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Abstract—In this paper we continue our study of the influence
of message saturation and quantization on the error-rate per-
formance of iterative, message-passing decoders for low-density
parity-check (LDPC) codes. We extend our previous analytical
results for the min-sum algorithm (MSA) and its variants to
the sum-product algorithm (SPA), demonstrating the significant
impact of message saturation on the appearance and location of
error floors. Simulation results for selected LDPC codes on the
binary symmetric channel (BSC) and the additive white Gaussian
noise channel (AWGNC) confirm that the benefits of a quasi-
uniform quantization scheme, already observed in the context of
MSA decoding, apply also to SPA-based decoding.

I. INTRODUCTION

The outstanding performance of low-density parity-check
(LDPC) codes and iterative, message-passing (MP) decoding
algorithms [1] has attracted considerable attention over the
past decade and these techniques are being deployed in a
growing number of practical applications. At high signal-to-
noise ratio (SNR), however, LDPC codes and MP decoders
may be subject to the error floor phenomenon, which manifests
itself as an abrupt change in the slope of the error-rate curve.

The most common way to improve the error floor perfor-
mance of LDPC codes has been to redesign the codes so as
to allow Tanner graph representations with large girth and
with fewer error-prone substructures (EPSs) [2], [3]. Another
approach has been to modify the standard iterative decoding
algorithms by either changing the message update rules at
check nodes or applying extra post-processing based upon
knowledge about EPSs [4]–[6]. In fixed-point implementation
of sum-product algorithm (SPA) decoding, it has been found
that saturation and clipping during the quantization of the log-
tanh function, usually called the φ function, has an impact
on the error floor performance [7], [8]. A variable precision
quantization scheme was proposed in [7], which uses larger
quantization step size for magnitudes greater than 1, and
smaller step size for magnitudes less than 1. An adaptive
uniform quantization method based on the similar idea is
proposed in [8] to maintain the precision of the quantization of
the nonlinear φ function according to the range of input values.
The messages sent from variable nodes (VNs) to check nodes
(CNs) are quantized with larger step size to include a wide
range of values, while the messages sent from CNs to VNs
are quantized with smaller step size to capture the precision
of the values. Such variable precision or adaptive quantization
methods should still be considered as uniform quantization,
with different uniform quantization step sizes used according
to the input range or decoding stage.

In a recent work [9], we have investigated the cause of error
floors in min-sum (MS) decoding of binary LDPC codes. We
showed that, under certain idealized conditions, the trapping
set by itself would not cause decoding failure; rather, uniform
quantization of the messages generated during MS decoding
was shown to play a significant role in the occurrence of an
error floor. Motivated by this analysis, we proposed a (q+ 1)-
bit quasi-uniform quantizer which was intended to extend
the allowable range of message values. Error-rate simulation
results for selected LDPC codes on the binary symmetric
channel (BSC) and the additive white Gaussian noise channel
(AWGNC) showed that this quantization technique could sig-
nificantly lower the error floors typically observed with these
codes. Furthermore, MS decoder failure was never associated
with error patterns concentrated in the small trapping sets
commonly believed to be the cause of often observed error
floors.

In this work, we extend these results to SPA decoding. Anal-
ysis of the SPA decoder iterations under the same idealized
conditions as above confirms that, when a large dynamic range
for exchanged messages is allowed, the SPA decoder does not
fail on error patterns corresponding to small trapping sets. We
also present simulation results for the same LDPC codes on
the BSC and AWGNC using the (q + 1)-bit quasi-uniform
quantizer. As was the case with MS decoding, these results
significantly lower the error floor, with no degradation in error-
rate performance in the waterfall region.

The remainder of the paper is organized as follows. In
Section II, we investigate the impact that message quantization
can have on the error floor performance of SPA decoding. In
Section III, we review the (q+ 1)-bit quasi-uniform quantiza-
tion method that overcomes some of the limitations imposed
by traditional quantization rules. In Section IV, we use the
quasi-uniform quantizer in conjunction with SPA decoding
and, through computer simulation of two LDPC codes known
for their high error floors, demonstrate the significant im-
provement in error-rate performance that this quantizer affords.
Section V concludes the paper.

II. ERROR FLOOR OF LDPC CODES

To facilitate our discussion, we review some of the notations
and terminologies introduced in [9]. We define the term
absolute trapping set from a graph-theoretic perspective, inde-
pendent of the channel and the decoder. Let G = (V ∪C,E)
denote the Tanner graph of a binary LDPC code with the set
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of VNs V = {v1, . . . , vn}, the set of CNs C = {c1, . . . , cm},
and the set of edges E.

