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Abstract—We propose binary discrete parametric channel
models for multi-level cell (MLC) flash memories that provide
accurate ECC performance estimation by modeling the empiri-
cally observed error characteristics under program/erase (P/E)
cycling stress. Through a detailed empirical error characteriza-
tion of 1X-nm and 2Y-nm MLC flash memory chips from two
different vendors, we observe and characterize the overdispersion
phenomenon in the number of bit errors per ECC frame. A well
studied channel model such as the binary asymmetric channel
(BAC) model is unable to provide accurate ECC performance
estimation. Hence we propose a channel model based on the beta-
binomial probability distribution (2-BBM channel model) which
is a good fit for the overdispersed empirical error characteristics
and show through statistical tests and simulation results for BCH,
LDPC and polar codes, that the 2-BBM channel model provides
accurate ECC performance estimation in MLC flash memories.

Index Terms—Flash memory, multi-level cell, channel model,
error correcting codes, P/E cycling.

I. INTRODUCTION

CHANNEL modeling for NAND flash memories is a de-
veloping research area with applications to better signal

processing and coding techniques. A channel model for a
flash memory can be viewed as a simplified representation
of the underlying physical mechanisms which induce errors
in stored data. For NAND flash memories, the major error
mechanisms are program disturb and cell wear that occur
during program/erase cycling, charge loss that occurs during
data retention and inter-cell interference (ICI) [1]–[3]. The
main applications of a flash memory channel model are im-
proved design, decoding and performance evaluation of error-
correcting codes (ECCs) and error-mitigating codes. Other
applications include information theoretic studies that provide
an analysis of the capacity of flash memories [4], as well as
insights for the development of new coding techniques. In this
paper, we focus on the development of parametric channel
models for multi-level cell (MLC) flash memories based on
empirical error characterization, that enable accurate ECC
frame error rate (FER) performance estimation/prediction.
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A. Overview of the Problem

Efficient evaluation of ECC FER performance is important
for storage system design and optimization. One approach to
ECC FER performance estimation is to experimentally collect
error data for use in Monte-Carlo simulations of the ECC de-
coder, but this can be impractical because of the large amount
of error data required when estimating low frame error rates.
Another approach is to analytically predict the performance of
a code based upon a measured average raw bit error rate. While
this is feasible for algebraic codes with bounded distance
decoders, it is difficult for low density parity check (LDPC)
codes and polar codes that use probabilistic decoders based
upon message passing or successive cancellation. Moreover,
the implicit assumption of independent, symmetric bit errors
may not be justified.

Previously proposed [5], [6] parametric channel models for
MLC flash memories were obtained by using well known
probability distributions to model the empirical cell threshold
voltage distributions. In [5], a Gaussian distribution, and in [6],
a Normal-Laplace mixture model were shown to be a good
fit for the experimentally observed cell threshold voltage
distributions in MLC flash memories. Such models can be
used to reliably predict/estimate the experimentally observed
raw bit error rate (RBER) of the flash memory. However in this
paper, we show through empirical error characterization that
the RBER is not necessarily a good indicator of the ECC FER
performance and this is due to the overdispersion phenomenon
in the number of bit errors per frame in MLC flash memories.
Overdispersion refers to the greater variability in empirical
data compared to a statistical model for e.g., the binomial
distribution typically used to model count data. Therefore,
a memoryless channel model such as the binary asymmetric
channel (BAC) model provides an optimistic estimate of the
ECC FER performance when compared to the actual ECC
FER performance estimate obtained from empirical data.

B. Summary of Contributions

We present a detailed empirical characterization of errors
in MLC flash memories at the bit, cell and page granularity
levels for 1X-nm and 2Y-nm feature size MLC flash memory
chips from two different vendors referred to as vendor-A and
vendor-B respectively. We study the asymmetry of bit errors
in the lower and upper pages of MLC flash memories with
a focus on the number of bit errors per frame parameter.
We observe that the empirical probability distributions of the
number of bit errors per frame parameter are overdispersed
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when compared to a binomial distribution typically used to
model count data.

Based on the empirical error analysis, we study the per-
page binary asymmetric channel (BAC) model referred to as
the 2-BAC model for MLC flash memories. Using statistical
analysis, we show that the 2-BAC model does not provide a
good fit for the empirical error data and hence is inadequate for
accurate ECC frame error rate (FER) performance estimation.
Therefore, we propose a channel model based on the beta-
binomial probability distribution referred to as the 2-Beta-
Binomial (2-BBM) channel model. We show that it is a good
fit for the observed overdispersed empirical error data and
performs well for ECC FER performance estimation. We also
propose normal and Poisson approximation based channel
models for MLC flash memories.

Through quantitative evaluation of the proposed channel
models using the statistical Kolmogorov-Smirnov (K-S) Two
Sample goodness of fit test and using Monte-Carlo simulation
results of FER performance for BCH, LDPC and polar codes,
we show that the 2-Beta-Binomial channel model is an accu-
rate channel model to represent the overdispersed nature of bit
errors in MLC flash memories.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
presents a brief introduction to flash memories with a focus
on the structure of MLC flash memories. In Section III we
describe the P/E cycling experiment procedure. Section IV
provides a detailed empirical characterization of errors in MLC
flash memories, the results of which are utilized for design
and evaluation of the proposed channel models. Section V
describes the proposed channel models for MLC flash memo-
ries and provides statistical analysis results. In Section VI,
quantitative results for statistical goodness of fit tests and
BCH, LDPC and polar code FER performance are presented
to evaluate the proposed channel models. Section VII provides
the concluding remarks.

II. FLASH MEMORY STRUCTURE

The fundamental data storing unit in NAND flash memories
is a floating-gate transistor commonly referred to as a cell. A
cell can be programmed to hold different levels of charge and
these charge levels represent the data bits stored in a cell.
The most commonly used cells in today’s flash memories
are capable of holding 2, 4 and 8 distinct charge levels (1,
2, 3 bits/cell respectively) and are referred to as single-level
cell (SLC), multi-level cell (MLC) and three-level cell (TLC)
respectively. These flash memory cells are organized into a
rectangular array interconnected through horizontal wordlines
(WL) and vertical bitlines (BL) to form a flash memory
“block” [1]. A collection of such blocks makes up the flash
memory chip. A schematic of the block structure of MLC flash
memories is shown in Fig. 1.

