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Abstract—We propose a new graph representation for ISI
channels that can be used for combined equalization and decoding
by linear programming (LP) or iterative message-passing (IMP)
decoding algorithms. We derive this graph representation by
linearizing the ML detection metric, which transforms the equal-
ization problem into a classical decoding problem. We observe
that the performance of LP and IMP decoding on this model are
very similar in the uncoded case, while IMP decoding significantly
outperforms LP decoding when low-density parity-check (LDPC)
codes are used. In particular, in the absence of coding, for certain
classes of channels, both LP and IMP algorithms always find
the exact ML solution using the proposed graph representation,
without complexity that is exponential in the size of the channel
memory. This applies even to certain two-dimensional ISI chan-
nels. However, for some other channel impulse responses, both
decoders have nondiminishing probability of failure as SNR
increases. We provide analytical explanations for many of these
observations. In addition, we study the error events of LP decoding
in the uncoded case, and derive a measure that can be used to
classify ISI channels in terms of the performance of the proposed
detection scheme.

Index Terms—Combined equalization and decoding, graph-
based decoding, intersymbol interference (ISI) channels, itera-
tive message passing, linear programming, maximum-likelihood
detection.

I. INTRODUCTION

I NTERSYMBOL INTERFERENCE (ISI) is a characteristic
of many data communications and storage channels. Sys-

tems operating on these channels often employ error-correcting
codes in conjunction with some form of ISI reduction technique,
which, in magnetic recording systems, is often a trellis-based
sequence detector. It is known that some gain will be obtained
if the equalization and decoding blocks are combined at the re-
ceiver by exchanging soft information between them. A possible
approach to achieving this gain is to use soft-output equaliza-
tion methods such as the BCJR algorithm [1] or the soft-output
Viterbi algorithm (SOVA) [2] along with iterative decoders. For
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a survey of performance results with this approach see [3]. How-
ever, both BCJR and SOVA suffer from complexity that is ex-
ponential in the length of the channel memory.

Kurkoski et al. [4] proposed two graph representations of the
ISI channel that can be combined with the Tanner graph of the
LDPC code for message-passing decoding. Their bit-based rep-
resentation of the channel contains many 4-cycles, which re-
sults in a significant performance degradation compared to max-
imum-likelihood (ML) detection in the uncoded case. On the
other hand, iterative message passing (IMP) on their state-based
representation, where messages contain state rather than bit in-
formation, has a performance and overall complexity similar to
BCJR, while benefiting from a parallel structure and reduced
delay. Among other works, Singla et al. [5] applied message
passing on a bit-based graph representation of a two-dimen-
sional ISI channel combined with an LDPC Tanner graph. How-
ever, similar to the case of one-dimensional ISI, the abundance
of short cycles prevents the algorithm from achieving perfor-
mance that is close to optimal.

Linear programming (LP) has been recently applied by
Feldman et al. [6] to the problem of ML decoding of LDPC
codes in memoryless channels, as an alternative to IMP tech-
niques. The idea behind LP decoding is to relax the ML
decoding problem, which can be written as an optimization
with linear objective function, but nonlinear constraints, into a
linear optimization problem. LP decoding performs closely to
IMP algorithms such as the sum-product algorithm (SPA) and
the min-sum algorithm (MSA), and it is much easier to analyze
for deterministic finite-length codes. This approach, however,
cannot be directly applied when the channel has ISI, since the
objective function of the ML decoding problem will become a
quadratic and, generally, nonconvex function.

