a low error floor.

For Margulis-type codes, MacKay and Postol found that
the error floors observed when transmitting over the additive
white Gaussian noise (AWGN) channel with sum-product
algorithm (SPA) decoding were associated with substructures
in the Tanner graph that they called near-codewords [7].
Shortly thereafter, Richardson wrote a seminal paper on the
error floors of memoryless channels [8]. For a specified
decoder operating on a Tanner graph, he used the term trap-
ping sets (TSs) to denote the sets of variable nodes responsible
for decoding failures in the error floor region. Both near-
codewords and TSs are characterized by a pair of parameters,
(a, b), associated with their corresponding subgraphs, where
a is the number of variable nodes and b is the number of
odd-degree check nodes. The (a, b) parameters of error-floor-
causing structures are typically small.

For the binary symmetric channel (BSC), Nguyen et al. [9],
presented LDPC code construction techniques to avoid the
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most harmful TSs they identified in codes with variable-node
degree dv = 3. Further work on TSs includes algorithms
to enumerate the occurrence of small TSs in specific
codes [10]–[14] and the characterization of TS parameters in
random ensembles of LDPC codes [15], [16]. Dolecek et al.
used hardware-oriented SPA decoders to study very low error
floors and discovered an elegant combinatorial description for
the TSs dominating the performance in the error floor region,
which they called absorbing sets [17].

Several other papers have proposed techniques to combat
error floors. With respect to these, we note that [18] slows
decoder convergence using averaged decoding, [19] selectively
biases the messages from check nodes, [20] employs informed
scheduling of nodes for updating, [21] adds check equations to
the parity-check matrix, and [22] replaces traditional SPA with
a “difference-map” message-passing algorithm. With similar
objectives, [23] examined several techniques, including a
bi-mode decoder which adds the steps of erasing suspect
symbols followed by erasure correction, a bit-pinning
decoder which utilizes an outer algebraic code, and several
generalized-LDPC decoders. Several authors found empiri-
cally that increasing the saturation level of the log-likelihood
ratios (LLRs) in the SPA decoder lowers the error
floor [24]–[27].

In [8], Richardson emphasized error-floor analysis tech-
niques for the AWGN channel. He detailed a methodology—
a variant of importance sampling—to estimate a TS’s impact
on the error rate. His technique was shown to be accurate
at predicting the error floors when the TSs were known.
Roughly speaking, error floors can be measured down to
frame error rates of about 10−8 in Monte Carlo computer
simulation and about 10−10 in hardware simulation, depending
on code complexity and the computational resources available.
Richardson’s method allows us to reach orders of magnitude
lower in characterizing the error floor.

Following the pioneering work of Richardson, several
authors have proposed analytical techniques to predict error
floors for the AWGN channel. In his Ph.D. thesis [28], Sun
developed a model of elementary TS behavior based on a
linear state-space model of decoder dynamics on the TS,
using density evolution (DE) to approximate decoder behavior
outside of the TS [28], [29]. This work has gained little
attention, even though it reaches a conclusion contrary to the
prevailing view. Specifically, Sun’s model shows no error floor
for elementary TSs (excluding codewords) in regular, infinite-
length LDPC codes if the variable-degree of the code is at least
three and the magnitude of the decoder’s LLRs are allowed
to grow very large. Sun is able to make similar claims for
irregular LDPC codes under certain conditions. In these cases,
Sun shows that the graph outside of the TS will eventually
correct the TS errors; in his example, using a (3, 1) TS, this
correction became likely at a mean magnitude of LLRs of
about 1010 after about 40 iterations.

Independently from Sun, Schlegel and Zhang [11]
developed an improved state-space model that incorporated
time-variant gains and channel errors from outside of the
specified TS. They applied the model to the dominant (8, 8) TS
of the IEEE 802.3an code, and then compared the analytically

Fig. 1. FER vs. Eb/N0 for (2640, 1320) Margulis LDPC code in AWGN.

predicted error floors to those found by FPGA-based simu-
lation and importance sampling. Their results indicated that
errors external to the TS have very little impact and that the
error floor can be predicted quite accurately.

Brevik and O’Sullivan developed a new mathematical
description of decoder convergence on elementary TSs using
a model of the probability-domain SPA decoder [30]. While
considering just the channel inputs, their model finds regions
of convergence to the correct codeword, regions of conver-
gence to the TS, and regions of non-convergence typified
by an oscillatory behavior. Finally, we note that Xiao et al.
[31] have developed a technique to estimate the error floor
of quantized soft-decision decoders and applied it success-
fully to a variety of codes over the binary-input AWGN
channel.

In this paper, we investigate the effect of LLR saturation
upon the error floors of LDPC codes with SPA decoding over
the AWGN channel. The original motivation for this study
was the observation that simulated error floors can be lowered
quite dramatically, sometimes by several orders of magnitude,
when care is taken to implement the SPA decoder in such a
way that LLR saturation is avoided. (Recent independent work
by Zhang and Schlegel confirms this observation [32].)

Fig. 1 illustrates the improvement in performance that
nonsaturating decoders can provide. The curves represent the
frame error rate (FER) reported in [7] for the (2640, 1320)
Margulis code and the corresponding results obtained from
our simulation of a nonsaturating SPA decoder. The error floor
found in [7] starts at an FER of about 10−6 with an Eb/N0 of
2.4 dB. The dominant errors corresponded to near-codewords.
(It should be noted that others have reported even higher error
floors for this code, with an FER of 10−6 appearing at an
Eb/N0 of 2.8 dB in [8] and [23].) Our simulation, on the
other hand, shows no evidence of an error floor. The lowest
simulated point at an FER of 1.8× 10−8 represents 154 error
events observed in 8600 hours of floating-point simulation,
with a maximum of 200 iterations per decoded frame. Just
one of the error events was a (14, 4) near-codeword, one of
two structures identified in previous studies as the dominant
causes of errors in the error floor region. Thus, we see very
little indication that an error floor is developing, suggesting
that any error floor would manifest itself only at a substantially
lower FER.
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Our investigation relies upon a linear state-space model
of SPA decoder behavior on elementary TSs. This model,
which is an extension of the models introduced in
Sun [28], [29] and Schlegel and Zhang [11], is used to
study the effect of LLR saturation on the error floors of
binary LDPC codes with fixed variable-node degree over the
AWGN channel. The dynamics of the model shed light on the
empirically observed error floor properties described above.
More specifically, we compare analytically predicted error
performance to the results of Monte Carlo computer simulation
for four specific LDPC codes, and we find that the model
estimates the error floor quite accurately for three of the four
codes.

On the other hand, we show that the linear state-space
model does not accurately reflect the error-rate performance
of a nonsaturating SPA decoder in the case of a finite-length
code. In particular, we observe that, after several iterations,
the LLR distributions used by the model diverge from those
found in simulation due to strongly correlated LLRs with
large variances at unsatisfied check nodes. We surmise that,
in contrast, the model performs fairly well for saturating
decoders because LLR saturation drives the LLR variances
at unsatisfied check nodes to zero before reaching the point in
the iterative decoding where the LLR correlations become very
significant.

As an alternative to the linear system approach, we
propose a methodology for estimating the error floor
of a nonsaturating SPA decoder using a variation on
Richardson’s importance-sampling technique. When applied
to the Margulis code, the methodology yields error floor
estimates that are much lower, significantly steeper, and more
sensitive to iteration count than those previously reported.

Section II introduces the general terminology related to
graphs, SPA decoders, and TSs. In particular, we propose an
implementation of the SPA decoding algorithm that avoids
message saturation without suffering from numerical overflow
problems, which we use to provide our performance bench-
marks. Section III develops the state-space model of decoder
dynamics on a TS that we will be using for the analytical
results of this paper. It also develops approximations to the
dominant eigenvalue required to characterize the system, using
connections to graph theory. Section IV develops the probabil-
ity that the state-space model fails to converge to the correct
decoding solution and the related error-rate estimates for the
error floor. Section V demonstrates the accuracy of the state-
space model’s predictions of saturated decoder performance by
comparing them to simulation results for four LDPC codes.
Section VI discusses the use of the Gaussian approximation for
DE to model the unsatisfied-check LLR values to determine
error floor bounds of nonsaturating decoders. Section VII
applies a modified version of Richardson’s technique to esti-
mate the error floor of a nonsaturating SPA decoder. Finally,
in Section VIII, we draw our conclusions.

Appendix A presents a numerical survey of the model
parameters for several large classes of potential absorbing
sets. Appendix B develops a special case in support of the
state-space model, while Appendix C extends the model’s
applicability.

II. PRELIMINARIES

This section provides the background material necessary
to present the main results. We assume that the reader is
familiar with linear algebra, including the fundamental results
of Perron–Frobenius theory of nonnegative matrices [33]–[36].
Section II-A presents terminology from graph theory and
bounds on the spectral radii of multigraphs and digraphs.
In Section II-B, we introduce LDPC codes, the AWGN chan-
nel, and SPA decoding. Section II-C describes the LLR sat-
uration issues commonly encountered in SPA decoding. The
final subsection defines TSs and absorbing sets. Note that,
throughout the paper, we present vectors as column vectors.

A. General Graph Theory

An undirected graph G = (V , E) consists of a finite set of
vertices V and a finite collection of edges E . Each edge is
an unordered pair of vertices {vi , v j } such that the edge joins
vertices vi and v j . Given the edge {vi , v j }, we say that vertex
vi and vertex v j are neighbors. We use N (vi ) to denote the
set of vertices which are the neighbors of vertex vi . A vertex
and an edge are incident with one another if the vertex is
contained in the edge description.

A self-loop is an edge joining a vertex to itself. Parallel
edges are multiple inclusions of an edge in the edge collection.
We do not give further consideration to graphs with self-loops.
Loopless graphs are commonly known as multigraphs, which
may contain parallel edges.

The order of a graph is the number of vertices and the size
is the number of edges. The degree d(vi ) of vertex vi is the
number of edges incident with vi . A regular graph is a graph
whose vertices are all of equal degree.

In an undirected graph G, a walk between two vertices is
an alternating sequence of incident vertices and edges. The
vertices and edges in a walk need not be distinct. The number
of edges in a walk is its length. The vertices vi and v j are said
to be connected if the graph contains a walk of any length from
vi to v j , noting that every vertex is considered connected to
itself. A graph is said to be connected if every pair of vertices
is connected, otherwise the graph is said to be disconnected.
The vertices of a disconnected graph may be partitioned into
connected components.

An edge is called unique if it appears only once in the
edge collection of the graph. A walk that backtracks is a
walk in which a unique edge appears twice or more in-a-row
in the walk.

A closed walk is a walk that begins and ends on the same
vertex. A cycle is a closed walk of length at least two with no
repeated edges or vertices (except the initial and final vertex).
The girth of a graph with cycles is the length of its shortest
cycle. If every vertex in a multigraph has at least degree two,
then the graph contains one or more cycles.

A leaf is a vertex of degree one. A tree is a connected
graph without cycles. Trees with at least two vertices have
leaves. We call an undirected graph leafless if it does not
contain leaves.

We will say that two graphs are identical if they have equal
vertex sets and equal edge collections. Two graphs are said
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to be isomorphic if there exists between their vertex sets a
one-to-one correspondence having the property that whenever
two vertices are joined by k edges in one graph, the corre-
sponding two vertices are joined by k edges in the other graph.
This correspondence relationship is called an isomorphism.
The isomorphism is a relabeling of the vertices that preserves
the graph’s structure.

The adjacency matrix A(G) of any multigraph G of order n
is the n× n symmetric matrix whose (i, j) entry indicates the
number of edges joining vi and v j in G. The number of walks
of length p between vertices vi and v j , in the graph G, is the
(i, j) entry of A(G)p. Two graphs, G1 and G2, are isomorphic
if and only if A(G1) is a symmetric permutation of A(G2),
i.e., A(G1) = P A(G2)PT , for some permutation matrix P
[34], [37].

The incidence matrix N(G) of any multigraph G of order n
and size m is the n×m (0, 1)-matrix whose (i, j) entry is 1 if
and only if the i th vertex is incident with the j th edge of G.
It then follows that the multigraph’s adjacency matrix may be
expressed as

A(G) = N(G)N(G)T − DG , (1)

where DG = diag (d(v1), d(v2), . . . , d(vn)).
A bipartite graph B = (V , C, E) is a special case of

an undirected graph in which the graph’s vertices may be
partitioned into two disjoint sets V and C . Each edge e ∈ E
of a bipartite graph joins a vertex from V to a vertex from C .

The line graph L(G) of a multigraph G = (V , E) is the
graph whose vertices are the edges of G. Two vertices of L(G)
are neighbors if and only if their corresponding edges in G
have a vertex (or two) in common. In fact, two parallel edges
connect vertices in L(G) if and only if their corresponding
edges in G are parallel. For the line graph L(G), we find

A(L(G)) = N(G)T N(G)− 2 I and (2)

size (L(G)) = 1

2

∑

vi∈V

d(vi ) (d(vi )− 1) . (3)

The spectral radius ρ(G) of a multigraph G = (V , E) is
defined to be the spectral radius1 of the matrix A(G), and it
is bounded by

1

|V |
∑

vi∈V

d(vi ) ≤ ρ(G) ≤ max
vi∈V

d(vi ). (4)

Note that d(vi ) is just the i th row (or column) sum of A(G).
Since the matrix A(G) is symmetric, the lower bound follows
by applying the Rayleigh quotient to A(G) with an all-one
vector [33, pp. 176–181]. The upper bound, which follows
from the fact that the matrix A(G) is nonnegative, is due to
Frobenius [33, p. 492]. The lower bound holds with equality
if and only if the all-one vector is an eigenvector of A(G)
corresponding to the eigenvalue ρ(G). If G is connected, then
the upper bound holds with equality if and only if G is regular.
When G is connected these conditions are equivalent.