The two bits belonging to a MLC flash memory cell are
separately mapped to logical units of programming, called
pages. A page is also the smallest unit for program and read
operations whereas a block is the smallest unit for the erase
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Fig. 1. Cell level to bit mapping and block schematic in MLC flash memories.
In the block schematic, the rectangles depict the MLC flash memory cells
connected to horizontal wordlines (WL) and vertical bitlines (BL).

operation. The most significant bit (MSB) is mapped to the
lower page while the least significant bit (LSB) is mapped to
the upper page. The lower page bit of a cell always precedes
the corresponding upper page bit in the programming order.
We represent the four charge levels in MLC flash memory as 0,
1, 2, 3 in the increasing order of charge levels respectively. The
corresponding 2-bit patterns written to the lower (MSB) and
upper (LSB) pages are ‘11’, ‘10’, ‘00’ and ‘01’ respectively
as shown in Fig. 1.

III. EXPERIMENT PROCEDURE

To characterize and quantify the number and types of errors
observed, we perform program/erase (P/E) cycling of the
MLC flash memory chip under test which consists of repeated
application of the following steps:

1) Erase MLC flash memory blocks under test.
2) Program MLC flash memory pages (of blocks under

test) with pseudo-random (PR) data generated using
a Mersenne-Twister pseudo-random number generator.
The pseudo-random number generator is initialized with
a randomly generated seed for every page in every P/E
cycle.

3) Starting with the first cycle, perform a read operation
on the MLC flash memory block(s) at intervals of every
100th cycle. Record bit errors and their locations in the
block.

We arbitrarily choose 4 contiguous blocks in an MLC flash
memory chip for our experiments. The MLC flash memory
blocks are P/E cycled up to 10,000 P/E cycles and the experi-
ments are performed at room temperature in a continuous man-
ner with no extra wait time between the erase/program/read
operations.

IV. CHARACTERIZATION OF ERRORS IN MLC FLASH
MEMORIES

The first step in the error characterization of a flash memory
chip is to study its raw bit error rate (BER) performance when
all the pages in all the blocks under test are programmed with
pseudo-random data. This closely resembles the most common
use in practice, where random data are stored and retrieved.
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Fig. 2. Measured average raw bit error rates over 4 blocks of vendor-A and
vendor-B chips.
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Fig. 3. Average raw bit error rates corresponding to specific bit errors in
the lower pages (LP) and upper pages (UP) over 4 blocks of vendor-A and
vendor-B chips.

Fig. 2 shows the average raw BER across the P/E cycles when
all pages in each block are programmed for both the vendor-A
and vendor-B flash memory chips. The raw BER is averaged
over 4 blocks tested. Fig. 2 also shows the average raw BER
separately for the lower and upper pages of the MLC flash
memory. Although the lower page is expected to have a smaller
BER compared to the upper page [7], we observe that this
is only the case up to a certain number of P/E cycles in the
beginning and as the P/E cycle count increases, the lower page
begins to show a larger number of errors than the upper page.
This observation is consistent across both the vendor-A and
vendor-B flash memory chips. Using empirical data from 20
blocks of the same flash memory chip, we have also observed
consistent measured average raw BER estimates across all the
P/E cycles.

We also record the specific cell (symbol) errors correspond-
ing to all the bit errors observed. Table I shows the frequencies
of all possible cell errors as a percentage of the total number of
cell errors observed across all the blocks in all the P/E cycles.
The corresponding average cell error probabilities across all
P/E cycles are ∼4.16× 10−3 and ∼2.71× 10−3 for vendor-A
and vendor-B chips respectively. We observe that the level 1

TABLE I
FREQUENCY OF CELL (SYMBOL) ERRORS MEASURED AS A PERCENTAGE

OF TOTAL NUMBER OF CELL ERRORS OBSERVED ACROSS ALL P/E CYCLES
WHEN ALL 4 BLOCKS ARE PROGRAMMED WITH PSEUDO-RANDOM DATA.

Vendor-A

Write Cell Read Cell Values

Values 11 10 00 01

11 0.00 17.25 0.08 2.57

10 0.19 0.00 48.19 0.74

00 0.00 0.14 0.00 30.61

01 0.00 0.03 0.20 0.00

Vendor-B

Write Cell Read Cell Values

Values 11 10 00 01

11 0.00 18.39 0.03 4.01

10 0.07 0.00 62.22 1.84

00 0.00 0.06 0.00 13.39

01 0.00 0.00 0.00 0.00

to 2 cell error “10 (1) → 00 (2)” is the most dominant for
both vendor-A and vendor-B chips. This observation explains
why the lower page average raw BER is worse than the upper
page average raw BER as shown earlier in Fig. 2. We also note
that the three adjacent level cell errors “10 (1) → 00 (2)”,
“11 (0) → 10 (1)” and “00 (2) → 01 (3)” are the most
frequent and together make up about 96% and 94% of all
the cell errors observed for the vendor-A and vendor-B chips
respectively. Such knowledge about dominant cell errors can
be very useful in utilizing ECC redundancy more effectively.
This was demonstrated in [8], where the authors designed
two BCH codes with different error correction capabilities
for the lower and upper pages of an MLC flash memory and
proposed a stagewise combined decoding algorithm for both
pages. Their scheme gave better results than using a single
BCH code independently for all pages.

A. Asymmetry of Bit Errors in MLC Flash Memories

Fig. 3 shows the asymmetry of bit errors in MLC flash
memories. We present the average raw BERs corresponding
to the specific types of bit errors i.e., 0→ 1 and 1→ 0 bit
errors, in the lower and upper pages of both vendor-A and
vendor-B MLC flash memory chips. While there is a high
degree of asymmetry in the lower page bit errors throughout
the P/E cycle range, the degree of asymmetry in the upper
page bit errors is much lower. This agrees well with the
observations in Table I, where the dominant cell errors imply
a large proportion of 1→ 0 bit errors in the lower page and
comparable proportions of 0→ 1 and 1→ 0 bit errors in the
upper page. This asymmetry in bit errors in both the lower
and upper pages also reflects the dominance of data dependent
inter-cell interference (ICI) errors i.e., the middle cells in the
cell level data patterns 303, 313 and 323 across wordlines are
highly susceptible to errors [9].