In this work we study the problem of ML detection in the
presence of ISI, with the goal of deriving a graph representation
for the channel that allows detection with a complexity that is
polynomial in the channel memory size, and that also can be
combined with the Tanner graph of an LDPC code for com-
bined decoding. Motivated by LP decoding in the memoryless
channel, our approach is based on linearizing the quadratic ob-
jective function of the ML detection problem. Using this tech-
nique, we convert the detection problem into an equivalent bi-
nary decoding problem in a memoryless channel, which can be
represented by a factor graph and used for IMP detection, or,
after relaxing the binary constraints, LP detection, similar to the
way IMP decoding and LP decoding are applied on memoryless
channels. Furthermore, decoding an underlying LDPC code can
be incorporated into this problem simply by adding the check
nodes of the LDPC code to the graph representation. Our sim-
ulations indicate that the performance of IMP and LP detection
using the proposed graphical model are very similar in the un-
coded case. Hence, in our analysis, we focus primarily on LP
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Fig. 1. Binary-input ISI channel.

detection, since it is generally more amenable to deterministic
performance analysis.

By a geometric analysis we show that, in the absence of
coding, if the impulse response of the ISI channel satisfies
certain conditions, LP detection on the proposed graph is
guaranteed to produce the ML solution at all SNR values. This
means that there are ISI channels, which we call proper chan-
nels, for which uncoded ML detection can be achieved with a
complexity polynomial in the channel memory size. This result
becomes more significant in the context of two-dimensional
ISI channels, for which the general ML detection problem has
been shown to be NP-complete [7].

On the other end of the spectrum, we observe that, for some
channels, which we call improper, both IMP and LP decoders
results in a nonintegral solution with a probability bounded
away from zero at all SNR, even in the absence of noise.
Moreover, there are some intermediate channels, which we
designate as asymptotically proper, for which the performance
asymptotically converges to that of ML detection at high SNR.
In order to explain this behavior, we analyze the error events
of LP detection, and derive a closed-form parameter that can
be used to classify different ISI channel impulse responses in
terms of the performance of the proposed graph-based detection
scheme. In particular, using this measure, we prove sufficient
conditions for a channel to be improper.

When LDPC decoding is incorporated in the detector, IMP
detection often significantly outperforms LP detection. With LP
detection, proper and asymptotically proper channels achieve
very good performance; for some other channels, the word error
rate (WER) cannot go below a certain value. On the other hand,
IMP detection often produces reasonable results, even on some
improper channels.

The rest of this paper is organized as follows. In Section II,
we describe the channel, and introduce the graph-based formu-
lation of ML detection. The performance analysis and simula-
tion results of uncoded graph-based detection are presented in
Section III. In Section IV, we study the combination of graph-
based detection and LDPC decoding, and Section V concludes
the paper.

II. GRAPH-BASED DETECTION

A. Channel Model

We consider a partial-response (PR) channel with bipolar
(BPSK) inputs, as described in Fig. 1, and use the following
notation for the transmitted symbols.

Notation 1: The bipolar version of a binary symbol,
, is denoted by , and is given by

(1)

The partial-response channel transfer polynomial is
, where is the channel memory size. Thus, the

output sequence of the PR channel in Fig. 1 before adding the
white Gaussian noise can be written as

(2)

B. Maximum-Likelihood (ML) Detection

Given the vector of received samples ,
the ML detector solves the optimization problem

(3)

where is the codebook and denotes the
-norm. By expanding the square of the objective function,

the problem becomes equivalent to minimizing

(4)

where, for simplicity, we have dropped the limits of the summa-
tions. Equivalently, we can write the problem in a general matrix
form

(5)

where in this problem , and , with
defined as the Toeplitz matrix

...
. . .

...
. . .

. . .

(6)

Here we have assumed that zeros are padded at the beginning
and the end of the transmitted sequence, so that the trellis di-
agram corresponding to the ISI channel starts and ends at the
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zero state. If the signals are uncoded, i.e., , and
and are chosen arbitrarily, (5) will represent the general form
of an integer quadratic programming (IQP) problem, which is,
in general, NP-hard. In the specific case of a PR channel, where
we have the Toeplitz structure of (6), the problem can be solved
by the Viterbi algorithm with a complexity linear in , but ex-
ponential in . However, this model can also be used to describe
other problems such as detection in MIMO or two-dimensional
ISI channels. Also, when the source symbols belong to a nonbi-
nary alphabet with a regular lattice structure such as the QAM
and PAM alphabets, the problem can be reduced to the binary
problem of (5) by introducing some new variables.