1The spectral radius ρ(M) of the matrix M is the maximum modulus of
the eigenvalues of M. When M is a nonnegative matrix, ρ(M) itself is an
eigenvalue and ρ(M) may also be referred to as the “dominant eigenvalue.”

A directed graph or digraph D = (Z , A) consists of a set of
vertices Z and a collection of directed edges or arcs A. Each
arc is an ordered pair of vertices (zi , z j ) such that the arc is
directed from vertex zi to vertex z j . For arc (zi , z j ), we call
the first vertex zi its initial vertex and the second vertex z j

its terminal vertex. We will focus on simple digraphs which
exclude self-loops and parallel arcs.

In a digraph D, a directed walk is an alternating sequence of
vertices and arcs from zi to z j in D such that every arc ak in
the sequence is preceded by its initial vertex and is followed
by its terminal vertex. A digraph D is said to be strongly
connected if for any ordered pair of distinct vertices zi and z j

there is a directed walk in D from zi to z j . For example, the
digraph in Fig. 4d is strongly connected.

The adjacency matrix A(D) of any simple digraph D is the
(0, 1)-matrix whose (i, j) entry is 1 if and only if (zi , z j ) is
an arc of D.

The outdegree d+(zi ) of vertex zi is the number of arcs in
digraph D with initial vertex zi . Likewise, the indegree d−(z j )
of vertex z j is the number of arcs with terminal vertex z j .
For the digraph D = (Z , A), we note that size (D) =∑

zi∈Z d+(zi ). A regular digraph is a digraph whose vertices
are all of equal indegree and outdegree. The spectral radius
ρ(D) of a digraph D is defined to be ρ(A(D)), and it is
bounded in the following lemma.

Lemma 1: Let the i th vertex zi of digraph D = (Z , A)
have outdegree d+(zi ). Then the spectral radius ρ(D) of D
is bounded above and below by

min
zi∈Z

d+(zi ) ≤ ρ(D) ≤ max
zi∈Z

d+(zi ).

If D is strongly connected, then the inequalities are strict
unless the digraph has regular outdegree. Analogous state-
ments hold for the indegrees.

Proof: This follows from the classic bounds of Frobenius
by merely noting the equivalence between the outdegrees of a
digraph and the row-sums of the associated adjacency matrix.
See [33, p. 492] and [35, pp. 8 and 22].

The interested reader is referred to [36]–[39] for a more
complete treatment of the subject. Our use of graph theory
has parallels to [30].

B. LDPC Codes, the AWGN Channel, and SPA Decoding

An LDPC code C is defined by the null space of a parity-
check matrix H, whose entries are elements of a particular
field. The column vector c is a codeword of C, if c satisfies
Hc = 0. A given code can be described by many different
parity-check matrices.

A matrix H over F2 describes a bipartite graph B =
(V , C, E), called the Tanner graph of H, in which the vertices
are known as variable nodes V and check nodes C . Tanner
graphs of binary codes do not have parallel edges and bipartite
graphs cannot have self-loops. The adjacency matrix A(B) of
the Tanner graph B is

A(B) =
[

0 HT

H 0

]
.
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A dv-variable-regular Tanner graph is a Tanner graph whose
variable nodes all have equal degree dv, and a dc-check-
regular Tanner graph is a Tanner graph whose check nodes all
have equal degree dc. A (dv, dc)-regular Tanner graph is both
dv-variable-regular and dc-check-regular.

Given the Tanner graph B = (V , C, E) and any subset of its
variable nodes S ⊆ V , we let BS represent the induced sub-
graph of S and N (S) denote the union of check nodes which
are neighbors of the nodes of S. That is, BS = (S,N (S), ES )
is the bipartite graph containing the variable-node set S, the
check-node set N (S), and the set of edges ES ⊆ E which
are incident with the vertices of S. We will frequently refer
to these induced subgraphs as Tanner subgraphs with parity-
check submatrix HS , where the submatrix HS is formed by
selecting the columns of H as indexed by the members of the
set S and removing any resulting all-zero rows.

Assumption 1: We are only concerned with LDPC codes
over the binary field F2 and with binary antipodal signaling
over the AWGN channel.

If the Tanner graph had no cycles, the SPA decoder would
be optimal with respect to minimizing the symbol error rate.
In any “good” finite-length code, the Tanner graph will indeed
have cycles [40], but we generally find that the SPA decoder
does quite well. We implement our decoder simulation in the
LLR-domain, as it is close to the approximations typically
used in building hardware. Since we will assume that the
reader is familiar with SPA decoding of LDPC codes over
the AWGN channel ([41, § 5.4] and [42]), the remainder of
this subsection is presented merely to establish notation.

We define the channel SNR to be 1/σ 2 = 2REb/N0, and we
denote the intrinsic channel LLR for the i th received symbol
by λ[i]. During the first half of the lth iteration, the decoder
computes λ

[i← j ]
l , the message to be sent from check node j to

the neighboring variable node i , according to the check-node
update rule

λ
[i← j ]
l = 2 tanh−1

⎛

⎝
∏

k∈N ( j )\i
tanh

λ
[k→ j ]
l−1

2

⎞

⎠, (5)

where λ
[k→ j ]
l−1 is the message sent from variable node k to

check node j during the previous iteration. In (5), N ( j) \ i
denotes the set of variable nodes neighboring check node j ,
excluding variable node i . In the second half of the iteration,
the decoder computes the variable-to-check-node messages in
the usual manner,

λ
[i→ j ]
l = λ[i] +

∑

k∈N (i)\ j

λ[i←k]
l .

Finally, we use λ̃[i]l to denote the soft-output LLR of the i th
symbol, which is the sum of the intrinsic channel LLR λ[i] and
all of the extrinsic LLRs λ

[i← j ]
l from check nodes j ∈ N (i)

at the completion of the lth iteration.

C. SPA Decoder With and Without Saturation

Direct implementation of check-node update rule (5) in
a computer simulation leads to numerical problems when

LLR magnitudes get sufficiently large. According to the
IEEE Standard 754 [43], double-precision floating-point
(i.e., 64-bit) computer computations maintain 53 bits of pre-
cision, with the remaining bits used to represent the sign and
exponent. As a result, the value of tanh(λ/2) is rounded to ±1
whenever the LLR magnitude satisfies |λ| > 55 ln 2 ≈ 38.123.
Since the evaluation of the tanh−1 function at an argument of
±1 will cause a numerical overflow, one must either limit the
magnitude of LLRs when computing the check-node update
in (5) or find an alternative formulation of the update rule that
avoids such overflow problems. In the former case, we refer to
the magnitude-limiting decoder as a “saturating” SPA decoder.
An examination of error floor results in the published literature
suggests that LLR saturation is commonly employed, at times
without explicit mention.

Hardware implementations of SPA decoders, which must
represent LLR values with a limited number of bits, typically
impose LLR saturation at magnitudes less than 55 ln 2. This
leads to the situation in which hardware designs produce
error floors at error-rate levels only somewhat greater than
typical floating-point simulation with saturation. To our knowl-
edge, efforts to explore beyond these saturation limits have
primarily appeared only in the very recent literature, including
[32], [44], and [45].

The nonsaturating SPA decoder simulation we have used
is based on a pairwise check-node reduction [46], [47] which
includes a small approximation [48]. Its implementation in
double-precision floating-point contains no numerical issues
until LLR magnitudes reach approximately 1.79 × 10308.
For a detailed examination of the numerical issues of the
SPA decoder in several domains of floating-point computation,
see [45].

D. Trapping Sets and Absorbing Sets

We briefly review the notion of TSs and related terminology.

Definition 1 (Richardson [8]): A trapping set (TS) is an
error-prone set of variable nodes T that depends upon the
decoder’s input space and decoding algorithm. Let λ̃[i]l (r)
denote the decoder’s i th soft-output symbol at the lth iteration
given the input vector r. We say that symbol i is eventually
correct if there exists L such that, for all l ≥ L, λ̃[i]l (r) has
the correct sign. If the set of symbols that are not eventually
correct is not the empty set, we call it a TS and denote it
by T (r), or sometimes more simply by T when the explicit
reference to the input r is not required. A TS T is called an
(a, b) TS if it contains a = |T | variable nodes and the induced
subgraph BT contains exactly b check nodes of odd degree.

The TS definition includes the set of variable nodes cor-
responding to the support of a valid LDPC codeword, unlike
the definition of a near-codeword. Henceforth, we will use
the term trapping set (TS) to mean the TSs that arise
from transmission over the AWGN channel and saturated
LLR-domain SPA decoding.

Definition 2: A Tanner subgraph is called elementary if all
the check nodes are of degree one or two [49]. A TS T is
called elementary if the induced subgraph BT is an elementary
Tanner subgraph.
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Fig. 2. Four elementary Tanner subgraphs of a code with dv = 3. Odd-degree check nodes are shaded.

Elementary TSs are of significant interest for two reasons.
First, as observed in [8], [15], [23], and [49]–[51], the majority
of TSs contributing to the error floors of belief propagation
decoders are elementary TSs. Second, tractable linear state-
space models can be used to model the behavior of SPA decod-
ing on elementary TSs.

Another important class of TSs are absorbing sets. Extensive
performance simulations by Dolecek et al. [17] have shown
that absorbing sets represent the dominant errors in the error
floor regions of saturating SPA decoders.

Definition 3 (Dolecek et al. [17]): Let S be a subset of the
variable nodes V of the Tanner graph B = (V , C, E) and let
S induce a subgraph having a set of odd-degree check nodes
No(S) and a set of even-degree check nodes Ne(S). If S
has cardinality a and induces a subgraph with |No(S)| = b,
in which each node in S has strictly fewer neighbors in No(S)
than neighbors in Ne(S), then we say that S is an (a, b)
absorbing set. If, in addition, each node in V \ S has strictly
fewer neighbors in No(S) than neighbors in the set C \No(S),
then we say that S is an (a, b) fully absorbing set.

Note that the definition of the subclass of fully absorb-
ing sets imposes conditions on variable nodes outside of
the TS. It is straightforward to see that fully absorbing sets
support uncorrectable error patterns when decoding with the
bit-flipping algorithm [17]: if the bits corresponding to the
variable nodes in the absorbing set are received in error, there
are more neighboring check nodes working to reinforce than
there are working to correct every incorrect value when the
bit-flipping update rule is applied.

Example 1: Four elementary Tanner subgraphs are shown
in Fig. 2 for a code of variable-degree three. The variable
nodes in each of these graphs form an absorbing set.

III. STATE-SPACE MODEL

In this section we justify and refine the linear state-space
model, introduced in [28] and [29], that will be used to
analyze the behavior of an LLR-domain SPA decoder of
an LDPC code on an elementary TS. The aim is to shed
light on the dynamics responsible for incorrectly decoding the
variable nodes in the TS while correctly decoding the variable
nodes outside of it. Throughout the discussion we assume,
without loss of generality, that the all-zero codeword was
sent.

Fig. 3. Illustration of a check node of degree two in the subgraph and degree
dc in the Tanner graph.

Assumption 2: All TSs of interest are elementary and con-
tain more than one variable node. We do not consider TSs
containing a single variable node as they would not have states
in the state-space model. (For an examination of trapping-like
behavior of single degree-1 variable nodes, see [52, p. 24].)

First, we review the failure state of an elementary TS. Let
the TS S ⊂ V induce the Tanner subgraph BS . In later
iterations the state is reached where the variable nodes of TS S
are in error and the variable nodes outside the TS (i.e., V \S)
are correct. In this state, the subgraph’s check nodes of degree
one are unsatisfied and those of degree two are satisfied.

There are two vector inputs to the state-space model. The
elements of the input vector λ

(ex)
l are the messages from

the degree-one check nodes at iteration l. To model this
input vector, we will use density evolution and simulation
techniques, described in later sections. The other input vector
to be used in variable-node updates at every iteration is
the intrinsic information λ provided by the channel. For the
AWGN channel model, each element of λ is an independent
and identically distributed (i.i.d.) Gaussian random variable.
Both of these inputs will be treated as column vectors of LLRs;
for an (a, b) TS, the vector λ has a entries and the vector λ

(ex)
l

has b entries.

A. Check-Node Gain Model

Sun’s linear state-space model included the asymptotic
approximation that the output message on every edge of every
degree-two (i.e., ultimately satisfied) check node is equal to
the input message on the other edge [28]. This relies on the
assumption that LLR values sent by variable nodes outside
of BS are strongly positive LLR values, i.e., they have both
the correct sign and large magnitude. Schlegel and Zhang
enhanced the model by applying a multiplicative gain gl at the
degree-two check nodes, at iteration l, where 0 < gl≤1 [11].
This gain factor models the effect of the dc − 2 external
variable nodes upon the magnitude of LLR messages as they
pass through the degree-two check nodes in BS . (The relevant
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configuration of nodes and edges is illustrated in Fig. 3.) After
several iterations these gains approach 1.

Assumption 3: We will assume that the external inputs to
the subgraph’s degree-two check nodes are statistically inde-
pendent. This is generally a reasonable assumption to make
as the effect of the gains is most significant during early
iterations. When, after a sufficient number of iterations, the
inputs to the check node have become substantially correlated,
the gains are approximately unity.

We now briefly review the check-node gain model of
Schlegel and Zhang [11].2 The incorporation of the gains
turns the state-space model into a state-space model which
is time-varying. While we will generally include the gains
in the model, we will find it useful shortly to temporarily
remove the gains to apply linear time-invariant (LTI) transform
theory which allows us to examine the ultimate stability of
SPA decoding on TSs. Referring to Fig. 3, define the gain of
the j th check node during the lth iteration to be

g[ j ]l �
∏

k∈N ( j )\{i1,i2}
tanh

(
λ
[k→ j ]
l−1

2

)
. (6)

The expected value of the check-node gain over all realizations
of the channel noise vector n and all degree-dc check nodes
is denoted by ḡl(dc). By Assumption 3, we can write this as

ḡl(dc) = En, j,k

[
tanh

(
λ
[k→ j ]
l−1

2

)]dc−2

, (7)

where En, j,k denotes the average over all noise realizations,
all check nodes j with d(c j ) = dc, and all k ∈ N ( j).

