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Abstract—The use of turbo coding and decoding tech-
niques in digital magnetic recording is now being given
serious consideration. Major technical concerns are im-
plementation complexity and decoding delay. In this pa-
per, we present and analyze the performance of a simple,
serial concatenation scheme comprising an outer parity
check code, interleaver, and a precoded partial response
channel. We apply an iterative decoding procedure in-
corporating separate a posteriori probability (APP) detec-
tors for the code and precoded channel. Simulation re-
sults for a dicode channel show a bit-error-rate (BER)
of 10−5 at rate-normalized signal-to-noise ratio SNR =
6.7 dB for a rate 8/9 code, representing a gain of about
3.5 dB over the uncoded channel. We also present sim-
ulation results for higher-rate codes and other partial
response channels, confirming the performance benefits
of the new scheme.

I. Introduction

Turbo codes were introduced by Berrou et al. [1]
in 1993 as a parallel concatenation of two or more re-
cursive systematic encoders connected via interleavers,
utilizing an iterative decoding procedure. These codes
have been demonstrated to operate near Shannon’s
theoretical capacity on additive white Gaussian noise
(AWGN) channels. The iterative decoding procedure
has subsequently come to be referred to as turbo de-
coding. For the magnetic recording channel, several
approaches related to the application of concatenated
codes and iterative decoding have been explored. Ryan
[2], Ryan, et al. [3], Heegard [4], and Pusch, et al. [5]
have applied parallel-concatenated turbo codes to par-
tial response channels of interest in digital recording.
Reed and Schlegel [6] have evaluated the benefits of
turbo-equalization for rate 1/2, convolutionally-coded,
partial response channels. More recently, Souvignier, et
al. [7], McPheters, et al. [8], and Öberg and Siegel [9]
have investigated the performance of a serial concate-
nation of a high rate convolutional code, interleaver,
and partial response channel, with iterative decoding.
This simple scheme was found to perform as well as the
more complex turbo-coded system down to a bit-error
rate (BER) of about 10−5 [7],[8],[9].

In this paper we will propose a simple serial con-
catenation scheme for partial response channels, where
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the outer code is a concatenation of single parity check
codes. The performance will be analyzed using the
maximum likelihood union bound and simulation re-
sults will be shown. Section II will describe the com-
ponents of the proposed system. In Section III, the
analysis of the system performance will be summarized.
Simulation results are presented in Section IV. In Sec-
tion V, we propose a method to implement a runlenght
constraint in the system. Finally, in Section VI, con-
cluding remarks are provided.

II. System Description

The proposed system is shown in Fig. 1 and consists
of a parity check encoder, an interleaver, a precoded
partial response channel and an iterative decoder struc-
ture.

A. Encoder

The parity-check encoder accepts N words ui =
(ui,1, ui,2, . . . , ui,n−1), i = 1, . . . , N of n − 1 informa-
tion bits each. The encoder output consists of N words
ci = (ci,1, ci,2, · · · , ci,n), i = 1, . . . , N of n bits each,
defined as follows:

ci,j =

{
ui,j 1 ≤ j < n∑n−1
k=1 ui,k + 1 mod 2 j = n.

(1)

Thus, a bit is appended to each input word to ensure
odd parity. The encoder implementation requires very
little hardware, in principle only an XOR gate. As we
will see later, the corresponding decoder is also very
simple.

B. Interleaver

The interleaver performs a permutation of the Nn
output bits from the encoder. Three types of inter-
leavers will be discussed in this paper. The pseudo-
random interleaver is just a randomly generated per-
mutation of the encoder output. The S-random inter-
leaver [10] is random as well, but mappings of bits that
are closer than S in distance at the input cannot be
closer than S at the output. The third type of inter-
leaver is not a true permuter, but rather a probabilistic
device. It is the average over all possible interleavers
and will be referred to as a uniform interleaver [11].



This type of interleaver is more amenable to theoreti-
cal analysis of code performance.

C. Precoded Partial Response Channel

A linear channel with additive white Gaussian noise
(AWGN) is assumed. Several partial response targets
are considered in this paper. The first is the dicode
channel h(D) = (1 − D), which is also the simplest
model and therefore used in the analysis. For this tar-
get, the precoder is g(D) = 1/(1⊕D), where ⊕ denotes
modulo-2 addition. The precoded dicode channel can
be interleaved to model the precoded class-4 (PR4) par-
tial response channel.

The other targets considered are “extended PR4”
(EPR4) and E2PR4 with transfer polynomials h(D) =
1 + D − D2 − D3 and h(D) = 1 + 2D − 2D3 − D4,
respectively. For those targets, several precoders have
been considered, all of the form 1/(1⊕Dp1⊕ . . .⊕Dpk).

