
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020 267

Functional Error Correction for
Robust Neural Networks

Kunping Huang , Paul H. Siegel , Life Fellow, IEEE, and Anxiao Jiang, Senior Member, IEEE

Abstract—When neural networks (NeuralNets) are imple-
mented in hardware, their weights need to be stored in
memory devices. As noise accumulates in the stored weights,
the NeuralNet’s performance will degrade. This paper stud-
ies how to use error correcting codes (ECCs) to protect the
weights. Different from classic error correction in data stor-
age, the optimization objective is to optimize the NeuralNet’s
performance after error correction, instead of minimizing the
Uncorrectable Bit Error Rate in the protected bits. That is, by
seeing the NeuralNet as a function of its input, the error correc-
tion scheme is function-oriented. A main challenge is that a deep
NeuralNet often has millions to hundreds of millions of weights,
causing a large redundancy overhead for ECCs, and the rela-
tionship between the weights and its NeuralNet’s performance
can be highly complex. To address the challenge, we propose
a Selective Protection (SP) scheme, which chooses only a sub-
set of important bits for ECC protection. To find such bits and
achieve an optimized tradeoff between ECC’s redundancy and
NeuralNet’s performance, we present an algorithm based on deep
reinforcement learning. Experimental results verify that com-
pared to the natural baseline scheme, the proposed algorithm
can achieve substantially better performance for the functional
error correction task.

Index Terms—Neural networks, deep learning, error correction
codes.

I. INTRODUCTION

DEEP learning has become a boosting force for AI with
many applications. When a neural network is imple-

mented in hardware, its weights need to be stored in memory
devices. Noise in such devices will accumulate over time,
causing the neural network’s performance to degrade. It is
important to protect neural networks using error correction
schemes. In this work, we study how to use error correcting
codes (ECCs) to protect the weights of neural networks.

The protection of neural networks has a different
optimization objective from classic error correction in data
storage systems. In classic error correction, the objective is to
minimize the Uncorrectable Bit Error Rate (UBER) in the pro-
tected bits. For neural networks, however, the objective is to
optimize its performance (e.g., classification accuracy). That

Manuscript received October 15, 2019; revised April 17, 2020; accepted
April 23, 2020. Date of publication May 15, 2020; date of current version
June 8, 2020. (Corresponding author: Kunping Huang.)

Kunping Huang and Anxiao Jiang are with the Department of Computer
Science and Engineering, Texas A&M University, College Station, TX 77843
USA (e-mail: kun150kun@tamu.edu; ajiang@cse.tamu.edu).

Paul H. Siegel is with the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla, CA 92093 USA
(e-mail: psiegel@ucsd.edu).

Digital Object Identifier 10.1109/JSAIT.2020.2991430

is, by seeing the neural network as a function of its input, the
error correction scheme is function-oriented.

Several challenges exist for the protection of neural
networks. First of all, a deep neural network (DNN) often has
many weights. For example, DNNs in computer vision often
have millions to hundreds of millions of weights [1]. This can
cause a very large redundancy overhead for ECCs. So it is
important to design schemes that can reduce redundancy, and
achieve an optimized redundancy-performance tradeoff. Such
a tradeoff is illustrated in Figure 2.

Secondly, the relationship between a neural network’s
weights and its performance is highly complex. Understanding
on the relationship is very limited, and is an active topic of
research in many areas [2], [3]. Therefore, it is very challeng-
ing to design efficient algorithms that can identify weights that
are most important for preserving the performance of neural
networks.

We illustrate in Figure 1 how a neural network’s
performance is affected by noise in its weights. The network
considered here is ResNet-18 [1], a well-known network for
image classification. It consists of 19 layers of nodes and
26 layers of edges (including 8 layers of skip connections).
Among the 26 edge layers, 21 of them have trainable weights.
When binary-symmetric errors appear in the bits that represent
the network’s weights, the relation between the Bit Error Rate
(BER) and the network’s performance (i.e., classification accu-
racy) is shown in Figure 1 (a). (For a more detailed study on
the relation between errors and neural networks’ performance,
see the nice work in [4].) It can be seen that when the BER
is quite small, the network’s performance does not degrade
much. However, once the BER exceeds a certain threshold,
its performance starts to degrade substantially. This relation
is common for various types of neural networks [4], [5]. It
implies that to protect a neural network, a good redundancy-
performance tradeoff can be achieved by keeping the UBER
below a certain threshold, especially for those bits that are
most critical to the neural network’s performance.

We further illustrate that the noise in different layers of
a neural network has different impact on its performance.
(Similar results have been shown in [4].) We add noise to
the weights of only one layer of edges in ResNet-18 at a
time, and the result is shown in Figure 1 (b).1 It can be
seen that even for the same BER, different layers’ noise can
impact performance quite differently. Therefore, to optimize

1For simplicity, the result here is only for the first 18 layers of edges with
weights.

2641-8770 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8294-6064
https://orcid.org/0000-0001-5850-0874

268 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Fig. 1. The BER-performance tradeoff for a neural network. Here the network
is ResNet-18 trained on the CIFAR-10 dataset. (a) The curve shows how the
network’s performance (classification accuracy) decreases as the bit error rate
(BER) in the bits that represent the network’s weights increases. (b) The curves
show how errors in different layers of the neural network have different impact
on the neural network’s performance. Here we add errors to the weights of
only one layer in the neural network.

the redundancy-performance tradeoff, different layers should
receive different levels of protection.

In this paper, we propose a Selective Protection (SP)
scheme, which chooses only a subset of important bits for
ECC protection. Furthermore, for different layers of edges,
the numbers of protected bits for their weights are differ-
ent. The scheme uses the fact that different layers impact
performance differently. However, since layers jointly deter-
mine a network’s performance in complex ways, when noise
exists in all layers, how to optimize the scheme is still a
challenging problem.