The multiplicative gain model for the degree-2 check-node
output can be justified by first rewriting the check-node update
rule (5) as

λ
[i1← j ]
l = 2 tanh−1

[
tanh

(
λ
[i2→ j ]
l−1

2

)
g[ j ]l

]

� f (λ
[i2→ j ]
l−1 ), (8)

where g[ j ]l is as defined in (6), λ
[i2→ j ]
l−1 is the input LLR from

variable node i2 to check node j , and λ
[i1← j ]
l is the output

LLR from check node j to variable node i1.
The function f (λ) in (8) satisfies

∂ f (λ)

∂λ

∣∣∣∣
λ=0
= gl and

∂2 f (λ)

∂λ2

∣∣∣∣
λ=0
= 0,

so the Taylor series approximation of order 2 is given by

λ
[i1← j ]
l ≈ g[ j ]l λ

[i2→ j ]
l−1 ,

i.e., the input LLR multiplied by the gain. The approximation

is good in the interval |λ[i1← j ]
l | ≤ 2 tanh−1(g[ j ]l ). Note that the

exact expression for λ
[i1← j ]
l in (8) saturates at±2 tanh−1(g[ j ]l ),

whereas the approximation is linear. Nevertheless, since we
expect the LLRs outside of the TS to grow quite rapidly

2We correct an error in [11] related to the dependence of the gain expression
on the iteration count.

with increasing iterations, we believe this to be an adequate
approximation for our purposes.

The model is further simplified by replacing each gain g[ j ]l
with the mean gain of (7), i.e.,

λ
[i1← j ]
l ≈ ḡl(d(c j )) λ

[i2→ j ]
l−1 .

We have tried introducing a gain variance to the model, but
found the effect to be very small.

We now extend the check-node gain model to include polar-
ity inversions of the degree-two check-node output messages
caused by erroneous LLR messages sent from variable nodes
outside of the TS. Such inversions occur primarily during
early decoder iterations. In reference to Fig. 3, an inversion
occurs when an odd number of the dc − 2 messages sent
from outside of a TS along edges incident with a degree-two
check node within the TS are erroneous. In such a situation,
the message sent by the check node to variable node i1 will
have the inverse polarity of the message that was sent to the
check node by variable node i2, and vice versa. Schlegel and
Zhang [11] accounted for inversions by injecting a stochastic
cancellation signal into the state update equations, resulting in
a small increase in their predicted error rates. We now present
an alternative method based upon a modification of the mean
check-node gains that, in contrast, produces a reduction in our
predicted error rates.

During the first iteration, messages from variable nodes may
contain inversions due to channel errors. The probability that
a specific input message to a check node is erroneous during
iteration l = 1 is just the uncoded symbol error rate, which
for AWGN is

Pe,1 = Q

(√
2REb

N0

)
. (9)

Thus, by Assumption 3, the probability of a polarity inversion
through a specific check node is given at iteration l by

Pinv,l =
∑

k odd

(
dc − 2

k

)
Pk

e,l(1− Pe,l)
dc−2−k

= 1− (1− 2Pe,l)
dc−2

2
, (10)

which is the probability of an odd number of errors in the
dc − 2 input messages at iteration l [2, p. 38].

For subsequent iterations we can use density
evolution [53], [54] to predict an effective Eb/N0 at
the output of the variable nodes and then apply (9) and (10).
When there is an inversion through the check node, the output
message magnitude will likely be very low, as suggested
in [11]. Hence, we will model random check-node inversions
by randomly setting the check-node gain to zero with
probability Pinv,l . We now define the modified mean gain of
the check node as

ḡ′l = ḡl(1− Pinv,l). (11)

For an LDPC code with regular check node degree dc,
the scalar gain ḡ′l of (11) may be applied at each itera-
tion l to model the external influence on the subgraph’s
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degree-two check nodes. For an LDPC code with irreg-
ular check degree, we have a few options. If the check
node degree spread is small, we may generalize (7) and
(11) by also taking the expectation over the degree dis-
tribution of all the degree-two check nodes in the sub-
graph. Alternatively, we may maintain several versions of
gain ḡ′l , one for each check degree that appears in the
subgraph.

Assumption 4: We assume that multiplication by the
modified mean gain ḡ′l reflects the LLR update process at
all degree-two check nodes in the subgraph induced by
the TS.

One possible criticism of the proposed gain model with
inversions is the potential for double-counting: first, inversions
from outside the TS will reduce the check-node gain according
to (7); then, the same inversions will further reduce the
check-node gain according to (11). Heuristically, one may
consider this as just adding weight to the significance of
these inversions. We justify our approach by noting that the
arguments underlying its derivation parallel those in [11] and,
moreover, it is supported by the empirical results presented
in Section V.

B. Linear State-Space Model

Assumption 5: We consider only codes described by
variable-regular Tanner graphs with variable-node degree
dv ≥ 3. (Sun presents asymptotic results for irregular codes
in [28].)

Assumption 6: We assume that the messages generated
within the TS have little impact on decoder behavior in the
remainder of the Tanner graph. This is justified by the fact that
the number of unsatisfied check nodes which form the main
interface between the TS and the rest of the Tanner graph is
small.

The state-space modeling equations are shown
below [11], [28]. The column vectors λ

(ex)
l and λ, defined at

the start of Section III, are the model inputs. The column
vector λ̃l , whose entries are the LLR-domain soft-output
decisions at iteration l, is the output.

x0 = Bλ

xl = ḡ′lAxl−1 + Bλ + Bexλ
(ex)
l for l ≥ 1 (12)

λ̃l = ḡ′lCxl−1 + λ+ Dexλ
(ex)
l for l ≥ 1 (13)

The central part of the state-space model is the updat-
ing of the state vector xl . The elements of xl are the
LLR messages sent along the edges from the subgraph’s
variable nodes toward the degree-two check nodes. The state
is updated once per full iteration. The vector ḡ′lxl−1 represents
the LLR messages produced by the degree-two check nodes
during the first half of iteration l, and ḡ′lAxl−1 represents their
contribution to the variable-node update during the second half
of iteration l.

The number of edges in the variable-regular Tanner
subgraph with a variable nodes and variable-node degree dv
equals adv, so the number of states in the state-space model
of the subgraph is m = adv− b. For an elementary subgraph,
these m edges are incident with the subgraph’s degree-two
check nodes, forcing m to be an even integer.

The m × a matrix B and the m × b matrix Bex are used to
map input vectors λ and λ

(ex)
l , respectively, to the appropriate

entries of the state vector to match the set of variable-node
update equations. Like all the matrices appearing in the state-
space equations, they are (0, 1)-matrices. Since every variable
node has exactly one element from λ participating, B has a
single 1 in every row, and is zero otherwise. The number of
1 entries per row of Bex corresponds to the number of degree-
one check nodes neighboring the corresponding variable node,
which may be zero.

The m × m matrix A, which we call the system matrix,
describes the dependence of the state update upon the prior
state vector. Each nonzero entry [A]i j = 1 indicates that the
j th edge of the prior iteration contributes to the variable-node
update computation of the i th edge. Thus, the matrix AT may
be taken as the adjacency matrix associated with a simple
digraph of order m which describes the state-variable update
relationships. For dv-variable-regular codes, the i th row sum
of A and the i th row sum of Bex will add up to dv − 1 for
every row i .

Finally, the a×m output matrix C and the a×b matrix Dex

are used to map xl−1 and λ
(ex)
l entries, respectively, to the

corresponding entry of the soft-output decision vector λ̃l . The
i th row sum of C and the i th row sum of Dex will add up to
the variable-node degree dv for every row i .

If there is a single degree-one check node neighboring every
variable node in the subgraph, such as in the (8, 8) TS of
the code specified in IEEE 802.3an, then (12) degenerates to
the case where B = Bex and B has regular column sums as
derived in [11]. Furthermore, this degenerate case produces
only system matrices A which have uniform row and column
sums which results in a dominant eigenvalue ρ(A) = dv − 2.
Thus, our development will be significantly more general
than [11].

Again, note that this model of the behavior of elementary
TSs is linear. One drawback to any linear system approach is
that saturation cannot be applied to the state variables. Thus,
we will model saturation effects by limiting the range of the
linear system inputs.

Example 2: For the (4, 2) TS with dv = 3, we first assign
integer labels to all the edges incident with degree-two check
nodes, as shown in Fig. 4a. Then, we set up the matrices that
appear in the linear system equations. The edge numbers in
Fig. 4a reflect the order in which the corresponding messages
will appear in the state vector xl . The system matrix A
describes the updating of the state vector in a full iteration of
the SPA decoder; for example, since edge 1 depends only on
edges 6 and 9 during one iteration, the entries in the first row of
A have the value 1 in columns 6 and 9, and value 0 elsewhere.
All the matrices associated with the TS of Fig. 4a are given
below. Note that AT is the adjacency matrix corresponding to
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Fig. 4. Several graphical descriptions of the (4, 2) TS with model’s states numbered. Arrows have been added to the Tanner subgraph in (a) only to emphasize
the direction of state variable flow. The spectral radii of G , L(G), and D are 2.5616, 3.2316, and 1.5214, respectively.

the simple digraph shown in Fig. 4d.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bex =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡

⎢⎢⎣

0 0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0

⎤

⎥⎥⎦ Dex =

⎡

⎢⎢⎣

0 0
1 0
0 0
0 1

⎤

⎥⎥⎦

If we remove the gains ḡ′l from the linear state-space
equations, we have a linear time-invariant (LTI) system to
which we can associate a transfer function. Let the unilateral
z-transforms of the input vector λ

(ex)
l and the soft-output

vector λ̃l be denoted by �ex(z) and �̃(z), respectively. (The
unilateral z-transform of a discrete-time sequence {xk}∞k=0 is
X (z) = ∑∞

k=0 xkz−k [55]. This definition extends naturally
to discrete-time vector sequences.) Note that the other input
vector λ is not a function of the iteration number.

In the transform domain, the input-output relationship of the
system translates to

�̃(z) =
[
C (zI− A)−1 B+ I

] λ

1− z−1

+
[
C (zI − A)−1 Bex + Dex

]
�ex(z). (14)

This equation makes evident the importance of the eigenvalues
of A in the analysis of the system. As the roots of the
characteristic equation det(A − μI) = 0, they correspond
directly to the poles of the discrete-time LTI system in (14).
For the TSs addressed in this paper, the dominant poles lie on
or outside the unit circle. Hence, the LTI system is marginally
stable or, more often, unstable.

We wish to take the recursive state-update equation (12) and
develop it into an expression without feedback. The first two
iterations are easy to express as

x1 = ḡ′1ABλ+ Bλ+ Bexλ
(ex)
1

and

x2 = ḡ′1ḡ′2A2Bλ + ḡ′2ABλ+ Bλ

+ ḡ′2ABexλ
(ex)
1 + Bexλ

(ex)
2 .

Generalizing to an arbitrary iteration l > 0, we have

xl = AlBλ

l∏

j=1

ḡ′j +
l∑

i=1

Al−i
(

Bλ+ Bexλ
(ex)
i

) l∏

j=i+1

ḡ′j . (15)

C. Graphical Assumptions and Interrelationships

In Assumptions 2 and 5, we have already imposed two
restrictions on the TSs and induced subgraphs that we consider
in our analysis. In this subsection, we impose some additional
constraints and also describe interrelationships among several
useful graphical descriptions of TSs: the Tanner subgraph, its
corresponding undirected multigraph, the line graph of the
multigraph, and the simple digraph that corresponds directly
to the state update model. Finally, we present some useful
bounds and estimates for the dominant eigenvalue of the
system matrix A associated with the TS.

Let BS be an elementary Tanner subgraph within the Tanner
graph of a dv-variable-regular code, and let HS be the corre-
sponding parity-check submatrix. The undirected multigraph
G = (V , E) derived from the Tanner subgraph is defined as
follows. Each variable node in BS becomes a vertex, v ∈ V ,
in G. The degree-two check nodes in BS become the edges
of G, each joining the pair of vertices corresponding to its
neighboring variable nodes in BS . The degree-one check nodes
in BS are ignored.
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The multigraph G provides a more basic description of the
elementary TS BS , as illustrated in Figs. 4a and 4b. Either one
of these graphs is sufficient to characterize the iteration-to-
iteration dependencies among the state variables in the model.
For the multigraph G = (V , E) of order a corresponding
to BS , we have

A(G) = HT
SHS − dvI

and

size (G) = |E | = adv − b

2
= 1

2

∑

vi∈V

d(vi ). (16)

The final equality in (16) follows from Euler’s handshaking
lemma, which states that the sum of all degrees of a graph
must be twice its number of edges. Tanner graphs, with cycles
of length k, map to multigraphs with cycles of length k/2.
Thus, cycles in BS of length 4, the smallest length permitted
in a Tanner graph, will generate parallel edges in G. Even
though 4-cycles in the Tanner graph are often avoided by
code designers, they are allowed in this paper, except within
Appendix A.

Example 3: The (4, 2) Tanner subgraph shown in Figs. 2b
and 4a maps to the multigraph of Fig. 4b. Note that the (3, 1)
Tanner subgraph of Fig. 2a will map to a multigraph with
parallel edges.

Assumption 7: Tanner subgraphs of interest and their asso-
ciated multigraphs are connected. Those TSs described by
disconnected Tanner subgraphs can instead be analyzed com-
ponent by component. The main reason for this simplification
is to reduce the number of cases in which the state update
expression contains a reducible system matrix.

Assumption 8: We further assume that the variable nodes
within the Tanner subgraphs contain no more than dv − 2
neighboring degree-one check nodes. Equivalently, we assume
that the associated multigraphs are leafless; that is, they
do not contain vertices of degree one. For consideration of
multigraphs with leaves, see Appendix C.