B. Characterization of Number of Bit Errors per Frame

As we want to develop parametric channel models for MLC
flash memories which provide an accurate representation of
the empirically observed bit errors and enable accurate ECC
FER performance estimation, we study the distribution of the
number of bit errors per frame parameter. This is the key
factor in determining the FER performance of an ECC with a
specified error correction capability of t number of bit errors
per frame.
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From the error data collected during P/E cycling experi-
ments, we obtain the sample counts of the number of bit errors
per frame for 0→ 1 and 1→ 0 bit errors in both the lower and
upper pages by choosing a fixed frame length of N = 8192
bits. This choice of the frame length is representative of
the large ECC frame lengths used in practice, while still
being small enough to ensure sufficient empirical data can
be collected easily. Commonly used ECC frame lengths range
from 8192 to 32768 bits and multiple ECC frames are written
to a single flash memory page in practice. The sample mean
and variance statistics of the number of bit errors per frame are
computed using the sample counts and are shown in Table II
for both vendor-A and vendor-B chips. We also plot two
dimensional (2D) maps showing the number of bit errors for
every frame in a single block of MLC flash memory at 8,000
P/E cycles in Fig. 4. The 2D maps are obtained by stacking
horizontally, the bit error counts in frames belonging to a page,
and then stacking vertically all the pages belonging to a single
block. From Table II and Fig. 4, we clearly observe that the
variance in the number of bit errors per frame is much larger
than the mean i.e., the experiment data is overdispersed with
respect to a binomial distribution, Binomial(n, p), typically
used to model count data whose mean and variance are
approximately equal when p is small.

TABLE II
SAMPLE MEAN AND VARIANCE OF THE NUMBER OF BIT ERRORS PER

FRAME OBTAINED FROM EMPIRICAL DATA FOR LOWER AND UPPER PAGES
ACROSS P/E CYCLES WHEN ALL 4 BLOCKS ARE PROGRAMMED WITH

PSEUDO-RANDOM DATA. FRAME LENGTH N = 8192.

P/E Vendor-A Vendor-B

Cycles Lower Page Upper Page Lower Page Upper Page

Mean Variance Mean Variance Mean Variance Mean Variance

2000 2.63 3.08 1.90 2.17 0.98 1.05 0.79 0.86

4000 12.21 18.70 7.76 9.84 5.10 6.97 2.84 3.66

6000 21.90 46.71 18.43 30.06 14.85 29.64 7.18 10.23

8000 30.55 75.89 32.01 66.43 30.03 84.81 14.46 24.37

10000 41.37 111.35 48.88 125.99 52.61 216.95 26.06 51.30
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Fig. 4. Two dimensional maps of bit error counts in frames of lower and
upper pages in a single block of MLC flash memory chips from vendor-A
and vendor-B at 8,000 P/E cycles.

V. CHANNEL MODELS FOR MLC FLASH MEMORIES

In this section, first we study the suitability of well known
discrete memoryless channel (DMC) models such as the 4-ary
DMC, the BSC and the BAC, to represent the bit errors
observed in the MLC flash memory channel. Among the
DMC models, a per page BAC (2-BAC) model appears to
align well with our empirical error characterization results.
However we show through analysis as well as empirical results
that the per page BAC model is unable to fit the empirical
distribution of the number of bit errors per frame and is
not a good model for ECC FER performance estimation.
This is due to the interdependence of mean and variance
statistics of the number of bit errors per frame for a BAC
where the number of 0→ 1 and 1→ 0 errors are modeled
as binomial distributions. The binomial distribution is a single
parameter (degree of freedom) distribution, hence its mean and
variance cannot be chosen independently. Thus the binomial
distribution is unable to accurately model the overdispersed
empirical error data as described in the previous section. A
natural next choice is to consider the normal approximation
to the binomial distribution which provides two parameters
(degrees of freedom) for modeling the observed mean and
variance statistics independently. However we observe that
the normal approximation based channel model does not
accurately fit the shape of the empirical data distribution.
Another commonly used probability distribution to model
overdispersed data with respect to a binomial distribution is
the beta-binomial distribution [10], [11]. Hence we propose a
discrete channel model based on the beta-binomial distribution
for the lower and upper pages referred to as the 2-BBM
channel model. We show that this model fits the empirical
distribution of the number of bit errors per frame and provides
accurate ECC FER performance estimation. We also present
simple approximations of the 2-BAC model based on the
normal and Poisson probability distributions. Although these
approximations are able to fit the empirical distribution of the
number of bit errors per frame better than the 2-BAC model,
they are not as good a fit as the proposed 2-BBM channel
model.

A. Definitions and Notation

Let K represent the total number of bit errors in a frame
of length N bits. Let Km be the total number of bit errors
in a frame of N bits which consists of m zeros and N −m
ones. The relationship between probability distributions of K
and Km is given by

Pr(K = k) =

N∑
m=0

(
N
m

)
2N

Pr(Km = k) (1)

where (Nm)
2N

represents the probability of observing exactly m
zeros in a frame of N bits. Km can be represented as the sum
of the number of 0→ 1 and 1→ 0 bit errors as

Km = K(0)
m +K

(1)
N−m (2)
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where K
(0)
m and K

(1)
N−m denote the number of 0→ 1 and

1→ 0 bit errors respectively. K can also be represented as
the sum of the total number of 0→ 1 and 1→ 0 bit errors as

K = K(0) +K(1) where, (3)

Pr(K(u) = k) =

N∑
m=k

(
N
l

)
2N

Pr(K
(u)
l = k) (4)

Note that u ∈ {0, 1} where l = m + (N − 2m)u. We use
E[X] and Var[X] to denote the expected value (mean) and the
variance of a random variable X respectively. We use X | Y
to denote “X given Y ”.

B. Candidate Discrete Memoryless Channel (DMC) Models

The primary error mechanism in MLC flash memories is
at the cell level and hence the 4-ary DMC model with 4
inputs and 4 outputs can naturally account for all the cell level
errors. This 4-ary DMC model requires 16 parameters (only
12 independent parameters) which are the cell level transition
probabilities and these parameters can be easily estimated from
experiment data such as that shown in Table I. However the
4-ary DMC model is not useful in practice as the logical
unit of progam/read operations in current MLC flash memory
applications is a binary page. Hence any practically applicable
channel model would have to treat the errors in the lower
and upper pages of the MLC flash memory independently,
even though it is clear that the errors occur at the cell
level and hence the lower and upper page bit errors are not
independent. A simpler more commonly used DMC model
is the 2-BSC model where two independent BSCs are used
to represent the bit errors occuring in the lower and upper
pages. The advantage of using the BSC model for each page
independently is that it is simple and well studied, with a
variety of error correction coding (ECC) techniques available
for transmission over the BSC. However, based on our error
characterization results in Section IV, the bit errors in MLC
flash memories during P/E cycling are mostly asymmetric in
nature. Therefore, the BSC is clearly not an accurate model to
represent the bit errors in MLC flash memories. A numerical
comparison of estimated capacities of the 4-ary DMC model
and the 2-BSC model was presented in [9], where it was
observed that the 4-ary DMC model provides a significant
capacity gain compared to the 2-BSC model for MLC flash
memories.