To address the challenge, we present an algorithm based
on deep reinforcement learning. The key of the algorithm
is to learn the complex relation between which bits to pro-
tect and the network’s corresponding performance. That is,
given the knowledge on which bits are protected from errors,
we learn a function that can predict the performance of the
neural network. We then use the prediction to optimize the
set of protected bits, and then the network’s corresponding
true performance is measured as a feedback reward signal to
help further refine the accuracy of the above performance-
prediction function. The above learning process repeats itself
until its performance converges. To reduce the complexity of
learning, we decompose the above process by layers, where the
network’s layers sequentially take the actions of performance

Fig. 2. The redundancy-performance tradeoff for protecting a neural network.
The boundary of the feasible region shows the optimal achievable performance
of the neural network given the redundancy of ECC for protecting its weights.

prediction and bit selection. Note that the bits selected for
protection in each layer can be a mask vector instead of a
single number, that is, we need to decide which bits to pro-
tect instead of just how many bits to protect. That is due
to an interesting finding in this paper that, depending on
how weights are represented as bits, those bits more wor-
thy of protection are not necessarily the More Significant
Bits (MSBs). Furthermore, since we focus on optimizing the
redundancy-performance tradeoff, the ECC redundancy is set
as an integrated component in the reward function.

Our algorithm can be evaluated based on the redundancy-
performance tradeoff as follows. Let ktotal denote the total
number of bits used to represent the neural network’s weights.
Let kpro denote the number of bits we protect with ECCs. Let
the ECCs be (n, k) linear codes, where n denotes the codeword
length and k denotes the number of information bits. Then the
number of parity-check bits is n−k

k · kpro. We normalize it by
ktotal, and call it redundancy r, namely,

r = kpro(n− k)

ktotalk
. (1)

As for the performance of the neural network, for classification
tasks (which this work focuses on), it usually refers to the
classification accuracy, namely, the probability that the inputs
are classified correctly.

We compare the performance of our algorithm to a natural
baseline scheme, where all layers of the neural network receive
the same level of protection from ECCs. Experimental results
verify that our proposed algorithm achieves substantially bet-
ter performance. For example, when the neural network is
ResNet-18 and its weights are represented by bits using the
IEEE-754 standard (i.e., the single-precision floating-point
format), and when BER is 1%, the baseline scheme’s classi-
fication accuracy drops very quickly once its redundancy r is
below the threshold 0.04525. In comparison, our algorithm can
decrease the corresponding threshold to 0.03879, which rep-
resents a reduction of 14.3% in the redundancy requirement.
If the ECC approaches the Shannon capacity, this reduction
can be further enlarged to 25.7%.

The rest of the paper is organized as follows. In Section II,
we review related works. In Section III, we introduce the SP
scheme, and present its deep reinforcement learning algorithm.
In Section IV, we evaluate the SP scheme by experiments,
which verify that the scheme can substantially improve the
redundancy-performance tradeoff for neural networks. The
results also show that interestingly, depending on how weights
are represented as bits, the bits that are more important to pro-
tect are not necessarily MSBs in the data representation. We

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: FUNCTIONAL ERROR CORRECTION FOR ROBUST NEURAL NETWORKS 269

present a detailed analysis for this interesting phenomenon. In
Section V, we present concluding remarks.

II. OVERVIEW OF RELATED WORKS

The topic explored in this paper is related to several research
areas. They include robustness of neural networks against
noise, model compression, and reliability of computational
circuits.

In the area of robustness of neural networks against noise,
researchers have studied the effect of noise on the performance
of neural networks. In [4], Qin et al. studied random bit errors
for weights stored as bits, and developed an ECC with one par-
ity bit to improve the network’s performance and robustness.
In [6], Upadhyaya et al. studied random noise for weights
stored as analog numbers, and developed analog ECCs to
correct the analog noise. In [7], [8], several security attack
methods were tested to find specific error patterns that can
cause serious damage to neural networks’ performance. Note
that different from the above works, this paper proposes the
Selective Protection scheme for the first time, which protects
different sets of bits for different layers. The scheme needs
to protect all bits that are critical to the neural network’s
performance, not just bits that constitute a specific damaging
error pattern.

In the area of model compression, plenty of works have
focused on how to reduce the size of a neural network without
affecting its performance [3], [9], [10], [11]. They use various
techniques to either prune or quantize the weights in neural
networks, and the simplified networks need to be retrained.
Deep reinforcement learning methods, including the layer-by-
layer training method, have been presented [10], [11]. Note
that in our work, we find important bits and protect them,
without the need to modify the weights or retrain the network.

In the area of reliability of computational circuits,
researchers have studied the use of ECCs to ensure the cor-
rectness of circuits [12], [13], [14]. In comparison, our work
focuses on the redundancy-performance tradeoff, where the
neural network’s performance does not have to be the same
before and after ECC protection.

III. SELECTIVE PROTECTION SCHEME BY DEEP

REINFORCEMENT LEARNING

In this section, we present the Selective Protection (SP)
scheme for functional error correction. It protects the most
important bits in weights by ECC in order to achieve an
optimized redundancy-performance tradeoff. We first intro-
duce weight representation for neural networks, and define
the Selective Protection scheme. We then present a deep
reinforcement learning (DRL) algorithm for the SP scheme.

A. Weight Representation in Neural Networks

Neural networks have been used widely in deep learn-
ing. An example of a neural network is shown in Figure 3,
which has four node layers and three edge layers between
them. (Examples of more complex neural networks, including
VGG16 and ResNet-18, will be used in our experiments. For
ResNet-18, the skip connections between two node layers are
also considered an edge layer.)

Fig. 3. A neural network with four node layers (an input layer, two hidden
layers and an output layer) and three edge layers. Here W1, W2, W3 are the
set of weights in each edge layer.

There are different ways to represent weights in neural
networks as bits. We introduce two important weight repre-
sentations below. Both of them will be used in experiments.

1) Standard Floating-Point Representation: IEEE-754 is
an international standard for floating-point representation. We
adopt its 32-bit version. Given a weight w ∈ R, let B32

w =
(b0, b1, . . . , b31) be its binary representation:

w = (−1)(b0)2 × 2(b1b2···b8)2−127 × (1.b9b10 · · · b31)2 (2)

Here b0 is the sign bit, b1b2 · · · b8 are the exponent
bits, and b9b10 · · · b31 are the fraction bits. For exam-
ple, if B32

w = (00111100001100000000000000000000),
then w = (−1)(0)2 × 2(01111000)2−127 × (1.011000000
00000000000000)2 = (−1)0 × 2120−127 × 1.375 =
0.0107421875. The IEEE-754 standard can represent values
between −2127 and 2127.