A leaf in the multigraph corresponds to a variable node
in the Tanner subgraph with one degree-two check node
and dv − 1 degree-one check nodes as neighbors. Thus, we
require here that every variable node in the Tanner subgraph
must have at least two neighboring degree-two check nodes.
The multigraphs allowed by Assumptions 7 and 8 will be
connected, leafless graphs, containing one or more cycles.

In [28], TSs whose subgraphs satisfied the conditions
prescribed above were called simple TSs. For Tanner graphs
with fixed variable-node degree dv = 3, the TSs consistent
with Assumption 8 are equivalent to absorbing sets. When
dv ≥ 4, however, the conditions in Assumption 8 are less
restrictive than those in the definition of absorbing sets because
we allow more degree-one check nodes per variable node.

Finally, we describe how to create the simple digraph D =
(Z , A) from an undirected multigraph G = (V , E) which
satisfies Assumptions 7 and 8. The construction is illustrated
by reference to Figs. 4b and 4d. Each edge of a connected
leafless multigraph G corresponds to two vertices in D,

TABLE I

SUBMATRIX CORRESPONDENCE RULES OF THE DIRECTED

LIFTING OF THE LINE GRAPH (FOR i = j , ONLY

THE ALL-ZERO MATRIX IS ALLOWED)

representing the two directions of LLR message flow in the
original Tanner graph. That is, the number of vertices m in D is
simply

m = order (D) = 2 · size (G) = adv − b.

The digraph D is a representation of the TS’s message
updating process in one full iteration of the SPA decoder. Let
edge ei = {v j , vk} ∈ E map to vertices zi , zi ′ ∈ Z , with zi

representing the direction of message flow along ei from v j

to vk and zi ′ representing the opposite direction. No arcs in
D join zi to zi ′ . Arcs initiating in zi are directed to vertices
corresponding to other edges in G flowing out of vk , and arcs
terminating in zi are directed from vertices corresponding to
other edges in G flowing into v j . Hence,

d+(zi ) = d(vk)− 1 = d−(zi ′ ) (17)

and

d−(zi ) = d(v j )− 1 = d+(zi ′ ). (18)

In [30], the authors refer to D as the flow graph of G arising
from the SPA and to A(D) as the directed edge matrix of G.
The latter term is from [56].

We now describe a second version of the construction of
the simple digraph. From the multigraph G, shown in Fig. 4b,
we create the line graph L(G) shown in Fig. 4c as described
in Section II-A. Next, we perform a special directed lifting
of L(G) to form the simple digraph D, shown in Fig. 4d.
This lifting by a factor of two replaces each vertex with a
pair of vertices and each edge with a pair of arcs, oriented
in opposite directions. Thus, if the (i, j) entry of A(L(G))
is w it is replaced with a 2× 2 submatrix containing w ones,
where the line graph limits w to the values 0, 1, and 2.
When the 2 × 2 submatrix which replaces the (i, j) entry
of A(L(G)) is determined, the selection of the corresponding
( j, i) submatrix follows a set of rules of correspondence, listed
in Table I, which ensure that the arcs are oriented in opposite
directions of flow with respect to the edges of L(G). Thus,
the subdiagonal elements can be easily determined from the
superdiagonal elements.

The exact lifting required to construct digraph D has addi-
tional restrictions to preserve proper SPA message flow. All
directed walks in D will correspond to walks in G. All walks
in G that do not backtrack will correspond to directed walks
in D. Backtracking is prohibited here due to the structure of
the SPA decoder as expressed in the message update rules,
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which exclude an edge’s own incoming LLR from its outgoing
LLR computation.

The adjacency matrix of D is A(D), which is an m × m
(0, 1)-matrix. The system matrix A used in the state-space
model (12) is equal to A(D)T as D describes the flow of
messages within the model. This connection will be convenient
when discussing the properties of A.

Example 4: Figs. 2a, 2b, 2c, 2d, and 5c satisfy
Assumptions 7 and 8. Of these, only Fig. 2d has a reducible
A(D) matrix and it may be analyzed using techniques
explained in Appendix B. The graphs of Figs. 5a and 5b do
not satisfy Assumption 8 and have reducible A(D) matrices.
In the case of Fig. 5a, the graph may first be analyzed
without the leaf, and then with the leaf restored as discussed
in Appendix C. The graph in Fig. 5b has all zero eigenvalues
as no amount of leaf removal creates a satisfactory structure.
Thus, it is not analyzed in this paper.

We now discuss bounds on the spectral radius of the graphs
presented in this subsection and use them to estimate the
dominant eigenvalues of A(D) and, thus, of A. Using (4)
and (16), we may bound the spectral radius of the multigraph
G = (V , E) as

dv − b/a ≤ ρ(G) ≤ max
vi∈V

d(vi ). (19)

Since, by Assumption 7, G is connected, the inequalities
in (19) hold with equality if and only if G is regular.

For a multigraph G, the spectral radius of its line graph is
given by

ρ(L(G)) = ρ
(
N(G)T N(G)− 2I

)

= ρ(A(G)+ DG)− 2. (20)

This follows from (1) and (2), and the fact that, for any real
matrix M, the two products MT M and MMT have identical
nonzero eigenvalues.

Now, when G is regular of degree k, we have ρ(G) = k and
k = dv−b/a, where b/a must be an integer. Additionally, (20)
implies that ρ(L(G)) = 2k − 2 for the line graph which
is itself regular [37, p. 36]. Furthermore, we find that the
corresponding digraph D is regular with indegree k − 1 and
outdegree k − 1, implying that its spectral radius must be
ρ(D) = k − 1 = dv − 1 − b/a. This value corresponds to
Schlegel and Zhang’s approximation to the spectral radius of
an absorbing set [11],

ρ(D) ≈ dv − 1− b/a. (21)

Alternatively, one can view (21) as arising from the lower
bound of (19), which is fairly tight, and the fact that ρ(D) =
ρ(G)−�, where � is equal to or slightly greater than 1. This
difference between ρ(D) and ρ(G) stems from the vertex-
degree relationships in (17) and (18). We empirically examine
the accuracy of (21) in Appendix A.

We can derive an alternative approximation using a bound
on ρ(L(G)). From (16), the order of L(G) is (adv−b)/2. For
the following calculations, we assume that no variable node
has more than one neighboring unsatisfied check node. This
is always the case for absorbing sets with dv = 3 or 4, and

likely true for other TSs of interest. The condition implies
that G contains b nodes of degree dv − 1 and a − b nodes of
degree dv, from which we get an approximation to (3),

size (L(G)) ≈ (dv − 1)(adv − 2b)/2,

and, using (4), an approximate lower bound on the spectral
radius of L(G),

ρ(L(G)) � 2

(
dv − 1− b − b/dv

a − b/dv

)
.

Finally, since the directional lifting technique used to derive
A(D) from A(L(G)) roughly halves each row sum and column
sum, we form the new approximation

ρ(D) ≈ dv − 1− b − b/dv

a − b/dv
, (22)

whose accuracy is also examined in Appendix A. Note that
when b/a equals 0 or 1, the approximations in (21) and (22)
are equal.

IV. DOMINANT EIGEN VALUES AND PROBABILITY MODEL

This section will simplify (15), the state vector expres-
sion, to the point that we can easily incorporate probability
distributions and predict failure rates for specific TSs.

A. Utilizing Dominant Eigenvalues

For the analysis of the model, we need to simplify the
powers of the system matrix A that appear in (15). This section
generalizes the development by Schlegel and Zhang [11] with
a focus on the dominant eigenvalues of the nonnegative m×m
matrix A and its left eigenvectors. This approach will avoid
using the assumption made by Sun, which was that A is
diagonalizable [28]. In our extensive search of potential TSs,
shown in Appendix A, we found that a small fraction of the
TSs have system matrices which cannot be diagonalized.

Let μk ∈ C be an eigenvalue of matrix A, and let w∗k be the
left eigenvector associated with μk , such that w∗k A = μkw∗k ,
where w∗k denotes the conjugate transpose of column
vector wk . Then, by induction, for any positive integer i ,

w∗k Ai = μi
kw∗k . (23)

Left-multiplying (15) by w∗k and using (23) to simplify, we
derive the scalar quantity

w∗k xl = μl
kw∗k Bλ

l∏

j=1

ḡ′j

+
l∑

i=1

μl−i
k w∗k

(
Bλ+ Bexλ

(ex)
i

) l∏

j=i+1

ḡ′j .

We now shift to using a specific left eigenvector of the
nonnegative matrix A, the left eigenvector wT

1 associated with
the eigenvalue of maximum modulus r . Classifying the m×m
nonnegative matrix A into the following two cases, the theory
of nonnegative matrices allows us to make certain statements
regarding w1 and r [33]–[36]:

1) Let the nonnegative matrix A be irreducible. There
is a simple eigenvalue r , such that r = ρ(A) and
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Fig. 5. Three undirected multigraphs.

r > 0. The left eigenvector wT
1 associated with r

is positive. There are no other nonnegative left eigen-
vectors of A, except for wT

1 multiplied by a positive
scalar.

2) Let the nonnegative matrix A be reducible and let the
block upper triangular matrix A′ be a symmetric permu-
tation of A. The submatrices A′i along the block diagonal
are either irreducible square matrices or the 1-by-1 zero
matrix. The eigenvalues of A are thus the union of the
eigenvalues of the submatrices A′i . Appendix B shows
that the reducible cases allowed by Assumptions 7 and 8
have r = ρ(A) = 1 which may be associated with the
all-one left eigenvector wT

1 .
Thus, given our prior assumptions, we may associate a positive
left eigenvector wT

1 with the eigenvalue r , and this r is real
with magnitude greater than or equal to that of all other
eigenvalues.

In [11], the scalar quantity β was formed by summing
the states and if found to be less than zero, the TS was
determined to be in error. In generalizing that quantity, we
define the scalar error indicator βl � wT

1 xl . Consider βl

to be the scaled projection of the state vector xl onto the
positive vector w1. Since the state vector xl contains the
internal messages of the TS, the projection onto a positive
vector indicates whether the TS’s messages are generally in
the positive (correct) direction or negative (incorrect) direction.

While βl appears to be approximately indicative of the
output bit decisions of the variable nodes, a more careful
examination of the model’s soft-output in (13) will reveal the
importance of βl with regard to the output decisions. The
first term of (13) includes xl−1 whose elements, the state
variables, will tend to all move toward positive or negative
infinity for cases in which the system is inherently unstable,
r > 1. The second term of (13), the intrinsic channel LLRs,
is constant for each channel realization and does not change
with iteration count. The final term of (13) includes the
elements of λ

(ex)
l which will reach saturated magnitudes in

decoders with saturating LLRs. Under these conditions it
is easy to see that the elements of xl−1 will dominate the
soft-output expression (13). Additionally, we note that the
row sums of the output matrix C in (13) are larger than
the row sums of the system matrix A in (12). This implies
that computing λ̃l is much like computing xl but with even
more weight applied to the terms containing xl−1. Thus,
we argue that, even for nonsaturating decoders, the sign of
βl is indicative of the sign of the elements of λ̃l in the
model.

Example 5: The nonnegative system matrices A describing
the state update operations of Figs. 2a and 2b are both

primitive,3 with r ≈ 1.6956 and r ≈ 1.5214, respectively. The
nonnegative system matrix A describing Fig. 2c is imprim-
itive4 with index of imprimitivity h = 4 and r = √2.
One may find that h = 4 by visual inspection of Fig. 2c,
noting that every cycle length of message flow (measured in
full iterations) is divisible by four. The nonnegative system
matrix A describing Fig. 2d is reducible with r = 1.

Our error indicator expression simplifies if we rescale βl by
a positive constant to β ′l � βl/

(
r l ∏l

j=1 ḡ′j
)

, so

β ′l = wT
1 Bλ +

l∑

i=1

wT
1

(
Bλ+ Bexλ

(ex)
i

)

r i
∏i

j=1 ḡ′j
. (24)

This expression is similar to, but more general than (1) in [11],
which was derived for a specific degenerate TS as described
in Section III-B.

B. Modeling the Probability of Error

The expression for β ′l in (24) is a linear combination of
stochastic vectors λ and λ

(ex)
l . Since elements of λ are i.i.d.

Gaussian, linear operations on λ will produce a Gaussian
distribution. Several authors [11], [53] have used the approxi-
mation that the check-node output LLRs, such as λ

(ex)
l , are

Gaussian, too. The central limit theorem implies that the
distribution of a linear combination of several independent
check-node output messages with the elements of λ will be
nearly Gaussian, even if the check-node output LLRs are only
approximately Gaussian.

Assumption 9: We assume that β ′l has a Gaussian
distribution.

Under this assumption, the probability of the failure event,
ξ(S), corresponding to TS S, at iteration l, is then simply

Pr {ξ(S)} = Pr
{
β ′l < 0

} = Q

⎛

⎝ E[β ′l ]√
VAR[β ′l ]

⎞

⎠. (25)

If {Si } enumerates all potential TSs, the union bound provides
an upper bound on the error floor of the block error rate

Pf �
∑

i

Pr {ξ(Si )} . (26)

The block error rate of (26) is also commonly called the frame
error rate (FER) or codeword error rate.

3If A is an irreducible nonnegative matrix and has only one eigenvalue with
modulus equal to ρ(A), then A is said to be primitive.