The transmission power is normalized so that the en-
ergy per code symbol Es = 1. The signal to noise ratio
(SNR) is defined as SNR = 10 logEb/N0, where we
set Eb = Es/R = 1/R. The one-sided power spectral
density N0 = 2σ2. Since the rate R = (n − 1)/n,
we have Eb = n/(n − 1) and the noise variance is
σ2 = n/(2(n − 1)10SNR/10). The noise is added at
the output of the partial response channel.

D. Decoder

The turbo decoding is performed by two soft-in soft-
out (SISO) decoders that pass information between
each other via an interleaver/deinterleaver. The SISO’s
are matched to the precoded channel and the parity
check encoder, respectively. Each SISO is an a posteri-
ori probability (APP) detector, which computes the a
posteriori probability of the corresponding encoder in-
put and/or output symbol, using a priori information.

Fig. 2 depicts a general APP detector block. The
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symbols corresponding to the encoder input and output
are denoted as i and o, respectively. The inputs Li and
Lo denote a priori information for encoder input and
output symbols. The Λ(ik) and Λ(ok) denote a pos-
teriori probabilities corresponding to encoder inputs
and outputs, respectively. For a symbol u, drawn from
some finite alphabet of size l, A = {a1, a2, . . . , al}, the
general a priori and a posteriori probabilities are used
to form log-APP ratios as follows:

L(u = aj) = log
Pr(u = aj)
Pr(u 6= aj)

(2)

Λ(u = aj) = log
Pr(u = aj |Li, Lo)
Pr(u 6= aj |Li, Lo)

(3)

where Li is a vector containing all a priori information
regarding encoder inputs, and Lo is a vector containing
all a priori information regarding encoder outputs.

In the case of the binary alphabet A = {0, 1}, we
use the shorthand notations L(u) def= L(u = 1) and
Λ(u) def= Λ(u = 1). Note that then L(u = 0) = −L(u)
and Λ(u = 0) = −Λ(u). The channel APP is matched
to the precoded partial response channel. The number
of detector trellis states for the dicode, PR4, EPR4,
and E2PR4, are 2, 4, 8, and 16, respectively.

For the simulations, we based the APP detector for
the block parity-check code on a two-state trellis rep-
resentation of the constituent parity-check encoder. A
simpler, yet equivalent implementation, is the algo-



rithm given in [12] and Gallager’s parity-check decoder
[13]. Due to the independence between the parity-check
codewords, the decoder can use a window equal to the
codeword length n. The short window length opens
up possibilities for parallel implementations to improve
the speed of the detector, although this direction is not
further pursued in this paper.

III. Analysis

We have analyzed the performance of the proposed
system by computing a maximum likelihood union
bound for the probability of word error. Although the
decoder does not implement maximum likelihood se-
quence estimation (MLSE), the performance of the it-
erative decoding structure has been shown to be close
to that of MLSE. The maximum–likelihood (ML) union
bound on word error rate (WER) for a block-coded, ad-
ditive white Gaussian noise (AWGN) channel can be
expressed as [14]

Pw ≤
∞∑

dE=dmin

T (dE)Q
(
dE
2σ

)
, (4)

where dE denotes Euclidean distance between two
channel output words, σ2 denotes the noise variance on
the channel and T (dE) denotes the average Euclidean
weight enumerator, which is the average number of
codewords whose channel outputs have Euclidean dis-
tance dE from the output of a given codeword. The
corresponding bit error rate (BER) bound [14] is

Pb ≤
∞∑

dE=dmin

T (dE)w(dE)
K

Q

(
dE
2σ

)
, (5)

where K denotes the number of information bits in a
codeword and w(dE) denotes the average information
Hamming distance between codewords whose channel
outputs have Euclidean distance dE .

For an exact analysis, the full compound error-event
characterization for a code interleaved and concate-
nated with the partial response channel must be de-
termined. The complexity of this computation is often
prohibitively high. To overcome this difficulty, we use
a technique introduced in [9] for computing an approx-
imation to the average weight enumerator for a high-
rate, coded partial response channel. For completeness,
we briefly describe the application of this approxima-
tion in this setting.

Fig. 3 shows a trellis section for the dicode channel
with precoder g(D) = 1/(1⊕D). The branch labels are
of the form ci/xi, where ci is the input to the precoder
at time i, and xi is the corresponding channel output.
Referring to Fig. 3, it can be seen that an error word f
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Fig. 3. Trellis section for the precoded dicode channel.

may be decomposed into a sequence of m = ddH(f)/2e
simple error sub-events fi, i = 1, . . . ,m. For 1 ≤ i ≤
m − 1, each sub-event is closed, sub-event fm may be
either closed or open. The length of the sub-event fi
is denoted li, and the Hamming weight of a sub-event
satisfies

dH(fi) =


2 i = 1, . . . ,m− 1
2 i = m and dH(f) even
1 i = m and dH(f) odd.

