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Abstract|Using performance analysis of Reduced
State Sequence Estimators (RSSE), we characterize
dominant error events for a Noise Predictive Maxi-
mum Likelihood (NPML) detector. The error event
characterization may be used to determine distance
enhancing constraints that improve the reliability of
NPML/RSSE detection. An example of a constraint
that provides approximately :8 dB asymptotic coding
gain for an NPML detector operating at a user bit
density of 2:54 is illustrated.

I. Introduction

Many high density magnetic recording devices em-
ploy equalization to a partial response target (PR)
and maximum-likelihood (ML) sequence detection
using a Euclidean distance metric, a combination
known as PRML. To simplify the implementation
of the receiver, the target polynomial is chosen to
be short in duration and constrained to have integer
coe�cients. At higher recording densities, the inter-
symbol interference (ISI) arising from a single pulse
a�ects a larger number of adjacent symbol periods.
Continuing to equalize to a short target increases the
mismatch of the channel and target, and the subse-
quent equalization required to alter the overall re-
sponse leads to noise coloration, noise enhancement
and a resulting performance degradation. On the
other hand, increasing the length of the target leads
to an undesirable increase in the complexity of the
detector.
The Noise Predictive Maximum Likelihood

(NPML) detector [7],[5] improves the reliability of
the PRML detector by adding a noise whitening
�lter at the input to the Viterbi detector and
performing sequence estimation based on a longer
e�ective target, with possibly non-integer coef-
�cients. The potential added complexity of the
detector is compensated for by using Reduced State
Sequence Estimation (RSSE) [6],[8], which limits
the number of states in the detector trellis.
Using results from the analysis of RSSE detectors

[6],[12] we examine the performance of an NPML de-
tector. Dominant error event lists for the NPML
detector are generated and used to design distance
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enhancing constraints. We give an example of a con-
straint with Shannon Capacity C � :914 that yields
a :8 dB asymptotic coding gain for an NPML detec-
tor with front end target h(D) = 1 � D2, a 4-tap
predictor, and 18 detector trellis states operating on
a Lorentzian channel at a user bit density of 2:54.
The paper is organized as follows. Section II intro-

duces the channel model used and brie
y describes
a PRML detector; Section III describes the addition
of noise prediction; Section IV discusses the perfor-
mance of an NPML detector; Section V discusses er-
ror event characterization; Section VI discusses dis-
tance enhancing constraints; and Section VII gives
simulation results.

II. Channel Model

Figure 1 illustrates the model for the channel and
NPML detector. The upper branch of the detector
is a PRML detector, included for comparison. The
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Fig. 1. Channel model

input to the channel is a binary sequence, fakg
1
k=�1,

ak 2 f0; 1g. The output is given by:

yk =

NlX
i=�Nl

liak�i + nk

= lTa+ nk:

The channel is modeled as a �nite-length, discrete-
time transversal �lter, l, plus additive noise, nk. The
additive noise samples are assumed uncorrelated,
identically distributed and Gaussian with variance
�2n. For magnetic recording channels, this model
could arise from a Lorentzian pulse followed by a
sampled ideal low-pass �lter or a sampled whitened
matched �lter, truncated to a �nite duration in ei-
ther case.



The equalizer v, a �nite-length transversal �lter,
is chosen to equalize to a front end target, hT =
[h0; � � � ; h� ]. The taps fvkg will be chosen to mini-
mize the mean-square-error between the actual out-
put of the equalizer, (a � l + nk) � v, and the de-
sired output, a � h, where � denotes discrete-time
convolution. The output of the equalizer consists
of the desired response, residual intersymbol inter-
ference from misequalization,  k, and colored noise,
�k:

rk = hTak:k�� +  k + �k

Throughout the remainder of the analysis, we assume
interference from misequalization is non-existent,
 k = 0, although simulation results include mise-
qualization.
In a conventional PRML detector, an estimate of

the transmitted sequence is formed by choosing the
input sequence which, when passed through the de-
sired impulse response, yields the sequence closest in
Euclidean distance to the received sequence, frkg.