4If A has h > 1 eigenvalues with modulus equal to ρ(A), then A is said to
be imprimitive. The value h is known as the index of imprimitivity or period.
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Next, we wish to express the error floor as an information
bit error rate (BER). Letting âi represent the number of
information bits associated with the TS failure ξ(Si ) for
the specific encoding technique used, we may express the
BER union bound as

Pb �
∑

i

âi

k
Pr {ξ(Si )}, (27)

where k is the number of information bits per codeword.
We now assume a systematic encoding, i.e., the k infor-

mation bits appear explicitly in the codeword. If the âi

information bit locations are assumed to be independent of
the ai bit locations in the TS Si then the expected number
of information bit errors associated with the TS failure ξ(Si )
is E[âi ] = ai k/n. In this case, the approximate inequality in
(27) may be simplified to

Pb �
∑

i

ai

n
Pr {ξ(Si )} . (28)

We present (28) as an alternative to a similar expression in [11]
which used k in the denominator.

C. Codewords

In the case of elementary TSs that are also codeword
supports, we have b = 0, and Bex is not used since there are
no unsatisfied check nodes. We find that the failure probability
(25) of the codeword simplifies to

Pr {ξ(Si )} = Q

⎛

⎝
√

2REb

N0

∑a
k=1(w

T
1 B)k√∑a

k=1(w
T
1 B)2

k

⎞

⎠. (29)

This reduces further as the eigensystem of the system matrix A
for codewords is rather simple. Every row sum and column
sum of A is dv − 1, so the spectral radius is r = dv − 1. The
positive left eigenvector wT

1 associated with r is proportional
to the all-one row-vector, i.e., wT

1 ∝ [1, 1, . . . 1]. Also, B has
a uniform row sum of 1 and a column sum of dv. Therefore,
(wT

1 B)k = dv ∀ k ∈ {1, . . . , a}. Noting that a is just the
Hamming weight wH of the codeword corresponding to Si ,
which we denote by wH(Si ), the expression in (29) can be
written in the more recognizable

Pr {ξ(Si )} = Q

(√
2REb

N0
wH(Si )

)
,

independent of iteration count l.

D. Non-Codewords

To further understand the general behavior of (25) as a func-
tion of the iteration l, we take a closer look at the numerator
and denominator terms. Letting m(l)

λ(ex) be the expected value

of each entry of λ
(ex)
l , we can write the numerator of the

Q-function argument as

E[β ′l ] = mλ

(
1+

l∑

i=1

1

r i
∏i

j=1 ḡ′j

)
a∑

k=1

(wT
1 B)k

+
l∑

i=1

m(i)
λ(ex)

r i
∏i

j=1 ḡ′j

b∑

k=1

(wT
1 Bex)k . (30)

Assumption 10: We will assume that the entries of
λ and λ

(ex)
l are statistically independent of each other at a given

iteration l, as is often done in density evolution (DE) studies.
Further, we assume that the entries of λ

(ex)
l are independent

from iteration to iteration, as was implicitly assumed in [11].

Letting σ 2
l be the variance of each entry of the vector

λ
(ex)
l , we can write the squared-denominator of the Q-function

argument as

VAR[β ′l ] = 2mλ

(
1+

l∑

i=1

1

r i
∏i

j=1 ḡ′j

)2 a∑

k=1

(wT
1 B)2

k

+
l∑

i=1

σ 2
i

(r i
∏i

j=1 ḡ′j )2

b∑

k=1

(wT
1 Bex)

2
k . (31)

We wish to understand the asymptotic behavior of (25) as
the number of iterations goes toward infinity. To this end, we
examine the convergence of the partial sums in (30) and (31)
that depend on the iteration number l.

We first note that the divergence of the first partial sum
in (30) would not necessarily cause (25) to diverge because its
effect would be offset by the divergence of the the first partial
sum in (31). We can apply the Ratio Test to examine the con-
vergence properties of the second partial sum in (30). Given a
real sequence {ai }∞i=1, we define ρ = limi→∞ |ai+1/ai |. The
Ratio Test states that the series

∑∞
i=1 ai converges absolutely

if ρ < 1 and diverges if ρ > 1. With respect to the second
partial sum within (30), we see that

ρ = lim
i→∞

∣∣∣∣∣
m(i+1)

λ(ex) r i ∏i
j=1 ḡ′j

m(i)
λ(ex)r

i+1
∏i+1

j=1 ḡ′j

∣∣∣∣∣ = lim
i→∞

∣∣∣∣∣
m(i+1)

λ(ex)

m(i)
λ(ex)r

∣∣∣∣∣ . (32)

The right-most expression follows by noting that the gains ḡ′l
approach 1 rapidly as the iteration count l increases. Thus, if
the mean unsatisfied-check LLR m(i)

λ(ex) dominates r i asymp-

totically (i.e., m(i)
λ(ex) > Cri for every positive constant C and

sufficiently large i ), then ρ > 1 and (30) will grow without
bound.

If we can be further assured that (31) does not grow as
fast as the square of (30), then the entire argument of the
Q-function will grow without bound, driving the failure rate
of the potential elementary TS toward zero. In that case, a
sufficient number of iterations and sufficient LLR dynamic
range for λ

(ex)
l growth are the requirements for the model to

achieve as low an error floor as desired.
Other models of error floor behavior [11], [28] have used the

Gaussian approximation to LLR densities [53], which implies
σ 2

l = 2m(l)
λ(ex). Moreover, using a numerical version of DE, Fu

found that σ 2
l < 2m(l)

λ(ex) as the LLRs get large [57]. With such

an LLR variance, i.e., σ 2
l ≤ c m(l)

λ(ex) for some positive c, we
find that the entire argument to the Q-function grows without
bound in the cases that satisfy m(i)

λ(ex) > Cri . We will find in
the following sections that this latter condition is true under
certain specified assumptions. However, if the variance grows
as the square of the mean, then the argument to the Q-function
reaches a finite limit and a nonzero error floor is produced.
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TABLE II

DDE NUMERICAL RESULTS BY ITERATION FOR (3, 6)-REGULAR CODE

AT AN Eb/N0 OF 2.8 dB (mλ = 3.8109) WITH LLR SATURATION

SET TO ±25 AT CHECK-NODE OUTPUT. LLR PDFS DISCRETIZED

TO PMFS WITH A RESOLUTION OF 50/2047

This is a very important issue that we will revisit later in the
paper.

E. Bounds on Spectral Radius of the System Matrix A

We now need some bounds on r , the spectral radius of the
system matrix A, in order to compare m(i)

λ(ex) to r i .

Theorem 2: Consider a variable-regular LDPC code with
variable-degree dv ≥ 3. Let the TS S induce an elementary
connected subgraph BS with a ≥ 2 variable nodes and b > 0
degree-one check nodes. Further, let the associated undirected
multigraph G be leafless. Then, the adjacency matrix A(D)
of the associated simple digraph D has spectral radius r such
that 1 < r < dv − 1 when A(D) is irreducible and r = 1
when A(D) is reducible.

Proof: From (17), the maximum possible outdegree of
D is dv − 1. Since G cannot be dv-regular due the presence
of degree-one check nodes in the subgraph, D cannot be
(dv − 1)-outdegree regular. Now, by applying Lemma 1,
we find that 1 ≤ r < dv − 1 when A is irreducible. We defer
to Appendix B the case in which the matrix A is reducible,
which is the only allowed case in which r = 1.

V. MODELING OF SATURATING DECODERS

In this section, we apply the prediction model to saturating
decoders. We present techniques for generating the required
inputs to the state-space model: the mean and variance of
unsatisfied, degree-one check nodes, as well as the mean
gain ḡl of the degree-two check nodes. We then compare
predicted error floors to results of computer simulation for
four representative LDPC codes.

We first describe two numerical methods for computing the
mean and variance of the unsatisfied, degree-one check nodes.
The first method is discretized density evolution (DDE), a
quantized version of density evolution (DE) [54]. DDE uses
a probability mass function (pmf) that closely approximates
the continuous probability density function (pdf) of node input
messages and output messages. By operating directly on pmfs,
it permits us to model the behavior of LLRs as they saturate.
At a specified Eb/N0 value, we use it to capture the mean

TABLE III

SPA SIMULATION RESULTS BY ITERATION FOR THE (3, 6)-REGULAR,

(2640, 1320) MARGULIS CODE AT AN Eb/N0 OF 2.8 dB (mλ = 3.8109)

WITH LLR SATURATION SET TO ±25 AT CHECK-NODE OUTPUT

and variance of the LLRs at each iteration, as needed for
insertion into the model. Table II shows numerical results for
10 iterations for a (3, 6)-regular code and an LLR saturation
level of ±25. The table also shows the mean check-node gain,
which was computed according to (7).

The second method collects the required statistics by run-
ning the LLR-domain SPA decoder with early termination5

turned off. As above, for a specified Eb/N0 value, we capture
at each iteration the mean and variance of the check-node
output LLRs and compute the mean check-node gain as in (7).
Table III shows the results obtained by simulating 100 frames
of the (3, 6)-regular, (2640, 1320) Margulis code, with the
same saturation level as above.

The mean values in the two tables are in close agreement,
as might be expected. However, starting at iteration six, the
LLR variance obtained from the SPA simulation becomes
significantly larger than that produced by the DDE technique.
This is caused by the cycles in the Margulis code. We would
expect that the onset of this variance divergence would occur
later in a code with a larger girth. Interestingly, despite the
differences in the variance values they generated, the two
techniques produced nearly identical error floor predictions.
The modeling results shown in the figures that follow were
obtained using the SPA simulation technique.

We note that our approach differs from that presented
in [11]. There, only the mean LLRs from a (continuous)
DE analysis are recorded, and the computation of the variance
is based on the consistent Gaussian distribution assump-
tion [53]. The consistent Gaussian approximation6 implies that
σ 2

l = 2 m(l)
λ(ex). We have purposely avoided the consistency

assumption since the effect of LLR saturation will invalidate
it, as can be seen in Table II.

The first code we examine is a (640, 192) quasi-cyclic (QC)
LDPC code with dv = 5 and irregular check degree, taken
from [23]. The dominant TS for a saturating LLR-domain
SPA decoder is the (5, 5) elementary TS shown in [23]. The
system matrix A for this TS is primitive and has maximum

5Early termination refers to the discontinuation of further iterations once
a valid codeword has been decoded. It is frequently employed to conserve
average decoding complexity.

6The relationship between the mean and variance of the LLRs was printed
erroneously in [11] as m = 2σ 2.
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Fig. 6. FER vs. Eb/N0 in dB for the (640, 192) QC code. Error floor model
of (5, 5) TS used unity gains and no check-node inversions.

Fig. 7. FER vs. Eb/N0 in dB for the (640, 192) QC code. Error floor model
of (5, 5) TS used mean gains and no check-node inversions.

eigenvalue r = 3. The multiplicity of the TS in the code is
64 and the corresponding sets of variable nodes are mutually
disjoint. Figs. 6, 7 and 8 show FER results from simulation
and error floor predictions at two levels of LLR saturation,
15 and 50. The error floor prediction model showed very
fast convergence—a behavior that we attribute to the large
eigenvalue r—so we stopped the model after 14 iterations.

The FER simulation results shown in these figures are
produced by a nonsaturating LLR-domain SPA decoder, imple-
mented in double-precision floating-point arithmetic. The com-
putations are organized such that saturation will not occur
(see §II-C). The nonsaturating decoder never failed on the
(5, 5) TSs, in contrast to the results in [23]. For the saturating
decoders, we introduced LLR saturation into the simulations
at a point corresponding to the output of the complete check-
node update. In all of the simulations, we assumed that the
all-zero codeword was transmitted, and any decoding result
other than the all-zero codeword was treated as a frame error.
The maximum number of iterations was 200.

The predicted error floors in Fig. 6 were obtained using
the union bound in (26), but with check-node gains forced to
unity in the TS modeling. For the results shown in Fig. 7,

Fig. 8. FER vs. Eb/N0 in dB for the (640, 192) QC code. Error floor model
of (5, 5) TS used modified mean gains (11) with check-node inversions.

Fig. 9. FER vs. Eb/N0 in dB for (2640, 1320) Margulis code. Error
floor model of (12, 4) TS used modified mean gains (11) with check-node
inversions.

the mean gains computed according to (7) were applied to
the model. The prediction results in Fig. 8 show the effect
of using the modified mean gains in (11), thereby capturing
the effect of polarity inversions within the degree-two check
nodes. Comparing the figures, we see that the mean gains
provide a significant improvement in the model’s accuracy, to
within 0.5 dB of simulation, and the addition of the polarity
inversion model further enhances the model’s accuracy, to
within ±0.1 dB of simulation.

A heuristic explanation for the observed reduction in the
predicted error floors when check-node gains are introduced
has to do with incorrect growth in LLR values during the
early iterations of the model. With unity gains, incorrect
channel inputs may propagate rapidly among the highly inter-
connected states of the TS. When smaller gains are used, this
LLR increase is delayed for several iterations, giving the unsat-
isfied check nodes a better chance to “correct” the system.
As noted previously, during early model iterations the polarity
inversions through the degree-two check nodes effectively
lower the check-node gain. Therefore, as we would expect,
introducing the inversions lowers the predicted error floor.
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Fig. 10. Three elementary TSs of the Margulis code (with dv = 3) are shown with degree-one check nodes shaded and with degree-two check nodes omitted.
The two on the left are absorbing sets and dominate the error floor of the saturated SPA decoder. The one on the right is not an absorbing set, but was a
TS collected during nonsaturated SPA decoding.

The SPA decoder results presented in [23] fall slightly above
the curves in Figs. 6–8 that correspond to a saturation level
of 15 . The simulated FER of our nonsaturating SPA decoder is
three orders of magnitude lower than that of the SPA decoder
in [23] at Eb/N0 = 5 dB, and the difference grows with
increasing Eb/N0.

The second code we analyzed is the (2640, 1320) Margulis
LDPC code. Recall that this is a (3, 6)-regular code with
dominant TSs reported to be the (12, 4) and (14, 4) elementary
TSs [7], [8], [23]. The system matrices A for these two TSs are
both imprimitive, with h = 2, and have maximum eigenvalues
r ≈ 1.6956 and r ≈ 1.7606, respectively. We ran the model
for 16 iterations. The multiplicity of each of these TSs is
1320 with significant overlap between the variable nodes of
the different TSs.