(6)

Let j0
i denote the bit position in the word where er-

ror sub-event fi begins. For a closed sub-event, let
j1
i denote the bit position where it terminates. Then
li = j1

i − j0
i + 1 for all closed sub-events. If fm is open,

we define j1
m = N + 1, and lm = j1

m − j0
m. Finally we

define L =
∑m
i=1 li.

The error word f has total squared Euclidean dis-
tance

d2
E(f) =

m∑
i=1

d2
E(fi) = dH(f) + 4

m∑
i=1

j1i−1∑
k=j0i+1

ck. (7)

The approximation is based upon the assumption
that the code bit values in the error events may be
treated as samples of independent, equiprobable binary
random variables. Under this “i.i.d. assumption,” the
contribution of an error word f to the average weight
enumerator is given by the distribution

Pr(d2
E(f) = z|dH(f) = d, L) =

(
L− d

(z − d)/4

)
0.5L−d.

(8)

The i.i.d. assumption is justified by the action of
the uniform interleaver for error words corresponding
to short error event duration. On the other hand, when
the duration of error events is long, the contribution to
the dominant terms of the Euclidean error weight enu-
merator will be negligible, due to the low probability
of such an error word generating small Euclidean dis-
tance. For a general linear block code, the accuracy
of the i.i.d. assumption can be measured by reference



to the weight enumerator of the dual code. In this in-
stance, we are interested in the dual code of the N -fold
concatenation of even parity-check codes, which is sim-
ply the N -fold concatenation of (n, 1) repetition codes.

For example, consider the rate 8/9 system consist-
ing of N = 128 concatenated parity-check codes with
an interleaver of length 1152. The minimum distance
of the dual code is 9, with multiplicity 128. There-
fore, any 8 bits at the interleaver output are linearly
independent, and the probability of choosing 9 linearly
dependent bits is 128/

(
1152

9

)
. These remarks apply also

to the concatenation of odd parity-check codes; more-
over, in any set of 9 dependent code bits, at least one of
the bits must be a 1. In fact, there will be at least one
symbol 1 in any set of linearly dependent code symbols
at the interleaver output. This leads us to a conjec-
ture that the i.i.d. assumption upper bounds the ML
union bound for the system proposed in this paper for
all rates below the computational cut-off rate. This
conjecture will, however, be addressed elsewhere.

In [9], the distribution of the total length L of error
words f generated by the action of a uniform inter-
leaver upon an error word e of Hamming weight d was
shown to be

Pr(L|d) =

(N−L+bd/2c
bd/2c

)(L−1−d(d−1)/2e
b(d−1)/2c

)(
N
d

) . (9)

The approximation of the Euclidean weight enu-
merator depends only upon the input-output Ham-
ming weight enumerator of the outer code A(d) =∑K
i=0A(d, i), where A(d, i) denotes the number of error

words of Hamming output weight d and input weight
i. It can be computed by substituting (8) and (9) into

T (dE) =
N∑
k=1

A(k)
N−k∑
L=k

Pr (dE |k, L)Pr (L|k) . (10)

Similarly, the approximate average input error
weight enumerator may be obtained from

w(dE) =
1

T (dE)

N∑
k=1

A(k)W (k)
N−k∑
L=k

Pr (dE |k, L)Pr (L|k) ,

where W (d) is the average input weight for output

weight d.
For the concatenation of N (n, n − 1) even parity-

check codes, the Hamming weight enumerating func-
tion IOWEF (D, I) is the product of N weight enumer-
ating functions for a single (n, n− 1) even parity-check

code

IOWEF (D, I) =
∑

i≥0,d≥0

A(d, i)DdIi

=

n−1∑
j=0

(
n− 1
j

)
D2dj/2eIj

N . (11)

Since the odd parity-check code is a coset of the even
parity-check code, the weight enumerating function for
the even parity-check code can be used to enumerate
the weights of error words for the odd parity-check
code.

IV. Analytical and simulated results

We computed an estimate of the word-error-rate
(WER) upper bound for the rate 8/9 system on the
precoded dicode (h(D) = 1−D) channel with N = 128
and a uniform interleaver, as outlined in the previous
section. The estimate is shown in Fig. 4 together with
simulation results. We have also plotted simulation re-
sults for different interleavers at Eb/N0 = 8.0 dB. Note
how the corresponding points are located on both sides
of the estimated bound, consistent with the fact that
the analysis assumes a uniform interleaver. The agree-
ment is quite good in all cases.