Definition 1 (absolute trapping set): A subset of V ∪ C
is an (a, b) absolute trapping set if there are b odd-degree
check nodes in the subgraph induced by a variable nodes, the
subgraph is connected, and it has at least one check node of
degree-one.

We want to point out that, as will be shown later, the degree-
one check nodes are essential because they are able to pass
correct extrinsic messages into the trapping set. Let S be the
induced subgraph of an (a, b) trapping set contained in G with
VN set VS ⊆ V and CN set CS ⊆ C. Let set C1 ⊆ CS be the
set of degree-one CNs in the subgraph S, and let set V1 ⊆ VS
be the set of neighboring VNs of CNs in C1.

In analogy to the definition of computation tree in [10], we
define a k-iteration computation tree as follows.

Definition 2 (k-iteration computation tree): A k-iteration
computation tree Tk(v) for an iterative decoder in the Tanner
graph G is a tree graph constructed by choosing variable
node v ∈ V as its root and then recursively adding edges
and leaf nodes to the tree that participate in the iterative
message-passing decoding during k iterations. To each vertex
that is created in Tk(v), we associate the corresponding node
update function in G.

Let D(u) be the set of all descendants of the vertex u in a
given computation tree.

Definition 3 (separation assumption): Given a Tanner
graph G and a subgraph S induced by a trapping set, a
variable node v ∈ V1 is said to be k-separated if, for at least
one neighboring degree-one check node c ∈ C1 of v in S,
no variable node v′ ∈ VS belongs to D(c) ⊂ Tk(v). If every
v ∈ V1 is k-separated, the subgraph S is said to satisfy the
k-separation assumption.

In [9], it has been shown that if the induced subgraph of
a trapping set satisfies the k-separation assumption, for both
BSC and AWGNC, the min-sum decoder would not fail on
an error pattern corresponding to the trapping set as long as
k is large enough and there is no limit on the magnitudes of
messages passed in the decoder. In the following, we extend
this result to SPA decoder.

To get further insight into the connection between trapping
sets and decoding failures of iterative MP decoders, we
consider the SPA decoder, whose VN and CN update rules we
now briefly recall. A VN vi receives input message Lch

i from
the channel, which can be the log-likelihood ratio (LLR) of
the corresponding channel output. Denote by Li→j and Lj→i

the messages sent from vi to cj and from cj to vi, respectively,
and denote by N(k) the set of neighboring nodes of VN vk
(or CN ck). Then, the message sent from vi to cj during SPA
decoding is given by

Li→j = Lch
i +

∑
j′∈N(i)\j

Lj′→i , (1)

and the message from CN j to VN i is computed as

Lj→i = 2tanh−1

 ∏
i′∈N(j)\i

tanh
Li′→j

2

 . (2)

In some practical implementations of SPA, the following
equivalent CN update rule is often used

Lj→i =

 ∏
i′∈N(j)\i

sign(Li′→j)

·φ−1

 ∑
i′∈N(j)\i

φ(|Li′→j |)


(3)

where φ(x) = − log[tanh(x/2)] and φ−1(x) = φ(x).
We want to point out that the hyperbolic tangent function,

tanh(x), has numerical saturation problems when computed
with values of limited precision. For example, in double pre-
cision floating-point computer implementation (64-bit IEEE
754), it is found that tanh(x/2) would be rounded to 1 when
x > 38, meaning that φ−1(φ(x)) = ∞ for x > 38 [12]. In
order to avoid such problems that can arise from limited preci-
sion, thresholds on the magnitudes of messages are commonly
applied in simulation studies. In hardware implementations,
even smaller thresholds are sometimes used due to the limited
number of bits used to represent the messages.

In order to get around the saturation problem of the φ
function, the following equivalent CN update rule can be used
instead of (2) or (3)

Lj→i = �
i′∈N(j)\i

Li′→j (4)

where � is a pairwise operator defined as

U � V = log

(
1 + eU+V

eU + eV

)
= sign(U)sign(V ) ·
{min(|U |, |V |) + s(|U |, |V |)} (5)

= sign(U)sign(V ) min(|U |, |V |)
+s(U, V )

and

s(x, y) = log
(

1 + e−|x+y|
)
− log

(
1 + e−|x−y|

)
. (6)

The proof of equivalence between (2) and (4) can be found in
[13]. We call such an implementation box-plus SPA decoding.