2) Fixed-Point Representation: In this representation, the
weights in a range [−c, c] are linearly quantized and rep-
resented as bits. (Such a representation has been used in
neural networks before, including [11].) Consider its m-bit
version. Let s = c/(2m−1 − 1) be a scaling factor. Given a
weight w ∈ [−c, c], let Dm

w = (b0, b1, . . . , bm−1) be its binary
representation:

w = (−1)(b0)2 × (b1b2 · · · bm−1)2 × s (3)

For example, when c = 127 and m = 8, if Dm
w = (10010011),

then w = (−1)(1)2×(0010011)2×(127/(28−1−1)) = (−1)1×
19× 1 = −19.2

B. Selective Protection Scheme

We now present the Selective Protection (SP) scheme, which
selects important bits and protects them from errors with
ECCs. Consider a neural network with N edge layers. (In this
paper, we consider error protection for weights on edges, not
biases in nodes, because biases can often be implemented in
alternative ways in hardware. Note that edge weights consti-
tute by far the majority of all weights, and the results here can

2In practice, the values of c and m can be chosen as follows: given a trained
neural network, let c be the maximum absolute value of its trained weights,
and let m be a suitable integer that achieves a good balance between the
neural network’s performance and its storage size. Note that the greater m is,
the less the neural network’s performance is affected by the finite precision
of the weight representation, but the more bits are needed to store the bits of
the trained weights.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

270 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

be naturally extended to biases as well.) For i = 1, 2, . . . , N,
let Li denote the ith edge layer, and let Wi denote the set of
weights in Li. Assume that every weight is represented by m
bits. The SP scheme will select a bit-mask vector

Mi =
(
μi,0, μi,1, . . . , μi,m−1

) ∈ {0, 1}m (4)

for each edge layer Li. For each weight w =
(b0, b1, . . . , bm−1) ∈ Wi, its jth bit bj will be protected
by ECC if μi,j = 1. Naturally, we let μi,j = 1 for the layer
Li if its bits in the jth position are critical for the neural
network’s performance.

Note that the SP scheme applies the same bit-mask vector
for all the weights in the same layer. In principle, every weight
can be assigned its own bit-mask vector, but that will greatly
increase the overhead of the scheme. By using one bit-mask
vector per layer, a good balance between performance and
overhead can be achieved.

The neural network has ktotal = m
∑N

i=1 |Wi| bits in
total. The number of bits protected by ECCs is kpro =∑N

i=1 |Wi|∑m−1
j=0 μi,j. When the ECCs are (n, k) linear codes,

by Equation (1), the redundancy of the SP scheme is

r(M1, M2, . . . , MN) = (n− k)
∑N

i=1|Wi|∑m−1
j=0 μi,j

km
∑N

i=1|Wi|
(5)

Let P(M1, M2, . . . , MN) denote the performance of the neural
network (e.g., classification accuracy). Let r̄ be a target redun-
dancy. The optimization objective of SP scheme is to maximize
P(M1, M2, . . . , MN) given that r(M1, M2, . . . , MN) = r̄. That
is, after the ECCs are chosen appropriately based on the target
Bit Error Rate, the SP scheme can be formulated as

max P(M1, M2, . . . , MN)

s.t. r(M1, M2, . . . , MN) = r̄. (6)

C. Deep Reinforcement Learning for Selective Protection

We now present a deep reinforcement learning algorithm
for the SP scheme. We assume that the bits suffer from errors
of a Binary Symmetric Channel (BSC) with Bit Error Rate
(BER) p, and a suitable (n, k) linear ECC is used that can
correct error of BER p with a probability that approaches 1.
Therefore, after error correction, only the bits not protected
by ECC will have errors. Note that for a neural network, its
performance is a highly complex function of its weights. The
DRL algorithm will learn this complex function, and choose
the important bits to protect accordingly.

In the following, we first present the essential components
of the DRL algorithm: its state space, action space, reward
function, and policy of agents. We then present the overall
learning process of the DRL algorithm.

1) State Space: There are two types of state spaces in our
DRL algorithm: a Global State Space and a set of Local State
Spaces. The global state space uses a set of parameters � to
characterize the global configuration of the neural network.
For i = 1, 2, . . . , N, the ith edge layer has a local state space
�i ⊂ �, which is a partial view of the global state space
used by the agent of the ith edge layer to take actions. Note
that the parameters in � depend on the types of layers in
the neural network. In our study, we focus on VGG16 and

ResNet, which have two types of layers: convolutional layers
and fully-connected layers. Therefore, the parameters in � are
set accordingly, although they can be adjusted if other types
of layers are considered. Note that a fully-connected layer can
be seen as a special case of a convolutional layer, where its
convolutional kernel has the same size as its input feature map.

For i = 1, 2, . . . , N, let ci
in be the number of input chan-

nels for the ith layer Li (i.e., the number of input feature
maps). Let ci

out be its number of output channels (i.e., the
number of output feature maps). Let si

kernel be its kernel size
(i.e., the size of its filter for the convolution operation). Let
si

stride be its stride for convolution. Let si
feat be the size of

its input feature map (i.e., each input feature map is a two-
dimentional array of size si

feat × si
feat). Let ai ∈ A be the

most recent action taken by the agent for Li, where A denotes
the action space, whose details will be introduced later. Let
αi = (ci

in, ci
out, si

kernel, si
stride, si

feat, |Wi|, ai) denote a state vec-
tor associated with Li. Then, the global state θ ∈ � is
defined as

θ = (α1, α2, . . . , αN) (7)

To simplify the learning process, each layer Li uses a local
state πi ∈ �i defined as follows:

πi =
(

ci
in, ci

out, si
kernel, si

stride, si
feat, |Wi|, ai−1

)
(8)

When i = 1, the parameter ai−1 = a0 can be a constant. Note
that in πi, only the action of its previous layer ai−1 is used,
instead of the actions of all its previous layers a1, a2, . . . , ai−1.