â(D) = argmin
b(D)

kr(D) � b(D)h(D)k

where a(D) is the D transform of the sequence a,
a(D) =

P1
n=�1 anD

n, and ka(D)k =
pP

a2i = jaj.
If the transmitted sequence was a(D), an error in the
estimate occurs when kr(D)�t̂(D)k < kr(D)�t(D)k
where t(D) = a(D)h(D), t̂(D) = â(D)h(D), and
â(D) 6= a(D).
Figure 2 illustrates the decision process between

two candidate sequences in the signal space. An error
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Fig. 2. Euclidean distance decision

occurs when the colored noise pushes t(D) + �(D)
over the decision boundary. The probability of this
event is given by [3]

Pr[a(D)! â(D)] = Q

� 1
2
j"tj

�N

�

where Q(x) = 1p
2�

R1
x
e�y

2=2dy, "t(D) = t(D) �

t̂(D) and �2N is the variance of the magnitude of the
projection of the colored noise, �(D), onto the vector
"t(D),

�2N = E[jproj"t�j
2]

=
"Tt R�;�"t

j"tj2

where [R�;�]i;j = E[�i�j ], the autocorrelation matrix

of the noise process �(D). If the additive noise were
white (components of the noise vector are uncorre-
lated and identically distributed), the Euclidean de-
cision would be optimal. However, in colored noise,
this criterion is suboptimal, and may lead to a sig-
ni�cant performance degradation.

III. Noise Predictive Maximum Likelihood

Detector

An NPML detector seeks to improve the perfor-
mance by whitening the noise sequence prior to the
Viterbi Detector. In the process, it creates a new
e�ective target. An estimate of the current noise
sample, �̂k, is formed and subtracted from rk. The
estimate is the one-step linear predictor of the se-
quence, based on estimates of the previous Np noise
samples, f~�gk�1:k�Np

.

�̂k =

NpX
i=1

~�k�ipi

The noise prediction coe�cients, fpig
Np

i=1, are chosen
to minimize the error in the estimate E[j�k � �̂kj

2],
where the estimates of the prior noise samples are
formed from estimates of the data sequence, ~�k�i =
rk�i � hT âk�i:k�i�� ; 0 < i � Np. For computation

of fpig
Np

i=1, we assume the prior noise estimates are
correct, ~�k�i = �k�i.
The NPML sequence estimator chooses the input

sequence which, when passed through a channel with
impulse response g(D) = h(D)[1� p(D)], yields the
sequence closest in Euclidean distance to the equal-
ized received sequence, 
(D) = r(D)[1�p(D)]. How-
ever, the new target, g(D), may be of a length whose
full incorporation in the detector is prohibitively
complex. A solution is to vary the complexity of the
detector by limiting the number of distinct candidate
paths considered. A set of 2K states are retained,
fewer than the 2Np+� states required to track all dis-
tinct candidate paths. The metrics in this Reduced
State Sequence Estimator (RSSE) between states sj
and sk are given by

�n(sj ; sk) = [
n �
PK

i=0 ân�i(sj)gi �PNp+�

i=K+1 ~an�i(sj)gi]
2

where the âk are given by the 2K states and the ~ak
are given by the path histories. In [1], methods of
choosing the path histories were investigated. Here
we assume the use of full local feedback, such that
each of the 2K trellis states has a distinct path his-
tory.

IV. Performance of NPML Detector

In [6],[12], the performance of an RSSE detector
is analyzed. An RSSE detector with K < Np + �



su�ers a signi�cant performance loss relative to the
full state detector, where K = Np + �, by forcing
a decision in the detector after fewer than Np + �

consecutive steps with âk = ak, thereby decreasing
the e�ective minimum distance.
In addition, the residual interference due to errors

in the path history increases the probability of an er-
ror event. The input to the NPML detector is 
(D),


(D) = a(D)g(D) + e(D)

= �(D) + e(D)

where e(D) is the `whitened' noise sequence �(D)[1�
p(D)]. The Viterbi Algorithm on a trellis with K =
Np + � makes a decision between �(D) = a(D)g(D)
and �̂ (D) = â(D)g(D) as illustrated in Figure 2.
However, on the reduced state trellis a decision is
made between q(D) and q̂(D),

q(D) = �(D)� �(D)

q̂(D) = �̂(D)� �̂(D)

where �(D) and �̂(D) are residual signal error se-
quences, re
ecting the impact of errors prior to the
start of the error event, i.e., errors in the path history
f~akg. If we assume that the error event extends from
k = k1 to k = k2, then the residual error sequences
are given by

�k =

8<
:
PNp+�

i=k�k1+1(ak�i � ~ak�i)gi
; k1 � k � k1 +Np + � � 1

0 ; otherwise

�̂k =

8<
:
PNp+�

i=k�k1+1(âk�i � ~ak�i)gi
; k1 � k � k1 +Np + � � 1

0 ; otherwise

The e�ect of the residual interference in the signal
space is illustrated in Figure 3. The residual in-
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Fig. 3. Decision regions, RSSE (K < Np + �)

terference e�ectively o�sets the two candidate signal
points such that the decision region is shifted. The
probability of an error in the case of residual inter-
ference is

Pr[a(D)! â(D)j�(D)] = Q

 
1
2
j"q j+

<�;"q>

j"qj
�N 0

!

where "q(D) = q(D)�q̂(D), < �; "q >=
P
�k"k, and

�N 0 is the variance of the magnitude of the projection
of the `whitened' noise, e(D), onto the vector "q(D),

�2N 0 = E[jproj"qej
2]

=
"Tq Re;e"q

j"qj2

where [Re;e]i;j = E[eiej ], the autocorrelation matrix

of the noise process e(D).