The formulation above does not have the precision problem
that (2) and (3) have, and, in fact, in a double-precision
floating-point implementation, the maximum magnitude of
a message that can be supported is approximately 1.79 ×
10308 [12].

For box-plus SPA decoding, we state the following bound
on the correction factor s(x, y).

Lemma 1: For any non-negative value x, y ≥ 0, the correc-
tion factor s(x, y) satisfies the bound − log 2 < s(x, y) ≤ 0.

With Lemma 1, we can extend the MS decoding results in
[9] to SPA decoding.

Theorem 1: Let G be the Tanner graph of a variable-regular
LDPC code that contains a subgraph S induced by a trapping

 

 



set. When S satisfies the k-separation assumption and all VNs
outside S receive the correct transmitted symbols from the
BSC, the SPA decoder can successfully correct all of the VNs
in S that receive incorrect symbols from the BSC, provided k
is large enough.

Proof: From the CN update rule described in (4) and (5),
the box-plus SPA decoding can be considered as a min-sum
decoding with a small correction factor. It has been shown
in [15] that, with the same input messages, the CN output in
SPA decoding has the same sign but smaller magnitude than
that of min-sum decoding. Since the � operation is performed
pairwise and the correction factor in (5) satisfies − log 2 <
s(|U |, |V |) < 0, the difference between the output messages
generated by a CN of degree dc in SPA decoding and in MS
decoding CN is upper bounded by s̄ , dlog(dc − 1)e · log 2,
where dxe is the smallest integer that is greater than x.

Assume VN vr ∈ V1 is k-separated and the corresponding
k-iteration computation tree is Tk(vr). If the subgraph S
corresponding to the (a, b) trapping set contains no cycles,
then there are exactly a VNs in Tk(vr) that belong to set
VS , and it is obvious that all such incorrect VNs in set VS
can be corrected. Hence, in the rest of the proof, we consider
the subgraph S that contains cycles, especially the case where
every vr ∈ V1 belongs to a cycle. Let cr ∈ C1 be a neighboring
degree-one CN of vr in S. Denote by T (cr) the subtree starting
with CN cr. From the separation assumption and the assumed
correctness of channel messages for VNs outside S, it follows
that all descendant VNs of cr in Tk(vr) receive the correct
transmitted symbol from the BSC. Therefore, all VN nodes
in T (cr) have input messages from the channel which have
correct signs and the same magnitude. All CNs in T (cr) are
satisfied, meaning that all messages received by a VN from its
children CNs in T (cr) must have the same sign as its received
message from the channel. Hence, the outgoing message from
any VN vi to its parent CN cj in T (cr) satisfies the following
equality

|Li→j | =
∣∣Lch

i

∣∣+
∑

j′∈N(i)\j

|Lj′→i| . (7)

Let |Ll| be the minimum magnitude among the messages
sent from the level-l VNs whose shortest path to a leaf VN
contains l CNs in T (cr). Hence, |L0| is the magnitude of
messages sent by leaf VNs, i.e., the magnitude of the messages
received from the BSC. For the box-plus SPA decoder, |Ll|
can be bounded from below, as follows

|Ll| ≥ |L0|+ (dv − 1) (|Ll−1| − s̄)

> (dv − 1)l|L0| − s̄
l∑

i=1

(dv − 1)i

= (dv − 1)l
(
|L0| −

dv − 1

dv − 2
s̄

)
+ s̄

dv − 1

dv − 2
(8)

where dv is the variable degree.
Since all input messages to the decoder from the BSC have

the same magnitude, if we scale the magnitudes of all initial

messages such that

|L0| >
dv − 1

dv − 2
s̄ =

dv − 1

dv − 2
· dlog(dc − 1)e · log 2, (9)

then the magnitudes of messages sent towards cr in the
computation tree Tk(vr) grow exponentially in the number
of iterations, with base dv − 1.

We now argue exactly as in [9]. We form the subtree T (c′)
defined by the branches in Tk(vr) emanating from one of vr’s
neighboring CNs, c′ ∈ CS \ C1. It can be shown that, for
some integer t, any depth-t subtree starting from a VN v ∈ S
in T (c′) contains at least one k-separated VN as a descendant.