2) Action Space: We now present the space of actions for
the DRL algorithm. For i = 1, 2, . . . , N, the action of the ith
layer Li is to choose a value ai ∈ {0, 1}m for its bit-mask
vector Mi = (μi,0, μi,1, . . . , μi,m−1). The overall action is
the sequence of actions (a1, a2, . . . , aN). Note that in each
iteration of the DRL algorithm, the actions a1, a2, . . . , aN are
chosen sequentially. When the layer Li takes the action ai, it
chooses the value of ai (i.e., sets its bit-mask vector Mi) based
on its local state πi and the reward function (to be introduced
later).

Let the above method be called the BitMask method. To
make the method satisfy the redundancy constraint, the reward
function not only considers the performance of the neural
network, but also the distance between the current redundancy
r and the target redundancy r̄. The reward value is actually a
linear combination of the two terms. When the DRL algorithm
ends, the final redundancy r will be close, but not necessarily
equal, to r̄. By making the coefficient for the distance between
r and r̄ sufficiently large in the reward value, we can make r
sufficiently close to r̄.

We now present a simplified version of the BitMask method,
which we called the TopBits method. In the TopBits method,
each layer always chooses the first few bits of its weights
for ECC protection. (The number of bits chosen by different
layers can still be different.) This method is intuitively under-
standable for the fixed-point representation, because the first
bit b0 is the sign bit (thus very important), and for the remain-
ing bits, the More Significant Bits (MSBs) affect the value of
the weight more significantly than the Less Significant Bits
(LSBs). Similarly, for the IEEE-754 floating-point representa-
tion, the first bit b0 is also the sign bit (thus important), the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: FUNCTIONAL ERROR CORRECTION FOR ROBUST NEURAL NETWORKS 271

exponent bits (which follow b0) affect the weight more sig-
nificantly than the fraction bits, and the MSBs in the fraction
bits affect the weight more significantly than LSBs. Therefore,
it seems natural for the SP scheme to always protect the first
few bits. The TopBits method also simplifies the learning pro-
cess compared to the BitMask method. However, our study
will show the surprising result that the BitMask method can
sometimes outperform the TopBits method (namely, MSBs do
not always affect the performance of neural networks more
substantially than LSBs).

In the TopBits method, the reward function considers only
the performance of the neural network, and does not consider
the distance between the current redundancy r and the tar-
get redundancy r̄. To satisfy the redundancy constraint, the
method takes two rounds of actions across all the layers in
each iteration of the DRL algorithm:
• In the first round, the N layers take actions

(a1, a2, . . . , aN) sequentially. For i = 1, 2, . . . , N,
the action of the ith layer Li is to choose a value
ai ∈ {0, 1, . . . , m}, and set the first ai bits of the bit-mask
vector Mi to 1 and set its other bits to 0. Namely, Li
selects the first ai bits of each weight for ECC protection.

• In the second round, if the current redundancy r is greater
than the target redundancy r̄, then for i = 1, 2, . . . , N,
each layer Li decreases its ai by 1 (but without making
ai negative) and adjusts its Mi accordingly. The layers
take the above actions sequentially, and stop as soon as
we have r ≤ r̄.

3) Reward Function: We now present the reward function
for the DRL algorithm. Let P0 describe the performance (e.g.,
classification accuracy) of the neural network without any bit
errors. After each iteration of the DRL algorithm (where the N
layers take their actions (a1, a2, . . . , aN) and set their bit-mask
vectors (M1, M2, . . . , MN) accordingly), random bit errors of
BER p are added to all bits in the N layers (but note that
some of them are chosen to be protected by ECCs), and then
the performance P of the neural network is measured. For the
TopBits method, the reward function after the iteration is set as

RTopBits = P − P0 (9)

For the BitMask method, its reward function also needs
to consider the distance between the redundancy r after the
iteration and the target redundancy r̄. Let β+ and β− to be
two positive real numbers. We define a function f (r, r̄) as3:

f (r, r̄) =
{

β+(r̄ − r) if r ≥ r̄
β−(r − r̄) if r < r̄

(10)

and define the reward function as:

RBitMask = P − P0 + f (r, r̄) (11)

Note that f (r, r̄) ≤ 0, which represents a penalty for the reward
function when the current redundancy r deviates from the tar-
get redundancy r̄. When r ≥ r̄ (an undesirable case because
the current redundancy is too large), the penalty β+(r̄ − r)
helps the DRL algorithm reduce the redundancy in the next

3Note that the TopBits method can use the same reward function as the
BitMask method, too. However, experiments show that the reward function
above for the TopBits methods leads to a slight performance improvement for
it. So we include it here for its (slight) superiority and simplicity.

Fig. 4. The four neural networks used in the deep reinforcement learning
algorithm: the Actor Network (top left), the Target Actor Network (bottom
left), the Critic Network (top right) and the Target Critic Network (bottom
right).

iteration. When r < r̄ (a desirable case because the current
redundancy is sufficiently small), interestingly, it is also help-
ful to set a small penalty β−(r − r̄), because it can prevent
the neural network from getting stuck in states of very low
redundancy in the practical implementation of the DRL algo-
rithm. We usually make β− much less than β+. For example,
we can set β+ = 1 and β− = 0.05.

4) Policy of Agents and the Learning Process: In the DRL
algorithm, every layer Li has an agent Ai that takes the action
ai based on the local state πi and an estimated reward function
R̂. How the agent Ai chooses the action ai based on the avail-
able information is called its policy. In this part, we present
the policy of the N agents A1, A2, . . . , AN .

We build four deep neural networks: an Actor Network, a
Target Actor Network, a Critic Network, and a Target Critic
Network. The four networks are illustrated in Figure 4. They
are all Multilayer Perceptron (MLP) neural networks of four
node layers, where the two hidden layers have size 400 and
300, respectively. Additional information on their architectures
is as follows:
• Actor Network and Target Actor Network: For both

networks, the input is the local state πi, and the output is
the action ai. The two networks have similar functions,
but update their weights with different algorithms during
training.