C. The 2-Binary Asymmetric Channel (2-BAC) Model

Based on the asymmetry of bit errors observed in MLC
flash memories (Section IV), we propose a per page BAC
model called the 2-BAC model where two independent BAC
models are used to represent the bit errors occuring in the
lower and upper pages. The 2-BAC model is a parametric
model with 4 parameters which are the probabilities of 0→ 1

and 1→ 0 errors in lower and upper page BACs, p(l)0 , p(l)1 and
p
(u)
0 , p(u)1 . For a theoretical evaluation, we mainly compare the

mean and variance statistics of the number of bit errors per
frame corresponding to a BAC model with the empirically
observed sample mean and variances shown in Table II. We

1 − p

1 − q

p

q

0

1

0

1

x y

Fig. 5. Binary asymmetric channel

consider a BAC as shown in Fig. 5, where p is the probability
of 0→ 1 error and q is the probability of 1→ 0 error. Next,
we derive closed form expressions for the mean, E[K], and
the variance, Var[K], of the number of bit errors per frame
corresponding to a BAC model. For the BAC model, K(0)

m and
K

(1)
N−m are distributed according to the binomial probability

distribution and are independent i.e.,

K(0)
m ∼ Binomial(m, p) (5)

K
(1)
N−m ∼ Binomial(N −m, q) (6)

K(0)
m ⊥⊥ K(1)

N−m (7)

The mean and the variance of K(0)
m are given by

E[K(0)
m ] = mp (8)

Var[K(0)
m ] = mp(1− p) (9)

and those of K(1)
N−m are given by

E[K
(1)
N−m] = (N −m)q (10)

Var[K
(1)
N−m] = (N −m)q(1− q). (11)

Proposition 1: The mean and the variance of K for a BAC
model are given by

E[K] =
N

2
(p+ q) (12)

Var[K] =
N

2

(
(p+ q)− pq − 1

2
(p2 + q2)

)
. (13)

Proof: See Appendix A.
The parameters of the BAC model p and q are estimated as
the average 0→ 1 and 1→ 0 bit error rates obtained from
experimental data corresponding to a particular P/E cycle point
in the flash memory lifetime. An algorithmic description of the
BAC model is presented in Algorithm 1.

Algorithm 1 BAC Model Implementation
Input: Input frame x of length N , BAC model parameters

(p, q).
Output: Data frame with errors y.

1: for xi ∈ x do
2: Generate random sample u ∼ Uniform[0, 1].
3: if xi = 0 then t = p else t = q.
4: if u ≤ t then ei = 1 else ei = 0.
5: yi = xi ⊕ ei.

Using the results of Proposition 1, we compute E[K] and
Var[K] for a BAC model as follows. For example, at 8,000
P/E cycles for the upper page BAC model for vendor-A chip,
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we have p = 4.97× 10−3 and q = 2.84× 10−3 and assuming
N = 8192, we get E[K] = 32.01 and Var[K] = 32.02.
Comparing E[K] and Var[K] to the sample mean and variance
of K recorded using experimental data as shown in Table II,
we observe that the BAC model is unable to account for the
large observed sample variance. For small values of p and
q, from Proposition 1, we have Var[K] ≈ E[K]. Therefore,
the BAC model is not a good fit for the observed empirical
probability distribution of K as shown in Fig. 8 and Fig. 9 for
vendor-A and vendor-B flash memory chips, respectively. As
the Var[K] is much less than the observed sample variance, the
2-BAC model for MLC flash memory is expected to provide a
more optimistic estimate of the ECC FER performance when
compared to the actual performance. We discuss this in more
detail in Section VI. However, note that the 2-BAC model does
provide an accurate estimate of the average raw BER which
is given by E[K]

N . This shows that the ability to accurately
estimate/predict the average raw BER is not the sole criterion
for a good MLC flash memory channel model.

D. The 2-Beta-Binomial (2-BBM) Channel Model

As mentioned in Section IV, the empirically observed
sample mean and variance estimates show that the number
of bit errors per frame data is overdispersed with respect
to the binomial distribution. This is the major reason for
the poor fit of the 2-BAC model discussed in the previous
subsection. To account for the overdispersion, we propose a
channel model for MLC flash memories based on the beta-
binomial probability distribution called the 2-Beta-Binomial
(2-BBM) channel model.

The beta-binomial probability distribution was first pro-
posed in [10] as the probability distribution for counts resulting
from a binomial distribution if the probability of success varies
according to the beta distribution between sets of trials. Using
empirical data, it was also shown in [10] that the beta-binomial
probability distribution is a good fit for overdispersed binomial
data. Lindsey et al. [11] studied the beta-binomial probability
distribution based model in fitting overdispersed human sex
ratio in families data and it was found to be a good fit.
Stapper et al. [12] developed a yield prediction model for
semiconductor memory chips by modeling the overdispersed
distribution of number of faults per chip using the gamma-
Poisson distribution which is closely related to the beta-
binomial distribution.

For the beta-binomial channel model, we model the vari-
ables K(0)

m and K
(1)
N−m as being distributed according to the

beta-binomial distribution i.e.,

p ∼ Beta(a, b)
K(0)
m | p ∼ Binomial(m, p)
K(0)
m ∼ Beta-Binomial(m, a, b) (14)
q ∼ Beta(c, d)

K
(1)
N−m | q ∼ Binomial(N −m, q)

K
(1)
N−m ∼ Beta-Binomial(N −m, c, d) (15)

K(0)
m ⊥⊥ K(1)

N−m (16)

where (a, b) and (c, d) correspond to the parameters of a beta
probability distribution defined as

f(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)
0 ≤ θ ≤ 1 (17)

B(α, β) =

∫ 1

0

θα−1(1− θ)β−1dθ (18)

where B(α, β) represents the beta function. Thus the Beta-
Binomial (BBM) channel model is derived from a BAC model
where the bit error probabilities p and q are random variables
which vary from frame to frame and are distributed according
to the beta distribution. The BBM channel model is a 4-
parameter model (compared to the 2-parameter BAC) and
hence the 2-BBM channel model for MLC flash memories
will be an 8-parameter model. The beta-binomial probability
distributions of K(0)

m and K(1)
N−m are given by

Pr(K(0)
m = k) =

(
m

k

)
B(a+ k, b+m− k)

B(a, b)
(19)