The value of t depends on the structure of the (a, b) trapping
set, but it is clear that t ≤ a. Now, if vr has not been corrected,
the sign of L′l, the message that vr receives from a child c′ ∈
CS after l iterations, will be the opposite of the sign of the
message that it receives from cr ∈ C1. Considering each of
these depth-t subtrees as a “supernode” with (dv−1)t children,
we conclude that |L′l| satisfies

|L′l| < |L0|
[
(dv − 1)t − 1

]d lt e . (10)

If l ≤ k and l is large enough, the bounds in (8) and (10)
imply that

|Ll| > (dv − 1)|L′l|. (11)

This means that VN vr has been correctly decoded.
Note that the upper bound in (10) is extremely loose, and

for most small-size trapping sets, the upper bound is less than
|L0|(dv − 2)l. We can linearly scale all input messages to
the decoder to make |L0| satisfy the lower bound in (9). As
will be shown in the simulation results, linear scaling of the
input LLRs to SPA decoder will indeed affect the decoding
performance, because the correction factor s(x, y) is not linear
in either x or y.

We can extend Theorem 1 to the AWGNC, implying the
following result.

Corollary 1: Let G be the Tanner graph of a variable-
regular LDPC code that contains a subgraph S induced by
a trapping set. When S satisfies the k-separation assumption
and the messages from the AWGNC to all VNs outside S are
correct, the SPA decoder can successfully correct all erroneous
VNs in S, provided k is large enough.

The trapping sets in most LDPC codes typically satisfy
the k-separation assumption only for small values of k, so
the analytical results above do not strictly apply. Still, the
analysis lends some insight into the behavior of the SPA
decoder in the vicinity of trapping sets, and the simulation
results obtained with the quasi-uniform quantizer, discussed in
the next two sections, confirm that saturation and quantization
of decoder messages can play a significant role in the error
floor phenomenon.

III. QUASI-UNIFORM QUANTIZATION

Prior investigations into the error floor phenomenon have
used a uniform quantizer with step-size ∆ and q-bit rep-
resentation of the quantization levels, with one of the bits

 

 



reserved for the sign. Hence, the quantizer levels have values
in {k∆, withN = 2q−1 − 1, and −N ≤ k ≤ N}.

The (q+1)-bit quasi-uniform quantization rule proposed in
[9] is as follows.

Q(L) =



(0, l), if l∆− ∆
2 < L ≤ l∆ + ∆

2

(0, N), if N∆− ∆
2 < L < dN∆

(0,−N), if −dN∆ < L ≤ −N∆ + ∆
2

(1, r), if drN∆ ≤ L < dr+1N∆

(1,−r), if −dr+1N∆ < L ≤ −drN∆

(1, N + 1), if L ≥ dN+1N∆

(1,−N − 1), if L ≤ −dN+1N∆

where N = 2q−1−1, −N+1 ≤ l ≤ N−1, 1 ≤ r ≤ N , and d
is a quantization parameter within the range (1, dv−1]. When
i = 0, the value represented by the (q + 1)-bit quasi-uniform
quantizer level (i, l) is l∆, whereas when i = 1, it is dlN∆
for l > 0 and −dlN∆ for l < 0. The parameter d can be
optimized empirically or simply chosen according to simple
heuristics. We have found that, when q is large, a small value
of d provides satisfactory performance.

In comparison to the modified uniform quantization method
proposed in [7], [8], the (q + 1)-bit quasi-uniform quantizer
can represent values of much greater magnitudes. We also note
that, for SPA decoding using the φ function, it is quite difficult
to accommodate a large range of message values because the
outputs of the φ function for large input values are very small,
requiring very fine precision.

IV. NUMERICAL RESULTS

To demonstrate the improved performance offered by our
proposed quasi-uniform quantization method, we compare its
error-rate performance to that of uniform quantization with
box-plus SPA decoding applied to two known LDPC codes on
the BSC and the AWGNC. The two LDPC codes we evaluated
are a rate-0.3 (640,192) quasi-cyclic (QC) LDPC code [6] and
the rate-0.5 (2640,1320) Margulis LDPC code [14]. The frame
error rate (FER) curves are based on Monte Carlo simulations
that generated at least 200 error frames for each point in the
plots, and the maximum number of decoding iterations was
set to 200.

The (640,192) QC-LDPC code, designed by Han and
Ryan [6], is a variable-regular code with variable degree 5
and check degrees ranging from 5 to 9. It has 64 isomorphic
(5,5) trapping sets and 64 isomorphic (5,7) trapping sets. We
applied our exhaustive trapping set search algorithm [16] to
this code, and these are the only two types of (a, b) trapping
set for a ≤ 15 and b ≤ 7. The error floor starts relatively high
for saturated decoders, so it is quite easy to reach the error
floor with Monte Carlo simulation.