• Critic Network and Target Critic Network: For both
networks, the input consists of the local state πi and the
action ai, and the output is an estimated value for the sum-
mation of the current and the future rewards in the same
iteration (where future rewards are discounted in certain
ways). Specifically, let γ be a discount factor. Then for
t = 1, 2, . . . , N, the output of the two networks is the
value of the following Q function:

Q(πt, at) =
N∑

i=t

γ i−tR̂(πi, ai) (12)

where R̂(πi, ai) is an estimation of the real reward of this
iteration. As before, the two networks also have simi-
lar functions, but update their weights differently during
training.

The DRL algorithm keeps using the Actor Network to gen-
erate actions. In each iteration, the N agents A1, A2, . . . , AN

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

272 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

generate the actions a1, a2, . . . , aN sequentially. That is, for
i = 1, 2, . . . , N, the Actor Network takes πi as input, and
outputs the action ai. (Note that the Actor Network outputs
real numbers, and we round them to the nearest integers
to get the action ai.) After an iteration, the N local states
(π1, π2, . . . , πN), the N actions (a1, a2, . . . , aN) and the over-
all reward R of the iteration are stored in a buffer. The buffer
has a fixed size. When new data come in, if the buffer is full,
the oldest data will be removed. Therefore, the buffer always
stores the most recent results.

After each iteration, a number of samples will be ran-
domly chosen from the buffer to train the four networks. Each
sample has the form of (πi, ai, πi+1, R). The four networks
update their weights as follows, using the idea of the DDPG
algorithm [15]:
• Step 1 (Train the Critic Network): As shown in Figure 4,

the Critic Network takes πi and ai as input, and out-
puts a value Q(πi, ai). We also concatenate the Target
Actor Network and the Target Critic Network (as shown
in Figure 4), and use πi+1 as input to generate the out-
put Qtarget(πi+1, atarget

i+1). The loss function of the Critic
Network is then set as

Lcritic =
(
Q(πi, ai)− γ Qtarget

(
πi+1, atarget

i+1

)
− (R− B)

)2

(13)

where the baseline B is defined as an exponential moving
average of all previous rewards in order to reduce the
variance of gradient estimation. A small number of sam-
ples are used as a mini-batch, and their total loss is
used to update the weights of the Critic Network via
backpropagation.

• Step 2 (Train the Actor Network): We concatenate the
Actor Network and the Critic Network (as shown in
Figure 4), and use πi to generate the output Q(πi, ai).
The loss function is then set as

Lactor = −Q(πi, ai) (14)

Then the total loss of a mini-batch of such samples is
used to update the weights of the Actor Network via
backpropagation (with the weights of the Critic Network
frozen).

• Step 3 (Train the Target Actor Network): Let δ be a small
number, such as δ = 0.01. Let wtarget

actor be a weight of
the current Target Actor Network, and let wactor be the
corresponding weight of the updated Actor Network. We
update wtarget

actor as:

wtarget
actor ← wtarget

actor + δ
(

wactor − wtarget
actor

)
(15)

We update all weights of the Target Actor Network in the
same way.

• Step 4 (Train the Target Critic Network): We update its
weights in the same way as we did with the Target Actor
Network, except that here we consider the Target Critic
Network and the Critic Network.

In summary, the Critic Network learns to predict the future
rewards given the current state and the action to be taken.
The Actor Network learns to take the best action based on the
future rewards predicted by the Critic Network. The Target

Critic Network (respectively, the Target Actor Network) fol-
lows the learning of the Critic Network (respectively, the Actor
Network), except that it updates its weights at a slower pace,
which is a conservative method that helps the DRL algorithm
converge. The DRL algorithm ends when the four networks’
performance converges or when a preset number of training
steps is reached.

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present experimental evaluation of
the Selected Protection scheme. We focus on two impor-
tant deep neural networks in computer vision: ResNet-18 [1]
and VGG16 [16]. We consider two well-known datasets: the
CIFAR-10 dataset [17] and the MNIST dataset [18]. We use
two data representation schemes for the weights: the IEEE-754
floating-point representation, and the fixed-point representa-
tion. We explore two types of error correcting codes: an ideal
ECC that reaches the Shannon capacity, and a practical finite-
length BCH code. And we study the performance of two
methods for the SP scheme: the BitMask method and the
TopBits method.

The experimental results show that the Selective Protection
scheme based on deep reinforcement learning can substan-
tially outperform the natural baseline scheme, where all layers
protect the same number of bits. The experimental results
also reveal a very interesting fact: the More Significant Bits
(MSBs) in a data representation do not always affect the
performance of a neural network in the most significant ways.
Consequently, the BitMask method can sometimes protect
some less significant bits (instead of MSBs) and outperform
the TopBits method. We present a detailed analysis of this
surprising finding.

In the following, we introduce the setup of experiments,
and present the redundancy-performance tradeoff of the SP
scheme. We then show how the BitMask method and the
TopBits method select bits for protection, and analyse why
sometimes LSBs are more important for the performance of
neural networks than MSBs in noisy environments.

A. Setup of Experiments

We test the performance of the SP scheme on two important
neural network models: ResNet-18 and VGG16. These models
are commonly used for classifying images, and have vari-
ous applications in computer vision. The ResNet-18 network
has 26 edge layers and 11.69 million weights. The VGG16
network has 16 edge layers and 138 million weights. Such
sizes are typical for deep neural networks.

We perform image classification tasks on two important
datasets: the CIFAR-10 dataset and the MNIST dataset. The
CIFAR-10 dataset consists of 60, 000 colored images of size
32×32 each, which belong to 10 different classes. The MNIST
dataset consists of 70, 000 gray-scaled images of size 28×28
each, which represent the 10 classes of hand-written digits
from 0 to 9. Both datasets are widely used for testing the
performance of image classification.

We study the SP scheme for two data representation
methods: the IEEE-754 floating-point representation and the
fixed-point representation. The IEEE-754 representation is

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: FUNCTIONAL ERROR CORRECTION FOR ROBUST NEURAL NETWORKS 273

an international standard widely used in most hardware
systems. The fixed-point representation is a natural alter-
native way to quantize weights with easily controllable
ranges and quantization precision. In our experiments, we
let the IEEE-754 representation use 32 bits for each weight,
and let the fixed-point representation use 8 bits for each
weight.