V. Error Event Characterization

Duel-Hallen and Heegard [6] illustrated that a
good estimate of performance when K is close to
Np + � is obtained by assuming < �; "q >= 0,
i.e., no residual interference. We can identify the
set of dominant error events on the RSSE de-
tector trellis under this assumption, i.e., the set�
a� â

��(j"q j2=�2N 0) < �
	
, where � is an appropri-

ate constant. Search algorithms to accomplish this
are described in [2],[1],[13]. The search uses an er-
ror state diagram with 3Np+� states, although closed
error events on the RSSE trellis occur after K con-
secutive steps with an � ân = 0. Table I lists the re-
sults of a search for a sampled, ideal low-pass �ltered
Lorentzian channel operating at a density PW50

T
=

2:86 with a front-end target h(D) = 1�D2, a 4-tap
noise predictor, 16-state detector trellis (K = 4), and
normalized additive white noise power, �2n = 1. A
shorthand vector notation is used to represent error
events, where f+; 0;�g denote an � ân = +1; 0;�1.
A subset of the set

�
a� â

��(j"q j2=�2N 0) < �
	
is de-

termined by searching over all events up to length
20. We chose � to be the value of j"qj

2=�2N 0 corre-
sponding to the Matched Filter Bound, i.e. the event
a� â = � � � 000+000 � � � . Zero cycles are denoted by
(�), where (x) denotes insertion of any non-negative
number of x's at that location. The value j"q j

2=�2N 0

listed for sets of events with a zero cycle corresponds
to the shortest event of the set. Although this does
not necessarily represent the minimum j"q j

2=�2N 0 for
the set, the minimum is typically in the same range,
and distinguishing the minimum would not have af-
fected the design of a constrained code.

VI. Distance Enhancing Constraints

The performance of the detector may be improved
by forbidding the occurrence of the lowest distance
error events [13]. This is accomplished by con-
straining the binary input sequences such that the
minimum distance pairwise error events are elimi-
nated. We denote constrained sets of sequences by
X
A
F , where A is the sequence alphabet and F de-

notes the set of forbidden sequences over the alpha-
bet. We are interested in two sets of constrained
sequences and the relationships between them: the



TABLE I

Dominant Error Events, Lorentzian

channel,
PW50

T
= 2:86, h(D) = 1�D2, Np = 4,K = 4

�
j"qj

2=�2N 0

�
j�n=1 a� â

.34 +-+0000

.40 +-+-+0000

.44 +-+-+-+(-+)0000

.47 +0000

.47 +-0000

.47 +-+-+-(+-)0000

set of ternary error events (given by the di�erence

of pairs of data sequences), X
f+1;0;�1g
F , and the set

of constituent binary data sequences, X
f0;1g
F . We

would like a constraint over the binary sequences
with the highest code rate possible that forbids the
dominant error events. Table I implies that a con-

straint X
f+1;0;�1g
f0+�+0;+�+�g is su�cient to guarantee that

the constrained minimum distance is given by the
Matched Filter Bound. One can show that

X
f0;1g
f1111;00111gNRZI

) X
f+1;0;�1g
F � X

f+1;0;�1g
f0+�+0;+�+�g

Figure 4 illustrates the state diagram for the con-

straint X
f0;1g
f1111;00111gNRZI

. The Shannon Capacity of
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Fig. 4. State diagram, X
f0;1g

f1111;00111gNRZI

this constraint, which is the limit on the encoding
rate, is

Shannon Capacity[X
f0;1g
f1111;00111gNRZI

] � :914

From Table I, it follows that this constraint should
yield an asymptotic coding gain (ignoring the rate
loss) of

ACG = 10 log(:47=:34) � 1:4 dB

The dominant error events in Table I represent a
subset of the dominant events in extended PRML
systems [2],[10],[11]. Therefore, some of the distance-
enhancing constraints for extended PRML systems,
such as time-varying MTR constraints [4],[9], are po-
tentially applicable in the NPML setting. Figure 5 il-

lustrates the detector trellis for the X
f0;1g
f1111;00111gNRZI

constrained system with K = 4. States are la-
beled ak�4ak�3ak�2ak�1 or ak�4ak�3ak�2ak�1:ak
(if the next edge label is �xed), with input edge
labels ak. Output edge labels are given byP4

i=0 ân�i(sj)gi �
PNp+�

i=5 ~an�i(sj)gi. The struc-

ture of the X
f0;1g
f1111;00111gNRZI

constrained trellis is not

unique, and a variation could be used in implemen-
tation.
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VII. Results