C. Detection on a Graph

A common approach for solving the IQP problem is to first
convert it to an integer LP (ILP) problem by introducing a new
variable for each quadratic term, and then to relax the integrality
condition; e.g., see [8]. While this relaxed problem does not
necessarily have an integer solution, it can be used along with
branch-and-cut techniques to solve integer problems of reason-
able size. A more recent method is based on dualizing the IQP
problem twice to obtain a convex relaxation in the form of a
semidefinite program (SDP) [9], [10].

In this work, we use a method similar to [8] to derive an
ILP form of the ML detection problem. In [8], the original IQP
problem is given in terms of 0-1 variables, and each of a number
of 0-1 auxiliary variables is defined as the product of two orig-
inal 0-1 variables. To apply this method, here we can first con-
vert the bipolar (i.e., ) IQP problem in (5) into an equiva-
lent 0-1 problem, and then define the auxiliary variables as in
[8] to linearize the objective function. As an alternative, we can
also define the auxiliary variables in the domain as the pair-
wise products of original variables. If we then convert the
linearized problem from the domain to the 0-1 domain, the
binary versions of the auxiliary variables will each become the
modulo-2 sum of two binary variables, rather than the product.
In this work, we use the latter approach, since modulo-2 additive
constraints are similar to parity-check constraints; thus, LP and
message-passing decoders designed for decoding binary linear
codes can be applied without any modification. However, in the
Appendix we show that the LP relaxations resulting from these
two approaches are equivalent.

To linearize (4), we define

(7)

In the binary domain, this will be equivalent to

(8)

where stands for modulo-2 addition. Hence, the right-hand
side (RHS) of (4) is a linear combination of and ,

Fig. 2. PR channel and LDPC code represented by a Tanner graph.

plus a constant, given that is a constant. With some
simplifications, the IQP in (5) can be rewritten as

Minimize

Subject to

(9)

where, in the equalization problem

(10)

In this optimization problem, we call the information bits,
and the state bits. It can be seen from (10) that is
independent of , except for indices near the two ends of the
block; i.e., and . In practice, this
“edge effect” can be neglected due to the zero padding at the
transmitter. For clarity, we sometimes drop the first subscript in

when the analysis is specific to the PR detection problem.
The combined equalization and decoding problem (9) has the

form of a single decoding problem, which can be represented by
a low-density Tanner graph. It is worth emphasizing that there
is no approximation in this derivation, and hence this decoding
problem is equivalent to ML detection. Fig. 2 shows an example
of the combination of a PR channel of memory size 2 with an
LDPC code. We call the upper and lower layers of this Tanner
graph the code layer and the PR layer (or the PR graph), respec-
tively. The PR layer of the graph consists of check nodes

of degree 3, each connected to two information bit nodes
, and one distinct state bit node, . Also, the PR layer

can contain cycles of length 6 and higher. If a coefficient, ,
is zero, its corresponding state bit node, , and the check node
it is connected to can be eliminated from the graph, as they have
no effect on the detection process.

It follows from (10) that the coefficients of the state bits in
the objective function, , are only a function of the PR
channel impulse response, while the coefficients of the informa-
tion bits are the results of matched filtering the noisy received
signal by the channel impulse response, and therefore depen-
dent on the noise realization. Once the variable coefficients in
the objective function are determined, IMP or LP decoding can
be directly applied to decode on this Tanner graph. We call this
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method graph-based detection or, more specifically, IMP detec-
tion and LP detection, when IMP and LP decoding, respectively,
are used.