In Fig. 5, the simulated bit-error-rate (BER) per-
formance for the rate 8/9 system with N = 512 and a
randomly-generated interleaver is compared to that of
a system using an S-random interleaver, with S = 30.
[10]. Clearly the S-random interleaver improves the
performance of the system. The better performance
with the S-random interleaver can be explained by an-
alyzing the effects of (8) and (9) on (10). This analysis
depends upon the particular S-random interleaver, but
a heuristic understanding follows from the following ob-
servations. First, note that the value of (8) increases
as L increases. For a parity check code with n < S,
the use of an S-random interleaver implies

Pr(L|2) = 0 for L ≤ S, (12)

because the S-random interleaver cannot map two bits
from the same parity check codeword to positions
closer than S. Hence the non-zero contributions from
Pr(L|k) in (10) for k = 2 must correspond to values of
L greater than S. For S > log2(N), the value of T (

√
2),

(10) will be smaller for the S-random interleaver than
for the uniform interleaver.

Fig. 6 shows simulation results for rate 8/9, 16/17,
and 24/25 parity check codes on the dicode channel
using S-random interleavers. Included in the graph,
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for comparison purposes, are performance curves cor-
responding to 4-state and 16-state recursive systematic
convolutional (RSC) outer codes, using an S-random
interleaver. The outer codes were rate 1/2, with
encoder polynomials (1, 5/7)octal and (1, 33/31)octal,
punctured to rate 16/17. These are the outer codes
used in [7]and [9], although the results reported therein
were for a random interleaver. The system with the
16-state RSC outer code outperforms the system with
parity check codes by more than 1 dB at BER 10−5,
but at BER 10−7 the difference is only about 0.5 dB.
The performance of the system with the 4-state RSC
outer code is also better than that achieved with the
parity check code, but only by about 0.5 dB, even at
BER 10−5.

The results for higher order channels are similar. For
example, Fig. 7 shows simulation results for a rate
24/25 parity-check code on an EPR4 channel, using
a pseudo-random interleaver. Results were obtained
for four different precoders: 1/(1 ⊕ D), 1/(1 ⊕ D2),
1/(1⊕D⊕D3) and 1/(1⊕D⊕D2⊕D3). The poorer per-
formance of the first two precoders can be attributed,
in part, to the fact that weight-1 sequences can be gen-
erated at their output by certain weight-2 input se-
quences, namely (1 ⊕ D) and (1 ⊕ D2), respectively.
The figure also shows the performance for two of these
precoders when an S-random interleaver with S = 30
was used. Although not shown, when the proposed
scheme is applied to the E2PR4 channel, the coding
gains relative to the uncoded channel are similar.

V. Imposing a Runlength Constraint

In Fig. 8 we show how a runlength limitation (RLL)
can be imposed on the system. The RLL-encoder gen-
erates code sequences with no more than ∆ − 1 zeros
in a row. The interleaver permutes the output from
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the RLL-encoder, before feeding it to the parity bit
generator. The parity generator outputs the parity
bits corresponding to a parity check encoder with odd-
parity. The parity bits are then inserted periodically
into the sequence from the RLL-encoder. If the code
rate R ≥ ∆/(∆ + 1), then no more than ∆ zeros in a
row will be fed into the precoded partial response chan-
nel. That is, we have a (0,∆) RLL constraint on the
sequence that is fed to the precoded channel. We have
simulated the proposed system with a rate 16/17, (0, 6)
constraint RLL encoder on the EPR4 channel with pre-
coder 1/(1⊕D⊕D2⊕D3). The parity check code is of
rate 24/25. This guarantees that we do not see more
than 7 consecutive zeros at the input to the precoder.
An S-random interleaver of length 4080 is used.

In Fig. 9 the BER performance of this RLL-encoded
system is compared to the corresponding rate 24/25
system without the RLL constraint. The two systems
display nearly identical performance.

VI. Conclusions

A simple, serial concatenated, precoded partial re-
sponse system with an outer parity check encoder, in-
terleaver, and an iterative (turbo) decoding technique
has been presented for magnetic recording applications.
The low complexity of the system is attractive for hard-
ware implementations.

Analytical and simulation results show that this is
an attractive approach to increase the capacity in mag-
netic storage devices. The performance in terms of bit

error rate (BER) for a rate 16/17 system on the dicode
channel is 10−5 at Eb/N0 = 7.1 dB. This is only about
1.7 dB worse than a corresponding system with a 16-
state outer convolutional code, and about 3 dB better
than an uncoded system. At BER of 10−7 the perfor-
mance difference is only about 0.5 dB. With a 4-state
convolutional outer code, the difference is about 0.5 dB
at most bit error rates.

We have also shown how to add a runlength limita-
tion to this system, and that it performs comparably
to the system without an outer RLL code.
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