We explore two types of ECCs for protecting the important
bits selected by the SP scheme. The first one is an ideal ECC
that reaches the Shannon capacity. When the weights suffer
from errors of a binary symmetric channel with BER p, we
let the ideal ECC have a code rate of 1−H(p), matching the
channel’s capacity. We use the code to protect all the selected
important bits, and assume that decoding always succeeds. The
second type of codes are practical finite-length BCH codes.
When the IEEE-754 floating-point representation is used, we
let the code be a (8191, 6722) BCH code, which can correct
115 errors. When the fixed-point representation is used, we
let the code be a (8191, 6787) BCH code, which can cor-
rect 110 errors. When p = 0.01 (a practical BER for storage
systems), both codes can decode with sufficiently small failure
probabilities, thus causing minimal degradation for the neural
network’s performance.

We study the performance of two methods for the SP
scheme: the BitMask method and the TopBits method. The
BitMask method offers greater freedom in selecting which bits
to protect, while the TopBits method offers higher efficiency
for learning due to its more restricted solution space. For both
methods, the deep reinforcement learning algorithm converges
efficiently. Given a solution of the SP scheme, we generate
random errors 100 times for all the weights, and evaluate the
neural network’s average performance (i.e., classification accu-
racy). The performance was found to be stable over different
experiments.

B. Redundancy-Performance Tradeoff

The experimental results for the redundancy-performance
tradeoff are shown in Figure 5 and Figure 6. They are for two
different types of ECCs, respectively: Figure 5 is for the ideal
ECC, while Figure 6 is for the finite-length BCH codes. In all
experiments, we let BER be p = 0.01. The redundancy r =
kpro(n−k)

ktotalk
can be adjusted by setting different target redundancy

in the deep reinforcement learning algorithm. The performance
is measured as the average classification accuracy of the neural
network, whose noisy weights are partially protected by the
ECC.

The figures show that when the redundancy r is relatively
large, the neural network retains its high performance (because
the bits most important for its performance are protected by
ECCs).4 However, once the redundancy drops below a certain
threshold, the performance drops sharply. It can be seen clearly
that, overall, both the BitMask method and the TopBits method
significantly outperform the baseline method, where all layers
protect the same number of bits. (In the baseline method, we
always protect the first few bits in the weights because they
are more significant.)

4In all the figures, the highest accuracy achieved by one or multiple curves
equals the original accuracy of the neural network in the error-free scenario.

Fig. 5. The redundancy-performance tradeoff for the SP scheme when ideal
ECC is used. Here “baseline”, “TopBits” and “BitMask” denote the baseline
algorithm (where all layers protect the same number of bits), the TopBits
method and the BitMask method, respectively. (a) The neural network is
ResNet-18, the dataset is CIFAR-10, and the data representation scheme is
IEEE-754. (b) The neural network is VGG16, the dataset is MNIST, and the
data representation scheme is IEEE-754. (c) The neural network is ResNet-18,
the dataset is CIFAR-10, and the data representation scheme is fixed-point.
(d) The neural network is VGG16, the dataset is MNIST, and the data
representation scheme is fixed-point.

Fig. 6. The redundancy-performance tradeoff for the SP scheme when BCH
codes are used. (a) The neural network is ResNet-18, the dataset is CIFAR-10,
and the data representation scheme is IEEE-754. (b) The neural network is
VGG16, the dataset is MNIST, and the data representation scheme is IEEE-
754. (c) The neural network is ResNet-18, the dataset is CIFAR-10, and the
data representation scheme is fixed-point. (d) The neural network is VGG16,
the dataset is MNIST, and the data representation scheme is fixed-point.

It can also be seen that when the IEEE-754 representation
is used, the BitMask method outperforms the TopBits method
substantially overall. When the fixed-point representation is
used, the performance of two methods becomes more compa-
rable, with the TopBits method sometimes outperforming the
BitMask method. It is a very interesting observation because
the TopBits method always chooses the first few bits of each
weight, which are usually considered more significant than the
remaining bits. Furthermore, this restriction also reduces the
dimensions of the solution space substantially, which helps
improve the efficiency of learning. It implies that the BitMask
method can find less significant bits that are more important

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

274 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Fig. 7. The number of selected bits for ECC protection in each edge layer.
Here the neural network is ResNet-18, the dataset is CIFAR-10, and the ECC
is the ideal ECC. Sub-figure (a) is for the IEEE-754 floating-point representa-
tion, and sub-figure (b) is for the fixed-point representation. The orange bars
are for the BitMask method (with the redundancy r = 0.189 for (a) and 0.193
for (b)) , and the blue bars are for the TopBits method (with the redundancy
r = 0.2 for (a) and 0.2 for (b)). (Note that both methods used the same
target redundancy r̄ in their DRL algorithm. But since the DRL algorithm
only makes the final redundancy be close to the target redundancy, their final
redundancies are not identical.)

than MSBs for a neural network’s overall performance. In the
following, we analyse this surprising result by studying how
the two methods select bits, and how the bits affect the neural
network’s performance.

C. Bits Protected by Selective Protection Scheme

We now study how the BitMask method and the TopBits
method select bits. For the number of bits selected by the
two methods, its distribution over the layers is as illustrated
in Figure 7. It can be seen that when the data representation
is IEEE-754, both methods have a relatively even distribu-
tion over the layers. And when the data representation is the
fixed-point representation, the distribution for both methods
becomes less even. Overall, the two methods behave similarly
in this aspect.

The major difference between the BitMask method and
the TopBits method is in which bits they select. Since their
redundancy-performance tradeoff differs most significantly
when the IEEE-754 representation is used, we focus on
the IEEE-754 representation from now on. For the TopBits
method, it always selects the first few bits in each layer. For
the BitMask method, however, it selects bits quite differently.
Some typical examples are shown in Figure 8. It shows that
instead of selecting some more significant bits (such as the
third and the fourth bits), the BitMask method selects some
less significant bits (such as the fifth, sixth and seventh bits in
the 11th layer, the 12th layer, . . . , the 16th layer). The result
is intriguing because the more significant bits affect the value
of a weight more substantially, and are usually expected to
affect the performance of the neural network more as well.
We present the analysis for the result in the next subsection.