We simulated symbol-error-rate performance for
the coded and uncoded NPML detectors. As the ba-
sis of the discrete-time model, the simulations used
an ideal low-pass �ltered Lorentzian channel model
as illustrated in Figure 6. The input to the channel

a(t)
h(t)

w(t)

lp(�t)
y(t) yn

Fig. 6. Channel model

is a binary sequence, fang
1
n=�1; an 2 f0; 1g, modu-

lated by a unit pulse of duration T, pT (t),

pT (t) =

�
1 ; 0 � t � T

0 ; otherwise

a(t) =

1X
k=�1

akpT (t� kT ):



The channel is de�ned in terms of its isolated step
response, g(t),

g(t) =
1

1 + ( 2t
PW50

)2

h(t) = g(t)� g(t� T )

and the additive noise w(t) is assumed zero
mean, Gaussian with autocorrelation E[w(t)w(s)] =
�2n�(t�s). The front-end �lter, lp(t), is an ideal low-
pass �lter, with cuto� frequency chosen such that
there is no aliasing in the frequency response of the
sampled process yn.
The discrete channel model uses a 41-tap model of

the ideal low-pass �ltered Lorentzian channel (Nl =
20), a 21-tap MMSE front-end �lter v, a 4-tap noise
predictor and truncation depth 20 in the NPML de-
tector. The truncation depth was chosen in analogy
with the rule of thumb from convolutional codes as
4K. The constrained source inputs for the coded
system are generated from the constraint graph with
maxentropic transition probabilities, under the as-
sumption that a highly e�cient code will have similar
statistics. The detectors are evaluated at a constant
user bit density, where user bit density is the channel
bit density divided by the rate, penalizing the coded
systems by the rate loss. The rate is the highest
R = 4n=q, with n; q integers, n � 8, that supports a
`0� 1' approximate eigenvector [15], thus guarantee-
ing a �nite-state encoder based on a subgraph of the
qth power of the constraint graph. `Uncoded' detec-
tors are penalized by a R = 16=17, which assumes
the use of a run-length-limited code which provides
negligible coding gain.
Figure 7 illustrates the simulation results. The

SNR is de�ned as E[(a � l)2k]=�
2
n. We �rst note

that the simulation results closely match estimates
formed from the error event analysis. The un-
coded NPML detector with K = 4 yields approxi-
mately 1:2 dB gain at a symbol error rate (SER) of
10�5 over a baseline EPR4 system, where the EPR4
system is a PRML detector with target h(D) =

(1 � D)(1 + D)2. By adding the X
f0;1g
f1111;00111gNRZI

constraint to the inputs of the channel, the coded
NPML detector yields an additional :8 dB gain (at
SER=10�5) relative to the uncoded NPML detec-
tor.
Figure 8 illustrates the asymptotic gains of sev-

eral coded and uncoded detectors relative to a base-
line uncoded EPR4 detector. The NPML detector
is the K = 4 detector described earlier, and the
E2PR4 detector is a PRML detector with target
h(D) = 1+2D� 2D3�D4. The gains are predicted
from error event analysis and re
ect SNR gain with
SNR de�ned as above. Coded systems are evaluated
at a higher channel bit density to account for the rate
loss as mentioned above. The coding gain provided
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Fig. 7. Simulation results: Uncoded NPML detectors, K=4
and K=6, EPR4 detector, and coded NPML detector,
PW50

RT
= 2:54

by the constraint is a function of the operating den-
sity. Outside the range of densities over which the
constraint eliminates the minimum distance event,
the rate loss of the constraint leads to a performance
loss of the coded system relative to its uncoded coun-
terpart. The �gure illustrates that taking coding into
account may a�ect the choice of a preferred target
at a given density.
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Fig. 8. Asymptotic gains relative to uncoded EPR4

VIII. Conclusions

The performance of an NPML/RSSE detector
for K close to Np + � may be well approximated
by characterizing the dominant error events for
the detector under the assumption of no resid-
ual interference from errors in the path estimates.
Distance-enhancing constraints may be determined
in a straightforward manner from these error event
lists. We have demonstrated through simulation the



potential bene�ts of using distance-enhancing codes
for an NPML/RSSE system with front-end target
h(D) = 1�D2 and a 4-tap noise predictor. Taking
such distance-enhancing coding into account a�ects
the choice of the preferred target at a given density.
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