Figs. 1 and 2 show performance results for the (640,192)
QC-LDPC code on the BSC and AWGNC. For the (6+1)-bit
quasi-uniform quantizer, the non-uniform quantization param-
eter was set to d = 1.5 because, with q = 6, a large range of
message values is covered, even with such a small d. We see
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Fig. 1. FER results of SPA decoder on the (640,192) QC-LDPC code on
BSC. Uniform quantization step ∆ = 0.25, and d = 1.5 in (q+1)-bit quasi-
uniform quantization.
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Fig. 2. FER results of SPA decoder on the (640,192) QC-LDPC code on
AWGNC. The uniform quantization step ∆ = 0.25, and d = 1.5 in (q+1)-bit
quasi-uniform quantization.
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Fig. 3. FER results of approximate-SPA decoder on the Margulis code of
length 2640 on AWGNC. Uniform quantization step ∆ = 0.25, and d = 1.2
in (q+1)-bit quasi-uniform quantization.

 

 



that, on both channels, the box-plus SPA decoder with quasi-
uniform quantization yields FER results very close to those
obtained with a floating-point implementation. Decoding with
uniform quantization, on the other hand, suffers from high
error floors.

In Fig. 1, we also compare two floating-point box-plus
SPA decoders that use different scaling of the input LLR
magnitudes. One uses the exact LLR value, whose magnitude
is | log 1−p

p |, where p is the crossover probability; the other
scales the LLR magnitudes to 2. Note that the SPA decoder
with scaled input LLRs from the BSC has slightly better
performance when the crossover probability is relatively small.

In Fig.3, we show results for SPA decoding of the
(2640,1320) Margulis code. For this example, we adopted
the following two-piece linear approximation from [17] in the
computation of (6),

ln
(

1 + e−|x|
)

=

{
0.6− 0.24|x|, if |x| < 2.5

0, otherwise.
(12)

Since the variable-node degree in the (2640,1320) Margulis
code is smaller than that of the (640,192) QC-LDPC code, the
(6+1)-bit quasi-uniform quantization parameter was set to d =
1.2. We found that the approximate-SPA decoder ran about
five times faster than the original box-plus SPA decoder, with
a performance penalty of less than 0.02 dB in the waterfall
region.

As was the case in MS decoding, none of the decoder
failures observed when using the quasi-uniform quantizer cor-
responded to error patterns associated with small trapping sets.
With uniform quantization, on the other hand, the situation was
essentially the opposite. When we deliberately forced errors
in the variable nodes of a (5,5) or (5,7) trapping set of the
(640,192) QC-LDPC code, with all other VNs set correctly,
the floating-point box-plus SPA decoder and the fixed-point
version with quasi-uniform quantization method decoded suc-
cessfully, while decoders using uniform quantization failed.
A similar outcome was observed for the (12,4) and (14,4)
trapping sets in the Margulis code.

V. CONCLUSION

Trapping sets and other error-prone substructures are known
to influence the error-rate performance of LDPC codes with
iterative, message-passing (MP) decoding. In this paper, we
continued our study of the influence of message saturation
and quantization on MP decoder performance, extending the
results for min-sum (MS) decoding presented in [9] to sum-
product algorithm (SPA) decoding. An analysis of SPA de-
coding in an idealized setting suggested that decoder message
saturation plays a key role in the occurrence of errors in
small trapping sets, leading to error floor behavior. This
motivated the application of the quasi-uniform quantization
rule proposed in [9] as a means of efficiently allowing a larger
range of decoder message values. Simulation results for a
(640,192) QC-LDPC code and the (2640,1320) Margulis code
confirmed that this quantizer can significantly reduce the error

floors of these codes with essentially no increase in decoding
complexity.
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[4] S. Lädner and O. Milenkovic, “Algorithmic and combinatorial analysis
of trapping sets in structured LDPC codes,” in Proc. 2005 Intl. Conf.
Wireless Networks, Commun., Mobile Comp., Jun. 2005, pp. 630–635.

[5] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief
propagation decoding of low-density parity-check codes,” IEEE Trans.
Commun., vol. 55, no. 7, pp. 1308–1317, Jul. 2007.

[6] Y. Han and W. E. Ryan, “Low-floor decoders for LDPC codes,” IEEE
Trans. Commun., vol. 57, no. 6, pp. 1663–1673, Jun. 2009.

[7] T. Zhang, Z. Wang, and K. Parhi, “On finite precision implemenation of
LDPC codes decoder,” in Proc. IEEE ISCAS, pp. 201–205, May 2001.
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