Pr(K
(1)
N−m = k) =

(
N −m
k

)
B(c+ k, d+N −m− k)

B(c, d)
. (20)

The mean and the variance of K(0)
m and K(1)

N−m are given by

E[K(0)
m ] =

ma

a+ b
(21)

Var[K(0)
m ] =

mab(a+ b+m)

(a+ b)2(a+ b+ 1)
(22)

E[K
(1)
N−m] =

(N −m)c

c+ d
(23)

Var[K
(1)
N−m] =

(N −m)cd(c+ d+N −m)

(c+ d)2(c+ d+ 1)
. (24)

Proposition 2: The mean and the variance of K for a BBM
channel model are given by

E[K] =
N

2

(
a

a+ b
+

c

c+ d

)
(25)

Var[K] =
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
+

N

4

(
c(c+ d)(c+ 2d+ 1) +Ncd

(c+ d)2(c+ d+ 1)

)
−

N

4

(
2ac

(a+ b)(c+ d)

)
. (26)

Proof: See Appendix B.
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Proposition 3: The mean and the second moment of K(0)

and K(1) for a BBM channel model are given by

E[K(0)] =
N

2

(
a

a+ b

)
(27)

E[(K(0))2] =
N

4

(
a(a+ 2b+ 1) +Na(a+ 1)

(a+ b)(a+ b+ 1)

)
(28)

E[K(1)] =
N

2

(
c

c+ d

)
(29)

E[(K(1))2] =
N

4

(
c(c+ 2d+ 1) +Nc(c+ 1)

(c+ d)(c+ d+ 1)

)
. (30)

Proof: See Appendix C.
The parameters a, b, c, d of the BBM channel model are
estimated from the sample moments of K(0) and K(1) using
the method of moments [10]. From P/E cycling experiment
data, we obtain the sample mean and sample second moment
estimates of the random variables K(0) and K(1) which repre-
sent the total number of 0→ 1 and 1→ 0 bit errors per frame.
Let µ1, µ2 represent the first and second moment estimates
of K(0) and µ3, µ4 represent the first and second moment
estimates of K(1). Solving the equations in Proposition 3 for
a, b, c, d, we have the parameter estimates

â =
µ2
1(N + 1)− 2µ1µ2

N(µ2 − µ1)− µ2
1(N − 1)

b̂ = â

(
N

2µ1
− 1

)
(31)

ĉ =
µ2
3(N + 1)− 2µ3µ4

N(µ4 − µ3)− µ2
3(N − 1)

d̂ = ĉ

(
N

2µ3
− 1

)
.(32)

An algorithmic description of the BBM channel model is
presented in Algorithm 2.

Algorithm 2 BBM Channel Model Implementation
Input: Input frame x of length N , BBM channel model

parameters (a, b, c, d).
Output: Data frame with errors y.

1: Generate two independent random samples,
p ∼ Beta(a, b) and q ∼ Beta(c, d).

2: y = BAC(x, p, q) [Use Algorithm 1].

TABLE III
UPPER PAGE BBM CHANNEL MODEL PARAMETER ESTIMATES FOR

VENDOR-A AND VENDOR-B CHIPS. N = 8192.

P/E Cycles Vendor-A Vendor-B

a b c d a b c d

2000 12.72 46368.34 8.05 42569.08 10.82 302596.64 6.86 43747.02

4000 25.95 20940.98 15.46 23556.92 11.39 48028.59 6.00 13142.88

6000 22.67 7596.71 18.16 11890.14 15.58 20535.47 7.16 7193.92

8000 20.72 4143.52 22.28 7821.13 15.28 9068.43 7.58 4092.87

10000 21.36 2819.03 26.12 5890.35 13.36 4142.23 9.28 2938.88

For evaluation of the BBM channel model, we compute
E[K] and Var[K] using Proposition 2. Corresponding to the
example used for evaluating the BAC model, the parameter
estimates of the upper page BBM channel model for vendor-A
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Fig. 6. Variation of parameter estimates for the upper page BBM channel
model ((a, b) for 0 → 1 error, (c, d) for 1 → 0 error) for 3 different 4-block
sets for vendor-A chip. N = 8192.
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are as shown in Table III and using these parameter estimates,
we obtain E[K] = 32.01 and Var[K] = 57.88 for N = 8192
at 8,000 P/E cycles. Comparing with the results from Table II,
we observe that the Var[K] obtained using the BBM channel
model is still lower than the sample variance; however, it is
clear that the BBM channel model is vastly better at modeling
the overdispersed number of bit errors per frame empirical data
than the BAC model. This will be even more evident based
on the ECC FER performance estimation results presented
in Section VI.

We also observe remarkable consistency in the parameter
estimates of the BBM channel model across different blocks of
the same MLC flash memory chip. Fig. 6 shows the empirical
parameter estimates corresponding to the upper page BBM
channel models for vendor-A chip using data collected from
3 different sets of 4 contiguous blocks of the MLC flash
memory chip. Fig. 7 shows the empirical parameter estimates
corresponding to the upper page BBM channel models for
vendor-B chip obtained using different frame sizes. Although
not shown (due to lack of space), we also observe similar
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consistency in the lower page parameter estimates for both
the vendor chips using different sets of blocks on the same
chip and different frame sizes. We also note that the estimates
for lower page parameters a and b will be noisy because the
0→ 1 bit error rate in the lower page is extremely small. This
consistency suggests that we may be able to model every flash
memory chip with just 8 parameters of the 2-BBM channel
model for accurate ECC FER performance estimation.

E. Normal and Poisson Approximation Channel Models

To model the overdispersed number of bit errors per frame
empirical data, an alternative approach from a statistical view-
point is to consider approximations to the binomial probability
distribution which retain the general shape of the binomial
distribution and whose mean and variance can be controlled
independently. We propose two such channel models for MLC
flash memories based on the normal and Poisson probabil-
ity distributions called the 2-Normal Approximation to the
BAC (2-NA-BAC) model and the 2-Poisson Approximation
to the BAC (2-PA-BAC) model respectively. Similar to the
2-BAC and 2-BBM channel models, the 2-NA-BAC (resp.,
2-PA-BAC) model consists of two independent NA-BAC
(resp., PA-BAC) models for the lower and upper pages of
MLC flash memories. The design goal for the NA-BAC and
PA-BAC models is to ensure a match between the mean and
variance statistics of the data from the model and the observed
sample mean and sample variance. Based on this, we define
rules for the normal and Poisson approximation as follows.