Fig. 8. Typical examples of the bit-mask vector in some edge layers, with
the IEEE-754 floating-point representation and the BitMask method. Here the
neural network is ResNet-18, the dataset is CIFAR-10 and the ECC is the ideal
ECC. The positions of the selected bits for ECC protection correspond to the
1’s in the bit-mask vector (of the blue color). Notice that among the exponent
bits, some less significant bits are selected instead of more significant bits.

D. Analysis of BitMask Method and TopBits Method

When the IEEE-754 data representation is used, consider a
bit among the exponent bits. (The exponent bits are where
the BitMask method’s selection and the TopBits method’s
selection differ the most. For fraction bits, most of them
are not selected by either method.) Recall that for a weight,
when its bits are (b0, b1, . . . , b31), the corresponding weight
is w = (−1)(b0)2 × 2(b1b2···b8)2−127 × (1.b9b10 · · · b31)2. Let
1 ≤ i ≤ 8, and consider the exponent bit bi. There are two
important factors that determine how an error in bi affects the
neural network’s performance:

1) Factor one: The 0-to-1 error and the 1-to-0 error have an
asymmetric impact on the neural network’s performance.

2) Factor two: The bit bi can have a highly imbal-
anced probability distribution, which also affects the
performance.

We analyze the two factors in the following. For the first
factor, consider a 0-to-1 error that changes bit bi from 0 to 1. In
this case, the weight changes from w to w0−to−1 = 228−i ×w.
With a 1-to-0 error that changes the bit bi from 1 to 0, the
weight will change from w to w1−to−0 = 2−28−i × w. Since
each neuron takes a linear combination of its incoming val-
ues before passing it to an activation function, the absolute
value of the weight plays an important role in the function
of the neuron. It is easy to see that the 0 − to − 1 error
changes the absolute value of the weight much more signif-
icantly than the 1 − to − 0 error. So the 0 − to − 1 errors
are expected to affect the neural network’s performance more
significantly as well.

We experimentally verify the above observation in Figure 10
(a) and (b). They show that when 0-to-1 errors are added,
the performance of the neural network drops very sharply.
When 1-to-0 errors are added, however, the performance of
the neural network does not change much. The results verify
that 0-to-1 errors have a more significant impact on the neural
network’s performance. So to achieve an optimal redundancy-
performance tradeoff, there is a strong motivation to protect
bits that are more likely to be 0s.

Let us now study the probability distribution of the bits in
each bit position. The results are as illustrated in Figure 9.
It can be seen that for many exponent bits (including bit 1
to bit 6), the probability distribution can be quite uneven. In
fact, due to the weight distribution in the neural network, bit
2 and bit 3 here are nearly always 1s, and that explains why
they were not selected by the BitMask method (as shown in

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: FUNCTIONAL ERROR CORRECTION FOR ROBUST NEURAL NETWORKS 275

Fig. 9. The probability distribution of the bits in each bit position. Here
the neural network is ResNet-18, the dataset is CIFAR-10, and the data rep-
resentation is the IEEE-754 standard. The x-axis shows the 32 bit positions
for weights. The y-axis shows the probability for a bit in each position to be
0 or 1. (Each blue bar is the probability for the bit to be 0, and each orange
bar is the probability for the bit to be 1. Here the weights are noiseless.) It
can be seen that for some exponent bits (especially from bit 1 to bit 6), the
probablity distribution can be quite uneven. (The orange bar for bit 1 and the
blue bar for bit 2 have height 0, and therefore cannot be seen.)

Figure 8). Overall, whether a bit should be selected depends
on the balance between both factors: the level of asymmetry in
the impact on performance by the 0-to-1 errors and the 1-to-0
errors, and the probability for the bit to be 0 or 1. The greater
the level of asymmetry is, and the more probable the bit is 0,
the more likely the bit will be selected.

We study the bits that are selected differently by the BitMask
method and the TopBits method, and explore their impact on
the neural network’s performance. The experimental results
are shown in Figure 10 (c) and (d). Let STopBits be the set of
bits selected by the TopBits method, and let SBitMask be the
set of bits selected by the BitMask method. (Here we let the
TopBits method select the same number of bits as the BitMask
method in each layer for fair comparison.) It can be seen that
when errors are added to the bits in SBitMask − STopBits, the
performance of the neural network drops very sharply. When
errors are added to the bits in STopBits− SBitMask, however, the
performance does not change much. The results verify that the
BitMask method indeed chooses bits that are more important
for the redundancy-performance tradeoff.

E. Further Discussion

The DRL algorithm presented here has been shown to
work well for certain neural networks. However, it does not
imply that it will work well for all types of networks. For
example, when more compact neural networks are trained
for the MNIST dataset and the CIFAR dataset (e.g., LeNet5
for MNIST and ResNet-20 for CIFAR, respectively), the
performance gain of the BitMask method and the TopBits
Method can decrease. We present more details in the
Appendix. A possible explanation is that for such neural
networks, the relation between the weights and the neural
network’s performance becomes even more complex, which
makes it more challenging for the DRL algorithm to learn
and exploit. How to extend the DRL algorithm for such neural
networks is an interesting topic to study.

Another interesting topic to explore is the relation between
the neural network’s topology and the DRL algorithm’s
performance. While the network models studied in this paper
are relatively common (i.e., sequential models with or with-
out skip connections), there exist various other networks with
alternative architectures, and how their topology will affect
the redundancy-performance tradeoff or the DRL algorithm’s
performance is an interesting topic. Furthermore, a neural
network can be trained with many regularization methods (e.g.,

Fig. 10. How the performance of a neural network changes when errors
are added to its bits in two phases. (No bits here are protected by ECC.)
Here the neural network is ResNet-18, the dataset is CIFAR-10, and the data
representation is IEEE-754. (a) In phase 1, we only add 1-to-0 errors to bits
that are originally 1s; then in phase 2, we continue to add 0-to-1 errors to
bits that are originally 0s. In both phases, we gradually increase the error
probability from 0 to 1% (and the same holds for the other three sub-figures).
(b) In phase 1, we only add 0-to-1 errors to bits that are originally 0s; then in
phase 2, we continue to add 1-to-0 errors to bits that are originally 1s. (c) Let
STopBits be the set of bits selected by the TopBits method, and let SBitMask
be the set of bits selected by the BitMask method. In phase 1, we only add
errors to the bits that are in the set STopBits − SBitMask; then in phase 2, we
continue to add errors to the bits that are in the set SBitMask− STopBits. (d) In
phase 1, we only add errors to the bits that are in the set SBitMask − STopBits;
then in phase 2, we continue to add errors to the bits that are in the set
STopBits − SBitMask .

using dropout layers or batch normalization). Although this
work focuses on neural networks that are already trained,
whether those important regularization methods used dur-
ing training will affect the redundancy-performance tradeoff
achieved by the DRL algorithm is also an interesting topic.