In fact, each (14, 4) TS contains all 12 variable nodes and 2
of the unsatisfied check nodes of a (12, 4) TS, as can be seen
in Fig. 10. Thus, when we compute the failure probability of
one (12, 4) TS, it largely includes the failure probability of the
(14, 4) TS that contains it. Therefore, in Fig. 9, we show only
the error floors predicted by the model for the (12, 4) TSs. The
results were obtained using the modified mean gains, with the
polarity inversion model applied at every iteration. The error
floors predicted by the state-space model overestimated the
simulated error floors by 0.15 dB or less in the Eb/N0 range
of the simulations.

The third code we considered is the Reed-Solomon-based
binary (2048, 1723) LDPC code [58] included in the 802.3an
standard. It is a (6, 32)-regular code with dominant TSs
reported to be the (8, 8) elementary TS [11], [27]. The multi-
plicity of the (8, 8) TS is 14 272 [11]. The system matrix A for
this TS is primitive, with a maximum eigenvalue r = 4. The
state-space model for this TS converges in only 3 iterations
when the LLR saturation is set to 15, and it requires only a few
more iterations at higher saturation limits. We conservatively
ran the model for 16 iterations, including the polarity inversion
model at every iteration. Fig. 11 shows the BER error floors
predicted by the model using modified mean gains, under the
assumption that no other TSs contribute significantly to the
floor.

Since a standard Monte Carlo simulation of such a low error
floor would take a prohibitively large amount of CPU time,
we used Richardson’s semi-analytical technique to estimate
the floor [8]. The calculation considered only the (8, 8) TSs.

Fig. 11. BER vs. Eb/N0 in dB for (2048, 1723) LDPC code of 802.3an
with simulation, Richardson’s semi-analytical error floor estimation, and the
error floor prediction model using modified mean gains.

At an Eb/N0 of 5.0 dB, we obtained the BERs represented by
the solid circles in Fig. 11. We used Richardson’s extrapolation
method to extend these results to 5.4 dB, as shown by the solid
lines in the figure. For the LLR saturation levels of 15, 100,
and 800, the application of Richardson’s technique required
0.9, 9.5, and 1300 hours of CPU time, respectively. In contrast,
the state-space model used less than 2 minutes of CPU time to
collect the LLR statistics from 1000 frames that were used to
generate each error floor prediction point. At Eb/N0 = 5.0 dB,
the model’s predictions are within 0.1 dB of the error rates
obtained using the semi-analytical technique.

The fourth code we considered is the (3, 5)-regular,
(155, 64) QC-LDPC code introduced by Tanner et al. [59].
The dominant TS is reported to be an (8, 2) elementary TS,
with multiplicity 465 [32], although there are several other
small TSs.7 The system matrix A for this TS is primitive,
with a maximum eigenvalue r ≈ 1.7870. Fig. 12 shows
that the FER predicted by the model for the (8, 2) TS using
modified mean gains agrees with simulation to within 0.2 dB
at an LLR saturation level of 7. At this level of saturation,
an error floor is indeed evident in the simulation results. For
Eb/N0 values above 4.86 dB, we found that 69.0% of the

7Taking into account the TSs of this code, Declercq et al. [60] have
developed quantized decoders that significantly reduce the error floor when
this code is used over the BSC.
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Fig. 12. FER vs. Eb/N0 in dB for (155, 64) QC-LDPC code with simulation
and model predicted floor of the (8, 2) TS using modified mean gains.

simulation failures were associated with the (8, 2) TSs, and
most of the remaining failures could be attributed to other
small TSs. However, at an LLR saturation level of 25, the
error floor region is less pronounced in the FER simulation;
in fact, only 6.8% of the simulated frame failures occurred on
(8, 2) TSs. In this case, the state-space model overestimated
TS failures by about 0.9 dB at 10−7 FER. The figure also
shows that the error-rate curve for the nonsaturating decoder
is slightly higher than that produced when the saturation level
is 25. In fact, further simulations with a saturation level of
100 yielded results that were nearly identical to those of the
nonsaturating decoder. At that saturation level, only a small
fraction of the overall errors—roughly 7%—were due to the
(8, 2) TSs. Moreover, about 55% of the frame errors had 11
or more erroneous bits. Some of these unusual comparative
results may be connected to the fact that the waterfall region
of this code has a very gentle slope. Finally, we note that
in [32], BER estimates for this code were generated using an
(8, 2) TS model and by importance sampling in the vicinity
of the (8, 2) TSs with saturation levels of 10 and 100. The
results were in close agreement with one another, suggesting
that errors seen with a saturation level of 100 would be largely
due to (8, 2) TSs. This is inconsistent with the results found
in our simulation studies.

We chose to apply the state-space model to these four
LDPC codes because they are structurally quite diverse in
nature and their error floor performance under SPA decoding
has been previously studied. The TSs in these codes have a
wide range of multiplicities, with different degrees of over-
lap, and different graph-theoretic properties. In particular, the
Margulis code has two dominant TSs, both with imprimitive
A matrices, while the other codes are dominated by single
TSs with primitive A matrices. Despite the differences among
these codes, we found that the state-space model with modified
mean gains estimated the error floors observed in simulations
reasonably well and quite efficiently.

We saw that there are situations in which LLR satura-
tion even at the fairly high levels of 25, 50 and 100 pro-
duce noticeable error floors in both simulation and model

Fig. 13. Check-node output LLR mean and variance versus iteration number
for the Margulis code at Eb/N0 of 2.8 dB.

prediction. We also noted that the variances of the messages
from degree-one check nodes of the induced subgraph of a
TS—denoted by σ 2

i in (31)—have a small impact on the
overall results.

VI. MODELING OF NONSATURATING DECODERS

An original motivation for this study was the observation
that, for the Margulis code, error-rate results generated by
simulation of a nonsaturating decoder did not exhibit the error-
floor behavior seen in previously published error-rate curves.
In this section, we use the state-space model to investigate this
phenomenon. We first apply density evolution (DE) to generate
the relevant model inputs corresponding to nodes outside of
the TS. Then, we refer back to the divergence condition
of (32) to see if the model predicts that error floors are
produced.

DE assumes that the Tanner graph has no cycles and that the
block length of the code is infinite. For our purposes, this is
equivalent to assuming independence among incoming LLRs,
as in Assumption 10.

SPA decoding of LDPC codes exhibits a threshold phenom-
enon as the block length and the number of iterations tend to
infinity. The error rate drops very dramatically as the SNR
exceeds the decoding threshold, a value which can be found
using DE [53]. As we are interested in the behavior of the
error floor in this work, we assume that the channel SNR is
always above the decoding threshold.

In [28], Sun asymptotically characterized the growth of the
mean extrinsic check-node output, mλ(ex), from iteration l− 1
to l, showing that

m(l)
λ(ex) = (dv − 1)m(l−1)

λ(ex) + “some small value terms.” (33)

In [61], we refine Sun’s analysis and develop bounds on
the mean extrinsic check-node LLR required, as a function
of SNR, such that the growth rate of m(l)

λ(ex) exceeds that
of the internal TS LLRs for all future iterations. In either
DE analysis, in the high Eb/N0 regime,

m(l)
λ(ex) > Crl
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Fig. 14. Correlation coefficient among the four LLR check-node output
metrics used as prediction model inputs versus iteration number for (12, 4)
TSs of the Margulis code as measured in LLR-domain SPA simulation.

for every positive constant C , any r such that 1 ≤ r < dv−1,
and sufficiently large l.

According to (32), this growth rate comparison implies that
every potential (non-codeword) elementary trapping-set error
can be corrected by a nonsaturating LLR-domain SPA decoder
after a sufficient number of iterations, provided we can rely
upon DE as a model for LLR growth outside of the TS for
variable-regular (dv ≥ 3) LDPC codes. (Note that dv ≥ 3
appears here because dv = 2 would not produce exponential
growth in (33).)

In Fig. 13 we compare the mean check-node output LLRs
produced by the SPA decoder simulation of the (2640, 1320)
Margulis code to those generated by the application of DE to
the ensemble of (3, 6)-regular LDPC codes. In the decoder
simulation, the all-zero codeword is transmitted over the
AWGN channel and early termination of the decoder is dis-
abled. We note that the mean LLR from the simulation closely
approximates the mean LLR predicted by DE during the first
20 iterations. The variance of the simulated check-node output
LLRs is in agreement with DE for the first seven iterations, but
then deviates significantly. Through the first seven iterations,
the variance is approximately twice the mean, as the Gaussian
approximation to DE would predict. By the ninth iteration,
however, the simulated variance is better approximated by
the square of the mean. As discussed in Section IV, such
quadratic growth of the variance relative to the mean can
result in an error floor, with the argument of the Q-function
in (25) approaching a finite value as the number of iterations
increases.

The cause of the departure of the simulated variance’s
behavior from that predicted by DE is the positive correlation
that develops among the LLRs after several decoder iterations.
For the (12, 4) TSs of the Margulis code, Fig. 14 shows the
average of the off-diagonal values from the 4 × 4 matrix of
correlation coefficients of the four LLR check-node output
metrics used as inputs to the state-space model, as a function
of the iteration number. Significant positive correlation can
already be seen in the sixth iteration and increases rapidly.
Thus, the assumptions used to justify the expression for

VAR[β ′l ] in (31) do not hold in this case. For the (640, 192)
QC code discussed in Section V, we found similar behavior
of the variance and LLR correlation. In fact, the onset came
after even fewer iterations, most likely due the smaller girth
of the code relative to that of the Margulis code (6 vs. 8).

A further source of inaccuracy in the probability of error
model (25) is the implicit assumption that the skewness,
i.e., the third standardized moment, of β ′l is zero, a conse-
quence of its assumed Gaussianity. In our simulation of the
Margulis code, we measured skewness of β ′l in the range of
0.6 to 1.8. This deficiency in the modeling assumptions can
also have a significant effect on error floor predictions.

The problems discussed above limit the usefulness of the
model in predicting the performance of the nonsaturating
SPA decoder beyond the seventh iteration for the
Margulis code. However, in the next section, we describe
a modification of Richardson’s semi-analytic technique that
may offer a way to more accurately estimate error floors of
nonsaturating decoders.

VII. MODIFICATION OF RICHARDSON’S

SEMI-ANALYTICAL TECHNIQUE FOR

NONSATURATING DECODERS

In this section, we briefly review Richardson’s semi-
analytical technique for estimating error floors caused
by TSs [8]. We then describe modifications intended to
improve the effectiveness of the technique when applied to
nonsaturating SPA decoders. Numerical results are presented
for the Margulis code.

Richardson’s semi-analytical technique is a type of impor-
tance sampling; it essentially averages the results of several
importance sampling experiments. (See [32], [50], and [62]
for the use of importance sampling to estimate the error
rates of particular TSs.) Richardson’s technique biases the
noise in the direction of the TS by a varying amount s.
Richardson effectively utilizes an orthogonal transform on the
i.i.d. Gaussian noise samples within the TS to represent its
noise with a new set of basis vectors in which each dimension
is independent Gaussian noise. This allows him to treat the bias
amount s as a Gaussian random variable, while performing
Monte Carlo simulation on the other n − 1 dimensions of the
noise with variance σ 2.

Richardson fixes the bias amount s to several negative
values and runs simulations, finding the conditional TS failure
probability Pr {ξT |s} for each s value. Then, the overall TS
failure probability Pr {ξT } may be computed using the law of
total probability, i.e.,

Pr {ξT } =
∫

Pr {ξT |s}pS(s) ds. (34)

Due to the high degree of overlap among TSs, when counting
failures for Pr {ξT |s}, Richardson only counts a frame as a
failure if the set of symbols which are not eventually correct
exactly matches the symbol locations of T , the specific TS
under test.

The dominant TSs of the (2640, 1320) Margulis LDPC
code are the (12, 4) and (14, 4) elementary TSs, shown in
Figs. 10a and 10b [7], [8], [23]. In the case of the (14, 4) TS of
the Margulis code, the not-eventually-correct symbols exactly
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match the symbols in T when testing the saturated decoder at
a rate of about 3 in 4 failures or greater (at s = −1.35). Note
that this rate drops substantially as s approaches−1. However,
for our nonsaturating decoder, this ratio became less than 1 in
105 (at s = −1.35), indicating that the not-eventually-correct
condition is not effective when saturation is eliminated. This
ratio was so low when running Richardson’s technique for
T set to a (12, 4) TS without saturation that we could not
measure it. When saturation is present, failures are generally
forced to occur on absorbing sets, and this is often the set
under test when s ≤ −1.25. In the absence of saturation, the
failures occur on a wide variety of Tanner subgraphs. Most
of the failing subgraphs during nonsaturating simulation are
not absorbing sets and most are larger than the original a
variables under test. In fact, the two smallest failing structures
that we captured at high SNR were the (14, 4) absorbing set
of Fig. 10b and the (18, 8) subgraph shown in Fig. 10c. Since
the set of general Tanner subgraphs within the Margulis code
is vast [14], computing the error floor estimate for each type of
subgraph with such a low capture rate would be impractical.
An alternative approach is needed.

One possible approach would be to ignore the
not-eventually-correct criterion and simply count all failures,
at the risk of overestimating the error floor. Instead, we
propose to estimate the error floor by introducing saturation
in the final iterations of failed frames, so that they may
fail on absorbing sets. For example, iterations with LLR
saturation would force corrections to the labeled variable
nodes of Fig. 10c, as the unsatisfied check nodes outnumber
the satisfied checks, driving the failed structure to the (14, 4)
absorbing set contained within. Since this approach reduces
the number of incorrect bits per failure, it perhaps has
meaningful applications. It appears effective, as we see
that most failures are reduced to small absorbing sets in
practice. We prefer this strategy because we are interested in
establishing a lower bound on the floor for the nonsaturating
case.