Let µ0 and σ2
0 denote the sample mean and sample variance

of K(0) and µ1 and σ2
1 denote the sample mean and sample

variance of K(1). Let N (µ, σ2) denote a normal distribution
with mean µ and variance σ2 and let P(λ) denote a Poisson
distribution with rate parameter λ. Let g0 and g1 represent the
sampled number of 0→ 1 and 1→ 0 bit errors per frame.

Definition 1: The normal approximation rules for the
NA-BAC model are given by

g0 = [ĝ0] where ĝ0 ∼ N
(
µ0, σ

2
0

)
g1 = [ĝ1] where ĝ1 ∼ N

(
µ1, σ

2
1

)
. (33)

where [·] denotes the round to nearest integer operator.
Definition 2: The Poisson approximation rules for the

PA-BAC model are given by

g0 = ĝ0 − (σ2
0 − µ0) where ĝ0 ∼ P

(
σ2
0

)
g1 = ĝ1 − (σ2

1 − µ1) where ĝ1 ∼ P
(
σ2
1

)
. (34)

Based on these rules, an algorithmic description of the
NA-BAC and PA-BAC models is presented in Algorithm 3.
The normal probability distribution is a continuous distribution
with infinite support whereas the variables K(0) and K(1)

being modeled have finite support and are discrete (integers).
Hence we require the round to nearest integer function in
Definition 1. The Poisson probability distribution is a discrete
distribution with an infinite support set. Using goodness of
fit tests in Section VI, we show that the 2-NA-BAC and
2-PA-BAC models are a better fit than the 2-BAC model for
the observed empirical data. However, the 2-NA-BAC and the

Algorithm 3 NA-BAC and PA-BAC Model Implementation
Input: Input frame x of length N , sample

(E[K(0)],Var[K(0)]), and sample (E[K(1)],Var[K(1)]).
Output: Data frame with errors y.

1: Generate integers g0, g1 according to the Normal or
Poisson approximation rules.

2: T0 = {i | xi = 0}, T1 = {i | xi = 1}.
3: Pick subsets E0 of size g0 and E1 of size g1 uniformly at

random from T0 and T1, respectively.
4: Create a binary error vector e of length N such that ei = 1

if i ∈ E0 ∪ E1.
5: y = x⊕ e.

2-PA-BAC models are not as good a fit as the 2-BBM model
to describe the bit errors in MLC flash memories.

VI. SIMULATION RESULTS AND EVALUATION OF
CHANNEL MODELS

In this section, we provide a quantitative evaluation of the
proposed channel models for MLC flash memories. For this
we consider two viewpoints. The first one is a purely statistical
viewpoint where we perform the Kolmogorov-Smirnov (K-S)
Two Sample test [13] to evaluate the goodness of fit of the
proposed channel models when compared with the empirical
data. Next, we evaluate the proposed channel models for
their application in ECC FER performance estimation. We
emphasize the results of this latter evaluation when compared
to the former, as accurate ECC FER performance estimation
has been the main driving factor in the design of the proposed
channel models.

A. Statistical Goodness of Fit Tests

The Kolmogorov-Smirnov (K-S) Two Sample test is a
commonly used statistical test for determining if two sets of
data samples are drawn from the same probability distribution.
The K-S test is a very general test in that it makes no
assumptions about the underlying probability distributions of
the input data samples and is a non-parametric test [13].
This makes it suitable for our purpose as we have a varied
set of underlying probability distributions of the number of
bit errors per frame corresponding to the proposed channel
models. The BAC and BBM model distributions do not match
any well known probability distributions exactly although, they
are close to the binomial distribution, and the NA-BAC and
PA-BAC model distributions are approximately normal and
Poisson respectively.

We perform K-S Two Sample tests comparing the number
of bit errors per frame data samples from the proposed channel
models to the empirical data obtained from P/E cycling
experiments. The empirical data sample sizes, i.e., number
of frames for each page, are 8704 for vendor-A and 4096
for vendor-B, respectively. For the BAC, BBM, NA-BAC and
PA-BAC models, we simulate 10000 frames. The beta random
variates to simulate the BBM channel model and the K-S
Two Sample test statistic values are computed using the SciPy
library [14]. The test statistic values are shown in Tables IV
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and V for 8, 000 and 4, 000 P/E cycles, respectively. The null
hypothesis is that the data samples from a proposed channel
model and empirical data belong to the same underlying
probability distribution. The test statistic is indicative of the
difference in underlying probability distributions of the two
input data samples. From Table IV, we see that the test statistic
values are consistently low for the BBM channel model, thus
indicating that it provides the best fit to the empirical data
among all the proposed channel models. The p-values recorded
(not shown) for all the K-S Two Sample tests in Tables IV
and V are smaller than 0.01 indicating that the test statistic
values are estimated with a significant level of confidence.
The K-S Two Sample test compares the cumulative distribution
functions (CDF) obtained from input data samples to compute
the test statistic. Fig. 8 and Fig. 9 provide a visual comparison
of these CDFs corresponding to vendor-A and vendor-B chips.

TABLE IV
TEST STATISTIC VALUES FROM K-S TWO SAMPLE TESTS COMPARING THE
LOWER AND UPPER PAGE BAC, BBM, NA-BAC, PA-BAC MODELS WITH

EMPIRICAL DATA AT 8,000 P/E CYCLES. FRAME LENGTH N = 8192.

K-S Two Sample Tests Vendor-A Vendor-B

Lower Page Upper Page Lower Page Upper Page

BAC v/s Experiment 0.0979 0.0744 0.1278 0.0669

BBM v/s Experiment 0.0386 0.0357 0.0190 0.0135

NA-BAC v/s Experiment 0.0430 0.0715 0.0373 0.0659

PA-BAC v/s Experiment 0.0268 0.0777 0.0337 0.1008

TABLE V
TEST STATISTIC VALUES FROM K-S TWO SAMPLE TESTS COMPARING THE
LOWER AND UPPER PAGE BAC, BBM, NA-BAC, PA-BAC MODELS WITH

EMPIRICAL DATA AT 4,000 P/E CYCLES. FRAME LENGTH N = 8192.