V. CONCLUSION

In this work, we use deep learning to selectively protect the
weights in neural networks from errors, in order to achieve
an optimized redundancy-performance tradeoff. The error-
correction scheme is function-oriented: it aims at optimizing
the neural network’s overall performance, instead of the uncor-
rectable bit error rates among all the bits after decoding. It
studies two important methods for the Selective Protection
scheme: the BitMask method and the TopBits method. Both
methods can outperform the baseline scheme significantly.
And interestingly, it was discovered that sometimes, protect-
ing less significant bits (LSBs) is more important to the neural
network’s performance than protecting some more significant
bits (MSBs).

The proposed error-correction paradigm can be extended
in various ways. One interesting extension is to study how
errors in different modules in a neural network (including
filters, channels, attention modules, etc.) affects the neural
network’s performance, and design error-correction schemes
accordingly. How the neural network’s compactness, topology
and regularization methods affect the final performance is also
an interesting topic. Furthermore, since the 1-to-0 errors and
0-to-1 errors can have different impact on a neural network’s

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

276 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Fig. 11. The redundancy-performance tradeoff when two more compact
neural networks, ResNet-20 and LeNet5, are used in place of ResNet-18 and
VGG16, respectively. The remaining settings are the same as those mentioned
in the caption of Fig. 5.

performance, how to design the error-correcting codes to pro-
tect bits in asymmetric ways is an interesting direction as well.
Those topics remain as our future research.

APPENDIX

In this appendix, we present the experimental results for
more neural networks: LeNet5 [18] for the MNIST dataset,
and ResNet-20 [1] for the CIFAR10 dataset. Compared to
the VGG16 and ResNet-18 models introduced earlier, they
are more compact models: LeNet5 has 5 edge layers and
0.06 million weights, while ResNet-20 has 22 edge layers and
0.27 million weights.

It has been found that for such more compact networks,
it becomes more challenging for the DRL algorithm to out-
perform the baseline method, possibly due to more complex
relations between weights and performance for those networks.
So we adjust the DRL algorithm with a simple extension:
before running the DRL algorithm, we first initialize its buffer
with trajectories (i.e., the (state, action, reward, next state)
tuples) collected by the baseline solution. That enables the
DRL algorithm to start its learning by first exploring solutions
relatively near the baseline solution (instead of random solu-
tions), thus making it more likely to outperform the baseline
solution.

The experimental results for the redundancy-performance
tradeoff are shown in Figure 11. It can be seen that between
the BitMask method and the TopBits method, one of them
still clearly outperforms the baseline method. However, the
other one seems to have comparable overall performance as
the baseline method. Note that both BitMask and TopBits are
true generalizations of the baseline method in the sense that
the solution spaces they explore contain the solution space of
the baseline method as a subspace. Therefore, the performance
reduction of BitMask and TopBits (compared to previous
results) is likely due to limitations of the learning capabil-
ity of the current DRL algorithm facing neural networks of
more complex weight-performance relations.

When the redundancy r is relatively large, the TopBits
method retains its high performance while the BitMask method
has below 2% accuracy reduction in our experiment. (It seems
reasonable for small performance reduction in a noisy envi-
ronment.) When IEEE-754 weight representation is used , the
average performance will drops sharply once the redundancy
get down a certain threshold. The BitMask method outperforms
baseline method while the TopBits method has close trade-off
to the baseline method. When the Fixed-point weight repre-
sentation is used. The TopBits method performs better than the
baseline method and BitMask method has close performance
to the baseline method. In figure 11, we can see that the
accuracy span from 100 generated noisy weights. The overall
performance of the BitMask method and the TopBits method
performs better than the baseline algorithm.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[2] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci., vol. 114, no. 13, pp. 3521–3526, 2017.

[3] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[4] M. Qin, C. Sun, and D. Vucinic, “Robustness of neural networks against
storage media errors,” 2017. [Online]. Available: arXiv:1709.06173.

[5] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang, “Error
correction for noisy neural networks,” in Proc. Non-Volatile Memories
Workshop, 2019.

[6] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang,
“Error correction for hardware-implemented deep neural networks,” in
Proc. Non-Volatile Memories Workshop, 2019.

[7] Y. Liu, L. Wei, B. Luo, and Q. Xu. “Fault injection attack on deep
neural network,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2017, pp. 131–138.

[8] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in Proc. Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 1211–1220.

[9] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis., 2017, pp. 5058–5066.

[10] Y. He and S. Han, “ADC: Automated deep compression and acceleration
with reinforcement learning,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 784–800.

[11] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proc. Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2019, pp. 8612–8620.

[12] A. Gal and M. Szegedy, “Fault tolerant circuits and probabilistically
checkable proofs,” in Proc. 12th Annu. IEEE Conf. Struct. Complexity
Theory, Jun. 1995, pp. 65–73.

[13] V. Choudhary, E. Ledezma, R. Ayyanar, and R. M. Button, “Fault
tolerant circuit topology and control method for input-series and output-
parallel modular DC-DC converters,” IEEE Trans. Power Electron.,
vol. 23, no. 1, pp. 402–411, Jan. 2008.

[14] C. E. Stroud, “Reliability of majority voting based vlsi fault-tolerant
circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 4,
pp. 516–521, Dec. 1994.

[15] T. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, ON, Canada, Rep. TR-2009, 2009.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 17,2020 at 03:46:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