As there may be many variable nodes to correct to get to the
absorbing set contained within the failed structure, we allow
for 20 iterations of saturated SPA decoding before beginning
the “eventually correct” logic which runs for 12 additional
iterations. We chose to run the saturation phase at an
LLR limit of ±25.

Fig. 15 shows results for saturating and nonsaturating
decoders. All simulations were run for a maximum of
200 iterations, with the exception of the nonsaturating semi-
analytical simulations which were run for 32 additional iter-
ations as described above. In all cases, the semi-analytical
technique was applied at Eb/N0 = 2.8 dB, and the results
were extrapolated locally as suggested in [8].

Richardson’s extrapolation assumes that the conditional
failure probability Pr {ξT |s} is insensitive to SNR changes.
Additionally, note that the extrapolations appear to produce
parallel lines in the log-log plot (i.e., the logarithm of the
error rate versus the Eb/N0 measured in decibels, which is
also logarithmic). This parallel line effect is due to the nature
of the integration in (34). The conditional failure probability
within the integrand is largely about 5 standard deviations of s

Fig. 15. FER vs. Eb/N0 in dB for Margulis LDPC Code in AWGN. The
semi-analytical (SA) technique only estimates errors due to the (12, 4) and
(14, 4) TSs at Eb/N0 = 2.8 dB.

below the mean value of s for the cases presented here. Thus,
small changes to the standard deviation of s in (34) produce
a multiplicative effect on the estimated error rate, regardless
of the decoder’s specific saturation level.

For the nonsaturating decoder, Fig. 15 shows an estimated
FER of 2× 10−11 at Eb/N0 = 2.8 dB. This is slightly lower
than the FER of 6× 10−11 found when the decoder saturates
the check-node output LLR magnitudes at 200. (In making
this error floor prediction, we have assumed that no other TSs
become dominant in these conditions.)

Several additional observations are worth noting. First,
increasing the maximum number of iterations of the nonsatu-
rating decoder simulation to 1000 reduces the error floor by
about a factor of 3.

Second, we have observed that when saturation levels are
increased, the error floor is more sensitive to SNR than
Richardson’s extrapolation suggests. We have applied the
semi-analytical techniques of this section to estimate the
combined FER contributions of the (12, 4) and (14, 4) TSs to
be 4×10−17 FER at Eb/N0 = 4 dB. This shows that the error
floor falls significantly faster than Richardson’s extrapolation
predicts, since the conditional failure probability Pr {ξT |s}
appears to decrease significantly with increasing SNR. From
the DE expressions, at higher SNR, the beneficial LLR growth
starts earlier and grows faster giving the code beyond the TS
a higher probability to correct a channel error along a TS
for a nonsaturating decoder. However, an SPA decoder with
limited LLR dynamic range will not leverage these effects that
depend on SNR. This effect is also illustrated in Fig. 11 for
the greatest saturation limit.

Third, we have observed a shift in which TSs dominate the
error floor as saturation levels are increased. Table IV shows
the ratio of the error floor contributions of the (12, 4) TS
to the contributions of the (14, 4) TS at Eb/N0 = 2.8 dB.
We note that when saturation limits are low the (12, 4) TS
dominates the error floor, but when the limits are raised
the (14, 4) TS dominates. There are two potential reasons
for this. The first is that the (12, 4) TS, with its smaller
maximum eigenvalue value, is more sensitive to saturation
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TABLE IV

RATIO OF (12, 4) TS ERROR FLOOR CONTRIBUTION TO (14, 4) FOR THE

MARGULIS CODE AT Eb/N0 = 2.8 dB USING RICHARDSON’S

SEMI-ANALYTICAL TECHNIQUE

level—that is, as the saturation limits are raised an initially
erroneous (12, 4) TS becomes increasing likely to be corrected
by the extrinsic LLRs, more so than an an initially erroneous
(14, 4) TS. The second potential reason is that we noticed
that a growing fraction of (12, 4) TS failures are subsumed by
the (14, 4) absorbing sets which contain them as LLR limits
are raised. Additionally, we notice that the (14, 4) TSs dom-
inate even more as the SNR is increased for a nonsaturating
decoder.

Finally, we would like to know if we are actually seeing
an error floor in the nonsaturating SPA simulation results.
Extrapolating the FER of the waterfall region of Fig. 15 out
to Eb/N0 = 4.0 dB using a constant log-log slope yields an
FER of about 5 × 10−20. This is significantly smaller than
the FER contribution of the (12, 4) and (14, 4) TSs, which
we estimated above to be 4 × 10−17. Therefore, preliminary
evidence predicts that we will indeed see an error floor, but
it would begin at a much lower FER and would have about
twice the slope as a function of SNR in a log-log plot when
compared to the previously reported error floor estimate for
the Margulis code [7], [8], [23]. Specifically, comparing to
prior SPA simulation results, our error floor estimate is about
5 orders of magnitude lower at Eb/N0 = 2.8 dB and about 8
orders of magnitude lower at 4.0 dB.

VIII. CONCLUSION

We have reexamined the error floor levels previously pub-
lished for LDPC codes over the AWGN channel and their
root cause ([7], [8], and [23]). We have shown that the error
floor levels were caused by the interaction of non-codeword
TSs and the effects of constraining highly-certain messages
in a belief propagation decoder, such as the LLR-domain
SPA decoder. It is likely that the saturation of LLRs in
prior work, which was sometimes implicit, was used to avoid
numerical implementation issues that we have noted. We have
shown that when care is taken in processing those messages
the error floor level is lowered by many orders of magnitude
for several specific LDPC codes.

We have reviewed and refined a linear state-space model
of TS behavior which predicts the level of the error floor.
We have added some clarity to the situation of two distinctly
different applications of this state-space model. On one hand,
Sun introduced the model and proved that error floors do
not exist when LLRs are not limited and density evolution

produces valid LLR statistics [28]. On the other hand, Schlegel
and Zhang improved upon the model and predicted nonzero
error floors due to the dominant (8, 8) TSs of the 802.3an
code [11].

With respect to Sun’s work, we are in agreement with Sun’s
conclusion as applied to variable-regular LDPC codes without
cycles. We have shown empirically that the assumptions in the
probability of error of the state-space model do not hold for
codes with cycles. For these codes, we have shown that the
effects of positively correlated LLRs when allowed to grow
(without saturation) drive the ratio of the mean to standard
deviation to a finite value possibly implying an error floor. This
error floor level is difficult to estimate due to the positively
correlated LLRs and the non-Gaussian distribution of our error
indicator.

We have also been able to put Schlegel and Zhang’s work
into a larger context. Their error rate results showing a nonzero
error floor for a specific TS were for a decoder that saturated
(i.e., “clipped”) the LLR values. Their addition of mean gains
to the model made a substantial improvement to error floor
prediction as we have shown. Our realization of the state-
space model is more general than theirs, in that ours does
not require the graphical regularity such that the dominant
root of the model, ρ(A), is limited to the integral value
dv − 2. Additionally, we have simplified considerably the
incorporation of polarity inversion by the degree-two check
nodes into the model.

We have presented two new methods to collect the statistics
needed to drive the model. We have shown that the reason that
the model predicts saturated performance relatively well is that
by the iteration count at which LLRs become substantially
correlated, their variance is driven to zero by the effect of
saturation. This means that the model derived for the case with
no cycles actually works rather well for the case with cycles
when there is a significant saturation effect present. In our
experiments the model with modified mean gains estimated
the FER floor of floating-point simulation to within 0.2 dB
for several different LDPC codes.

Also, we have reached an improved understanding of
the dynamics of TS decoding failure in SPA decoders.
Chen et al. in [25] made the insightful observation, “…that
the error floor is caused by the combined effects of short
cycles in the graph representation of the code and of clipping.”
To further understand this relationship, we have revisited
Richardson’s semi-analytic error floor estimation technique
to measure the error floors of the Margulis code with-
out the presence of “clipping.” We estimated that the total
error floor contribution of the dominant TSs is reduced by
5 to 8 orders of magnitude and this error floor contribution
has twice the slope as a function of SNR (in a log-log plot)
than prior results with saturating decoders. This leads us to
speculate that channel errors corresponding to absorbing sets
can be frequently corrected when the beneficial unsatisfied
check LLRs are allowed to eventually overpower the TS’s
own detrimental LLR growth. This reasoning also helps to
explain the observed slope deviations from Richardson’s error-
floor extrapolation technique as LLR limits are substantially
raised.
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Additionally, when LLR saturation is removed from the
decoder, we have observed that channel errors corresponding
to TSs are not “stable” structures as reported by Ryan and Lin,
who stated that TS failures converge very rapidly, often in
less than ten iterations (§15.3.1 of [41]). Ryan and Lin’s
observation is attributable to decoders with metric saturation.
When the messages reach the saturation point, the dynamics
of the SPA decoder degenerate to that of a bit flipping
decoder. We have observed that, for the Margulis code and
a nonsaturating decoder, the TS failure error rate was reduced
by a factor of three by increasing the number of maximum
iterations from 200 to 1000.

The results make clear that when presenting error
floor results the documentation of any LLR saturation is
important.

Future work may include extensions to more channel mod-
els, investigations into non-elementary TSs, and an accounting
of the correlations among LLRs. We hope that several of the
techniques covered in this paper will be useful for variable-
irregular LDPC codes, but recognize that challenges await.

APPENDIX A

TABLES OF ABSORBING SET STRUCTURE

As opposed to studying the TSs that dominate several
specific codes, in this appendix we present an overview of
all subgraphs that may become error-prone trapping sets which
satisfy specific conditions for particular large classes of codes.
This can offer some perspective on the structural parameters
that have been discussed in this paper such as: a, b, the index
of imprimitivity h, and the spectral radius r .

The variable-regular codes we examine are assumed
to be described by Tanner graphs that are 4-cycle-free.
We group the information into tables according to their
variable-degree dv. The further conditions we put on the
subgraphs of interest are described in Assumptions 2 and 7 and
Definition 3: the subgraphs must be elementary, connected
and absorbing, respectively. We will characterize subgraphs as
stronger or weaker according to the relative magnitude of their
spectral radius, i.e., a “stronger” TS has a relatively greater
value of r .

Instead of working on Tanner graphs directly, we would
prefer to work with their corresponding multigraphs which
are less complex. The following lemma shows that there is a
one-to-one mapping between both sets.

Lemma 3: There exists a bijective map between the set
of dv-variable-regular elementary Tanner subgraphs (up to
a relabeling of the check nodes) and the set of multigraphs
G = (V , E) with vertex degrees upper bounded by dv, i.e.,
d(vi ) ≤ dv∀ vi ∈ V .

Proof: Given the elementary Tanner subgraph BS =
(S,N (S), ES ), each variable node v ∈ S becomes a vertex
v ∈ V of G, that is V = S, and the degree-one check nodes
are discarded. The check nodes of degree two become the
edges of G, each joining a pair of vertices.

Given the multigraph G, each vertex v ∈ V of G becomes
a variable node v ∈ S of BS . So, again V = S. Each edge of

G is replaced by a degree-two check node (with an arbitrary
label) and two edges in BS . Finally, degree-one check nodes
are attached with single edges to variable nodes as needed
until every variable node has dv neighbors.

Rather than find every single graph that satisfies our
parameters we can simplify the search considerably. As we
are just interested in a graph’s structure as opposed to its
labeling we need only identify one of the graphs among several
that are isomorphic to the others. In fact, we are partitioning
the graphs into equivalence classes induced by graphical
isomorphism.

Furthermore, we will limit our search to simple graphs,
which have neither self-loops nor parallel edges. By limiting
the search to simple graphs, we eliminate the multigraphs of
girth 2 and their corresponding Tanner subgraphs containing
4-cycles.

Computational graph theory tools such as “geng” [63] can
very quickly generate non-isomorphic simple graph descrip-
tions satisfying sets of parameters such as ours. We run this
tool once for each row of the tables. Each time we configure
it to find undirected graphs of order a, size (adv − b)/2, and
with vertex degrees in the interval [�dv/2� , dv]. The first two
conditions were developed in the beginning of Section III-C,
while the third condition follows from the definition of absorb-
ing sets with respect to the multigraph representation. We then
process each graph in a custom tool that converts it to the
adjacency matrix of the associated directed graph to find its
spectral radius r and index of imprimitivity h.

Table V shows the graphs found corresponding to the set
of 4-cycle-free codes with dv = 3. The graphical equivalence
classes found are divided into rows by their (a, b) parameters
listed in the first column. The second column of each row
presents the number of equivalence classes found that satisfy
the (a, b) parameters and all our other assumptions. The third
column shows the maximum index of imprimitivity h over
the (a, b) equivalence classes. The fourth and fifth columns
show the minimum and maximum spectral radius r over the
(a, b) equivalence classes. To save space we have left out
the weakest (a, b) pairs with rmax ≤ 1.3. Tables VI and VII
present similar results based on codes with dv = 4 and 5,
respectively, omitting the (a, b) pairs with rmax ≤ 2.6 for
dv = 5.

These tables present enough information to comment on
the approximations to the spectral radius r developed in
Section III-C. The extreme relative estimation errors are
summarized in Table VIII. We find empirically that the approx-
imation of (21) does not overestimate the spectral radius, but
generally underestimates it. For 90% of the dv = 3 equivalence
classes, this approximation is no more than 6.0% below the
true value of the spectral radius. The approximation of (22)
generally produces larger estimates of the spectral radius,
sometimes overestimating the true value. For the dv = 3
equivalence classes shown in Table V, the mean approxi-
mation error is −3.5% for (21) and +1.3% for (22). For
both estimators, we measure the standard deviation of the
relative error to be about 2.0%. Since we find the correlation
coefficient between the relative errors of these two estimates
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TABLE V

CONNECTED, ELEMENTARY ABSORBING SETS FROM THE

SET OF 4-CYCLE-FREE dv = 3 VARIABLE-REGULAR

CODES, WITH rmax > 1.3

to be 0.732, we may reduce the standard deviation and
bias by combining them. In summary, it appears that (22)
and the combined estimator are marginally better estimators
than (21).