K-S Two Sample Tests Vendor-A Vendor-B

Lower Page Upper Page Lower Page Upper Page

BAC vs. Experiment 0.0498 0.0291 0.0436 0.0422

BBM vs. Experiment 0.0268 0.0153 0.0137 0.0053

NA-BAC vs. Experiment 0.0575 0.0973 0.0632 0.1191

PA-BAC vs. Experiment 0.0642 0.0703 0.0223 0.1953

B. ECC FER Performance Estimation

We evaluate the proposed channel models for their accuracy
in ECC FER performance estimation using binary BCH,
LDPC, and polar codes. The choice of these ECCs reflects
the fact that BCH and LDPC codes are already being used
in practical flash memory applications, while polar codes
are a promising candidate for the future. The baseline ECC
FER performance estimates are obtained from the empirical
error data collected from MLC flash memory chips during
P/E cycling experiments. As pseudo-random data was written
to the flash memory chips during P/E cycling experiments,
for ECC decoding we assume an all-zero codeword as the
transmitted codeword with the error vector obtained from the
empirical error data. This assumption is valid because all the
ECCs considered are linear codes. To estimate the ECC FER
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Fig. 8. Comparison of CDFs for number of bit errors per frame observed
from empirical data and from the BAC, BBM, NA-BAC, PA-BAC models at
8,000 P/E cycles for vendor-A chip.
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Fig. 9. Comparison of CDFs for number of bit errors per frame observed
from empirical data and from the BAC, BBM, NA-BAC, PA-BAC models at
8,000 P/E cycles for vendor-B chip.

performance using the proposed channel models, Monte-Carlo
simulations are used where pseudo-random codewords of the
ECC are generated and transmitted through the appropriate
channel model and the received codeword is decoded. At least
400 frame errors are recorded for FER estimation.

The FER performance of a (N = 8191, k = 7683, t = 39)
BCH code using empirical data and the proposed channel mod-
els is shown in Fig. 10. Fig. 11 shows the FER performance
of a (N = 8192, k = 7683) regular quasi-cyclic LDPC (QC-
LDPC) code with dc = 64 and dv = 4, where dc and dv refer
to the check node and variable node degrees, respectively,
in the parity check matrix. The parity check matrix of the
QC-LDPC code is constructed using size 128× 128 circulant
permutation matrices and the design rate is specified as 0.9375.
To ensure the required variable node degree dv , exactly dv
permutations of the circulant matrix are stacked vertically
along the rows of the parity check matrix for every set of
columns. Zero matrices of size 128 × 128 are used to fill
up any remaining rows. This is done using the progressive
edge growth (PEG) algorithm [15] to avoid short cycles.
Note that although the specified design rate corresponds to
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Fig. 10. Comparison of FER performance of a (N = 8191, k = 7683, t =
39) BCH code using empirical error data and error data from simulation using
the 2-BAC, 2-BBM, 2-NA-BAC channel models for vendor-A and vendor-B
chips.
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Fig. 11. Comparison of FER performance of a (N = 8192, k = 7683)
regular QC-LDPC code using empirical error data and error data from sim-
ulation using the 2-BAC, 2-BBM, 2-NA-BAC channel models for vendor-A
and vendor-B chips.

a code dimension of 7680, we get k = 7683 due to three
dependent parity checks in the final parity check matrix thus
obtained. A sum-product belief propagation decoder with a
maximum of 50 iterations and early termination is used to
decode the QC-LDPC code. Fig. 12 also shows additional
results comparing the FER performance of the QC-LDPC code
obtained using empirical data and simulation data from the
BAC, BBM channel models, separately for the lower and upper
pages of vendor-A chip and the lower page of vendor-B chip.
The lowest FER performance estimates from empirical data
were obtained by P/E cycling 44 and 24 blocks of vendor-A
and vendor-B chips, respectively. A total of 6 and 4 frame
errors were observed to obtain the lowest FER performance
estimates from empirical data for the lower and upper pages of
vendor-A chip, respectively. For the lower page of vendor-B
chip, 4 frame errors were observed to estimate the lowest FER
performance from empirical data. Note that the results for the
upper page of vendor-B chip are not shown as we did not
observe any frame errors in the empirical data. We also note
that a different vendor-B chip was used to obtain the additional
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Fig. 13. Comparison of FER performance of a (N = 8192, k = 7684)
polar code optimized for BSC(0.001) using empirical error data and error
data from simulation using the 2-BAC, 2-BBM, 2-NA-BAC channel models
for vendor-A and vendor-B chips. The SC-List decoder is used with a list size
= 32 for vendor-A and list size = 8 for vendor-B chip.

results shown in Fig. 12 when compared to the rest of the
paper. Fig. 13 shows the comparison of FER performance of
a (N = 8192, k = 7684) polar code using empirical data and
the proposed channel models. The polar code is optimized for
a binary symmetric channel (BSC) with bit error probability
p = 0.001 using the construction technique proposed in [16].
The successive cancellation list (SC-List) decoder proposed
in [17] is used for decoding the polar code.

For all the ECCs considered and using data from both
vendor chips, we observe that the 2-BAC model provides an
optimistic estimate of the FER performance when compared
to the empirically observed FER performance. This is mainly
due to the inability of the 2-BAC model to capture the high
variance in the number of bit errors per frame observed
empirically. The gap in ECC FER performance estimates using
the 2-BAC model and the empirical data is increasing as
the FER decreases, and it is about an order of magnitude
for vendor-A chip at 6, 500 P/E cycles and greater than an
order of magnitude for vendor-B chip at 7, 000 P/E cycles for
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the BCH code as shown in Fig. 10. This gap in ECC FER
performance estimates at low FERs is bad for determining the
correct endurance (life-time) of a flash memory chip. From the
results shown in Fig. 12 for the QC-LDPC code, we observe
that the BBM channel model estimates the FER performance
accurately even at lower FERs around 10−4, for the upper page
of vendor-A chip and the lower page of vendor-B chip. The
FER performance estimates obtained using the BBM channel
model are better than those obtained using the BAC channel
model for the lower page of vendor-A chip, however we
observe a small mismatch in the BBM channel model FER
performance estimates at lower FERs when compared to the
empirical FER estimates. This mismatch is due to the inability
of the BBM channel model to fit the larger proportions of
frames with small number of bit errors observed in the lower
tail of the empirical error histograms for the lower page of
vendor-A chip. This appears to be a vendor-specific effect,
as this kind of effect was not observed in the empirical error
histograms corresponding to the lower page of vendor-B chip.
Overall, the 2-BBM model is able to match the empirical ECC
FER performance estimates accurately, while the estimates
obtained using the 2-NA-BAC model lie between those of the
2-BAC and the 2-BBM models. The ECC FER performance
estimates using the 2-PA-BAC model are the same as those
using the 2-NA-BAC model and are omitted. From these
results it is clear that the proposed 2-BBM channel model
is able to accurately describe the nature of the number of bit
errors per frame in MLC flash memories and hence provides
accurate estimates of the ECC FER performance.

VII. CONCLUSION

We studied the feasibility of using well known discrete
memoryless channel models to model the MLC flash memory
channel. Based on empirical error analysis and ECC FER
performance estimation for BCH, LDPC, and polar codes,
we observe that the 2-BAC model with parameter estimates
derived from empirical error data suffices to produce an
accurate estimate of the average raw bit error rate, but it
provides an incorrect optimistic estimate of the ECC FER
performance when compared to the empirically observed ECC
FER performance. This is mainly due to the overdispersed
nature of the number of bit errors per frame in empirical
data which is not modeled well by the 2-BAC model. We
proposed the 2-Beta-Binomial (2-BBM) channel model based
on the beta-binomial probability distribution and using statis-
tical analysis, goodness of fit tests and ECC FER performance
results showed that the 2-BBM channel model accurately
describes the nature of the number of bit errors per frame
in MLC flash memories. We also note that the BBM channel
model can be shown to be equivalent to an urn based channel
model [18] and hence has memory associated with it. Although
not presented in this paper, our preliminary experiment results
for combined data retention plus P/E cycling stress show
the evidence of overdispersion in error statistics and the
suitability of the proposed 2-BBM channel model. We leave
a detailed examination of this as future work. Although the
proposed channel models are for MLC flash memories, the

proposed empirical design approach is generic and can easily
be extended for three-level cell (TLC) flash memories.

APPENDIX A
PROOF OF PROPOSITION 1

To compute Var[K], we compute its mean E[K] and the
second moment E[K2]. Based on (1), both these moments of
K can be computed from the moments of Km as

E[K] =

N∑
m=0

(
N
m

)
2N

E[Km] (35)

E[K2] =

N∑
m=0

(
N
m

)
2N

E[K2
m]. (36)

From (2) and (7), we have

E[Km] = E[K(0)
m ] + E[K

(1)
N−m]

= mp+ (N −m)q (37)

Var[Km] = Var[K(0)
m ] + Var[K

(1)
N−m]

= mp(1− p) + (N −m)q(1− q). (38)

Therefore, E[K2
m] is given by

E[K2
m] = Var[Km] + (E[Km])2

= mp+ (N −m)q +m(m− 1)p2 + 2m(N −m)pq

+(N −m)(N −m− 1)q2. (39)

Hence E[K] and E[K2] are given by

E[K] =

N∑
m=0

(
N
m

)
2N

E[Km]

=
N

2
(p+ q) (40)

E[K2] =

N∑
m=0

(
N
m

)
2N

E[K2
m]

=
N

2
(p+ q) +

(N2 −N
2

)
pq

+
(N2 −N

4

)
(p2 + q2). (41)

Note that we have used the combinatorial identities

N∑
m=0

(
N

m

)
m = N2N−1 (42)

N∑
m=0

(
N

m

)
m2 = (N +N2)2N−2. (43)

Therefore we can obtain Var[K] from (40) and (41) as

Var[K] = E[K2]− (E[K])2

=
N

2

(
(p+ q)− pq − 1

2
(p2 + q2)

)
. (44)
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APPENDIX B
PROOF OF PROPOSITION 2

We take the same approach as the proof of Proposition 1.
From (2) and (16), we have

E[Km] =

(
ma

a+ b

)
+

(
(N −m)c

c+ d

)
(45)

Var[Km] =

(
mab(a+ b+m)

(a+ b)2(a+ b+ 1)

)
+(

(N −m)cd(c+ d+N −m)

(c+ d)2(c+ d+ 1)

)
. (46)

Therefore, E[K2
m] is given by

E[K2
m] = Var[Km] + (E[Km])2

= Var[K(0)
m ] + (E[K(0)

m ])2 +Var[K
(1)
N−m]+

(E[K
(1)
N−m])2 + 2E[K(0)

m ] E[K
(1)
N−m]. (47)

Substituting using (21) - (24) and simplifying, we have

E[K2
m] =

(
ma(m(a+ 1) + b)

(a+ b)(a+ b+ 1)

)
+(

(N −m)c((N −m)(c+ 1) + d)

(c+ d)(c+ d+ 1)

)
+(

2m(N −m)ac

(a+ b)(c+ d)

)
. (48)

Hence E[K] and E[K2] are given by

E[K] =

N∑
m=0

(
N
m

)
2N

E[Km]

=
N

2

(
a

a+ b
+

c

c+ d

)
(49)

E[K2] =
N∑
m=0

(
N
m

)
2N

E[K2
m]

=
N

4

(
(N + 1)a(a+ 1) + 2Nab

(a+ b)(a+ b+ 1)

)
+

N

4

(
(N + 1)c(c+ 1) + 2Ncd

(c+ d)(c+ d+ 1)

)
+

N(N − 1)

4

(
2ac

(a+ b)(c+ d)

)
. (50)

We have used the combinatorial identities (42) and (43). From
(49) and (50), Var[K] is easily obtained as

Var[K] = E[K2]− (E[K])2

=
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
+

N

4

(
c(c+ d)(c+ 2d+ 1) +Ncd

(c+ d)2(c+ d+ 1)

)
−

N

4

(
2ac

(a+ b)(c+ d)

)
. (51)

APPENDIX C
PROOF OF PROPOSITION 3

This proof proceeds along similar lines as the proof of
Proposition 2. From (4) and (19),

Pr(K(0) = k) =

N∑
m=k

(
N
m

)
2N

(
m

k

)
B(a+ k, b+m− k)

B(a, b)

E[K(0)] =

N∑
k=0

kPr(K(0) = k)

=
1

2N

N∑
k=0

N∑
m=k

k

(
N

m

)(
m
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)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

) m∑
k=0

k

(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N
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)
E[K(0)

m ]

=
N

2

(
a

a+ b

)
(52)

E[(K(0))2] =

N∑
k=0

k2 Pr(K(0) = k)

=
1

2N

N∑
k=0

N∑
m=k

k2
(
N

m

)(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

) m∑
k=0

k2
(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

)
E[(K(0)

m )2]

=
N

4

(
a(a+ 2b+ 1) +Na(a+ 1)

(a+ b)(a+ b+ 1)

)
(53)

Var[K(0)] = E[(K(0))2]− (E[K(0)])2

=
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
. (54)

We have used the combinatorial identities (42) and (43) and
also the fact that the second moment of a beta-binomial
random variable K(0)

m ∼ Beta-Binomial(m, a, b) is given by
ma(m(a+1)+b)
(a+b)(a+b+1) . The expressions for E[K(1)] and Var[K(1)] can

be derived similarly.
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