As discussed in Section III-C, the approximation (22)
assumes that the TS contains mostly zero or one unsatisfied
check node per variable node, which is not always true in
Table VII (i.e., dv = 5). When the assumption does not
hold, the approximation of (22) can underestimate the spectral
radius significantly, as demonstrated by the extreme value
within Table VIII. In this case, the −20.2% error occurred
over the relatively weak (10, 16) TSs. If we limit the process-
ing of Table VII to its rows such that b ≤ a, i.e., the
strong TSs, then the extreme relative error for this estimator
would be reduced to −12.9%, as shown in the final row
of Table VIII.

APPENDIX B
REDUCIBLE SYSTEM MATRICES A

In this appendix we address the case of reducible system
matrices A. We will find that the only reducible system
matrices allowed by the prior assumptions in Section III-C are

TABLE VI

CONNECTED, ELEMENTARY ABSORBING SETS FROM THE SET

OF 4-CYCLE-FREE dv = 4 VARIABLE-REGULAR CODES

associated with multigraphs which are cycle graphs, which we
now define.

A cycle graph, denoted Cn , is a graph of order n ≥ 2, in
which the distinct vertices of the set {v1, v2, . . . , vn} are joined
by the edges from the collection {{v1, v2}, . . . , {vn−1, vn},
{vn, v1}}. A cycle graph is a single cycle.

Example 6: The multigraph corresponding to the Tanner
subgraph of Fig. 2d is the cycle graph of order 4, C4.

Lemma 4: A (0, 1)-matrix is irreducible if and only if the
associated digraph is strongly connected.

Proof: See [36, p. 78].

Lemma 5: Let G be a connected multigraph of order n ≥ 2.
Then G is isomorphic to the cycle graph Cn if and only if every
vertex has degree two.

Proof: Omitted.

Theorem 6: Consider a multigraph G which satisfies
Assumptions 7 and 8. G is either a cycle graph or has an
associated A(D) matrix that is irreducible.

Proof: Multigraphs with any vertices of degree one are
not allowed by Assumption 8. Connected multigraphs with
all vertices of degree two are cyclic by Lemma 5. So now we
will show any possible remaining connected multigraphs must
have an irreducible adjacency matrix A(D).

The remaining multigraphs must have at least one vertex
of degree greater than two. Also, all vertex degrees must sum
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TABLE VII

CONNECTED, ELEMENTARY ABSORBING SETS FROM THE

SET OF 4-CYCLE-FREE dv = 5 VARIABLE-REGULAR

CODES, WITH rmax > 2.6

TABLE VIII

EXTREME RELATIVE ESTIMATION ERRORS FOR THE SPECTRAL RADIUS

to an even number, as every edge joins two vertices. This
yields a connected multigraph with at least two cycles. Since
a walk without backtracking through a connected multigraph
with two cycles is able to reverse direction, every edge
may be visited in either direction. Thus, when the edges of
G are expanded to be vertices of the digraph D, D will
be strongly connected. Since D it is strongly connected,
its associated adjacency matrix A(D) will be irreducible by
Lemma 4.

Of course, since A(D) is irreducible so must be A(D)T,
which we use as the system matrix A in our state-space model.
Therefore, the remainder of this appendix need only address
the properties of cycle graphs. Relative to the variable-regular
codes addressed in this paper, the cycle graph Ca corresponds
to an (a, b) TS with a ≥ 2 and b = (dv − 2)a.

The expansion of the edges of cycle graph G = Ca

to the digraph D will produce two disconnected directed
cycles of length a, one associated with the clockwise non-
backtracking walk of G and one with the counter-clockwise
non-backtracking walk of G. Thus, A(D) has a symmetric
permutation that is P A(D) PT = [ A1 0

0 A2

]
, in which A1 and A2

are each a × a irreducible permutation matrices that imple-
ment a circular shift by one position. All the eigenvalues of
A1 and A2 lie on the unit circle. The dominant eigenvalues of
A1 and A2 are ρ(A1) = ρ(A2) = 1 and their corresponding
eigenvectors are the all-one vectors. Every eigenvector of
A1 becomes an eigenvector of P A(D) PT by appending
a zeros.

It is now easy to show that wT
1 = [1, 1, . . . 1] is a left

eigenvector of A corresponding to the dominant eigenvalue
of A, which is r = 1. However, when r = 1 the first partial
sums within (30) and (31) do not absolutely converge with
increasing iterations. We now address this issue.

For any TS with an associated reducible matrix A satisfying
Assumptions 7 and 8, we can also show that all the column
sums of B and Bex are two. With these values of r , wT

1 , and
the column sums, (30) simplifies to

E[β ′l ] = 2a mλ

(
1+

l∑

i=1

1
∏i

j=1 ḡ′j

)

+2a (dv − 2)

l∑

i=1

m(i)
λ(ex)∏i

j=1 ḡ′j
(35)

and (31) simplifies to

VAR[β ′l ] = 8a mλ

(
1+

l∑

i=1

1
∏i

j=1 ḡ′j

)2

+4a (dv − 2)

l∑

i=1

σ 2
i

(
∏i

j=1 ḡ′j )2
. (36)

This lack of convergence poses no problem to finding the
ratio of E[β ′l ] in (35) to the square root of VAR[β ′l ] in (36),
which is what we require for our prediction model. In fact, this
ratio simplifies significantly if we can assume that the LLRs
are saturated. In the saturated decoding case, the partial sum
with σ 2

i in (36) provides little contribution and we ignore it.
Then,

lim
l→∞

E[β ′l ]√
VAR[β ′l ]

=
√

a

2 mλ

(
mλ + (dv − 2) · lim

l→∞m(l)
λ(ex)

)
.

(37)

We note that in (37), the value at which the extrinsic
LLR magnitudes saturate, liml→∞ m(l)

λ(ex), plays an important
role in determining the probability of failure for this type of
TS in a variable-regular LDPC code.

APPENDIX C
MULTIGRAPHS WITH LEAVES AND BRANCHES

We now expand the set of multigraphs addressed in this
work to include those with leaves and branches, which were
previously eliminated by Assumption 8. Thus, the variable
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nodes in the associated Tanner subgraphs will be permitted to
have dv−1 neighboring degree-one check nodes. In [28], Sun
referred to the graphs addressed in this appendix as “TSs with
external data nodes.”

We will describe the elementary Tanner graphs of this
appendix from the perspective of their associated multigraphs
using the mapping described in Section III-C. Let a base graph
be a multigraph that satisfies Assumptions 2, 7, and 8. Such a
graph contains one or more cycles. A leaf is a vertex of degree
one. A branch is a vertex of degree two or more outside of
the base graph, and is not contained in any cycles.

Example 7: The TS in Fig. 5a contains one leaf on a base
graph and the TS in Fig. 5b contains just three leaves and
no base graph. The (18, 8) Tanner subgraph of Fig. 10c has
leaves A, B, and D and branch C on a base graph that is the
(14, 4) TS of Fig. 10b.

Assumption 11 (Replacement for Assumption 8): Multi-
graphs of interest must contain a base graph and may contain
leaves and branches.

We require a base graph because without one the eigen-
values would all be zero, as will become apparent shortly.
Our new assumption allows the variable nodes within the
associated Tanner subgraphs to have as many as dv − 1
neighboring degree-one check nodes.

Theorem 7: Let G = (V , E) be a multigraph satisfying
Assumptions 2, 7, and 11, containing base graph G B, n leaves
and m branches, with n ≥ 1 an m ≥ 0. Let D = (Z , A) and
DB be the digraphs associated (as described in Section III-C)
with G and G B, respectively. Then, the adjacency matrix A(D)
is reducible and the set of its unique eigenvalues is the union
of the eigenvalues of A(DB) and zero.

Proof: Each additional leaf in G adds one edge to G.
Let the edge ei ∈ E join leaf vk to vertex v j in G, where v j

is not a leaf. The edge ei maps to vertices zi , z′i ∈ Z in D.
These vertices are not strongly connected to the digraph as
d+(zi ) = 0 and d−(z′i ) = 0, and hence A(D) must be
reducible by Lemma 4.

Every leaf in G creates an all-zero column in A(D) due
to d−(z′i ) = 0 and an all-zero row due to d+(zi ) = 0.
The all-zero columns may be symmetrically permuted to the
left (i.e., their corresponding vertices are relabeled with the
lowest possible values) and the all-zero rows to the bottom to
form

P A(D) PT =
⎡

⎣
0 Y1 0
0 X Y2
0 0 0

⎤

⎦, (38)

where the block diagonal contains square submatrices. The
n × n zero matrices at both ends of the block diagonal
correspond to the n leaves in G.

The eigenvalues of A(D) are the roots of the character-
istic equation det(A(D) − μI) = 0, which simplifies to
det(X−μI)μ2n = 0 by use of the expansion by minors along
every zero row and column. Thus, the eigenvalues of A(D)
are the eigenvalues of X and 2n zeros. In case G contains
branches, the removal of one layer of leaves exposes a new

layer of leaves and the operations in this paragraph must be
repeated until we reduce X to be a symmetric permutation of
A(DB), which will be irreducible except for the case addressed
in Appendix B.

By showing that the nonzero eigenvalues are preserved by
the addition of leaves and branches, it is simple to argue that
Theorem 2, which bounds the spectral radius of A(D), still
holds if Assumption 8 is replaced by Assumption 11.

The only weakness with respect to our prior development
is that we can no longer assume that the left eigenvector
wT

1 is positive, as A(D) may now be reducible. In practice,
we have found that the new entries added to wT

1 by the
addition of leaves and branches are half zero and half positive.
This may be proved by applying the Subinvariance Theorem
in [35, p. 23] to (38). The presence of zero entries in wT

1
weakens our prior claims on the error indicator βl � wT

1 xl .
Now, the error indicator is most effective on the variable
nodes corresponding to the base graph and less effective
on the variable nodes corresponding to the branches and
leaves.

Finally, we do not see much practical motivation to predict
the error floors of graphs with branches and leaves. We would
prefer to run predictions on the base graphs contained within.
Since the graphs with branches and leaves have the same
spectral radius as their base graph they are no more likely
to fail, in theory. In fact, they should be less likely to fail as
more channel values are involved and more unsatisfied check
nodes are working to correct the error pattern associated with
the graph.
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M. J. Wainwright, “Predicting error floors of structured LDPC codes:
Deterministic bounds and estimates,” IEEE J. Sel. Areas Commun.,
vol. 27, no. 6, pp. 908–917, Aug. 2009.

[63] B. D. McKay. (Nov. 4, 2009). Nauty User’s Guide (Version 2.4).
[Online]. Available: http://cs.anu.edu.au/~bdm/nauty/

Brian K. Butler (S’90–M’90–SM’01) received the B.S. degree in engineering
from Harvey Mudd College, Claremont, CA, in 1989, the M.S. degree in
electrical engineering from Stanford University, Stanford, CA, in 1990, and
the Ph.D. degree in electrical and computer engineering from the University
of California, San Diego (UCSD), in 2013. At UCSD, he was affiliated with
the Center for Magnetic Recording Research. His research interests include
coding, modulation, and the design of wireless systems and receivers.

He was with QUALCOMM, Inc., San Diego, CA, during the summer of
1989 and from 1990 until 2008. At QUALCOMM, he worked on a variety of
CDMA cellular and other wireless systems, including their product designs.
He performed system simulation, design verification, algorithm design, and
field testing of the early CDMA cellular system. He designed and led portions
of the air-interface and the ASIC devices on the GLOBALSTAR CDMA-LEO
satellite project. He contributed to the CDMA air-interface designs, phone
designs, and the ASIC designs over many generations. From 1996 to 2005,
he held the position of Vice President of Engineering in the ASIC division,
leading the communication systems engineering department and the modem
technology team. He led systems engineering on and was co-project-engineer
of the first 3G-1x product and the 1x-EV-DV prototype developments. From
2005 to 2008, he contributed as a VP in QUALCOMM Corporate R&D,
including as project engineer of the 4G-LTE (3GPP E-UTRA) effort.

Dr. Butler holds 39 issued U.S. patents and several foreign.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees
in mathematics from the Massachusetts Institute of Technology (MIT),
Cambridge, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellowship at the Courant
Institute, New York University. He was with the IBM Research Division
in San Jose, CA, from 1980 to 1995. He joined the faculty of the School
of Engineering at the University of California, San Diego, in July 1995,
where he is currently Professor of Electrical and Computer Engineering. He is
affiliated with the Center for Magnetic Recording Research, where he holds
an endowed chair and served as Director from 2000 to 2011. His primary
research interests lie in the areas of information theory and communications,
particularly coding and modulation techniques, with applications to digital
data storage and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE Infor-
mation Theory Society from 1991 to 1996 and from 2009 to 2011. He was
re-elected for another three-year term in 2012. He served as Co-Guest Editor
of the May 1991 Special Issue on “Coding for Storage Devices” of the
IEEE TRANSACTIONS ON INFORMATION THEORY. He served the same
TRANSACTIONS as Associate Editor for Coding Techniques from 1992 to
1995, and as Editor-in-Chief from July 2001 to July 2004. He was also
Co-Guest Editor of the May/September 2001 two-part issue on The Turbo
Principle: From Theory to Practice of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS.
Prof. Siegel was corecipient, with R. Karabed, of the 1992 IEEE Informa-

tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B. H. Marcus and
J. K. Wolf. With J. B. Soriaga and H. D. Pfister, he received the 2007 Best
Paper Award in Signal Processing and Coding for Data Storage from the Data
Storage Technical Committee of the IEEE Communications Society. He holds
several patents in the area of coding and detection, and was named a Master
Inventor at IBM Research in 1994. He is a member of Phi Beta Kappa and
the National Academy of Engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