For graph-based detection by means of LP decoding, we use
the relaxation introduced in [6], where the binary parity-check
constraint corresponding to each check node is relaxed as fol-
lows. Let be the index set of neighbors of check node , i.e.,
the variable nodes it is directly connected to in the Tanner graph.
Then, we include the following constraints:

(11)

In addition, the integrality constraints are relaxed to
box constraints . This relaxation has the ML certifi-
cate property; i.e., if the solution of the relaxed LP is integral,
it will also be the solution of (9).

For graph-based detection using IMP decoding, note
that the ML detection problem (9) is equivalent to ML de-
coding of a linear code on a memoryless channel, where
the variables are the bit variables, coefficients

are their log-likelihood ratio (LLR) values—al-
beit up to a scalar multiplicative factor—and the constraints of
the problem are the parity-check constraints defining the linear
code. Hence, IMP decoding algorithms commonly used for
linear codes can be directly applied to this equivalent decoding
problem. In particular, the Min-Sum Algorithm (MSA) can
be used to solve this problem with no modification to the
coefficients , since MSA is not sensitive to a
uniform scaling of the LLR values. On the other hand, to apply
the Sum-Product Algorithm (SPA), proper scaling should be
applied to the coefficients to derive suitable values to serve as
equivalent LLRs of the bit variables.

In the following section, we use the MSA directly, treating the
coefficients in (9) as the equivalent LLR values. In Section IV,
we describe a reasonable scaling of these coefficients that can
be used for IMP detection with the SPA.

III. PERFORMANCE ANALYSIS OF UNCODED DETECTION

In this section, we study the performance of graph-based de-
tection using LP relaxation in the absence of coding, i.e., solving
(5) with . It is known that if the off-diagonal ele-
ments of are all nonpositive; i.e., , the
0-1 problem is solvable in polynomial time by reducing it to the
MIN-CUT problem; e.g., see [11]. As an example, Sankaran and
Ephremides [12] argued using this fact that when the spreading
sequences in a synchronous CDMA system have nonpositive
cross-correlations, optimal multiuser detection can be done in
polynomial time. Here, we derive a condition, slightly weaker
than the nonnegativity of the , that is necessary and sufficient
for the LP relaxation to have an integer solution for any value
of in (9). The derivation also sheds some light on the question
of how the algorithm behaves in cases where this condition is
not satisfied. For a check node in the Tanner graph connecting

information bit nodes and and state bit node , the
constraints (11) can be summarized as

(12)

which can be represented more simply as

(13)

Since there is exactly one such pair of upper and lower bounds
for each state bit , its value in the solution vector will be
equal to either the lower or upper bound, depending on the sign
of its coefficient in the linear objective function . Hence, the
cost of in the objective function can be written as

(14)

where the first term in the second line is constant and does not
affect the solution. Consequently, by substituting (14) in the ob-
jective function, the LP problem will be projected into the orig-
inal -dimensional space, giving the equivalent minimization
problem

Minimize

Subject to (15)

which has a convex and piecewise-linear objective function.
Each absolute value term in this expression corresponds to a
check node in the PR layer of the Tanner graph representation
of the problem.

A. Proper Channels: Guaranteed ML Performance

We now discuss a class of channels, which we call proper
channels, for which the proposed LP relaxation of uncoded
graph-based detection always gives the ML solution. We also
provide a criterion for recognizing a proper channel.

Definition 1: An LP relaxation of an optimization problem1

is called exact if whenever the original optimization problem
has a unique solution, the relaxed problem has the same unique
solution, and vice versa.

Thus, a proper channel is one whose LP relaxation (15) is
exact.

1With some abuse of terminology, here what we refer to as an optimization
problem is in fact a class of optimization problems all having the same set of con-
straints, but different objective functions. An example is the class of decoding
problems corresponding to a given code representation and channel model, but
different transmitted codewords and/or noise realizations.



2192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 4, APRIL 2011

Definition 2: We call a check node in the PR layer of
the Tanner graph representation of the graph-based detection
problem a positive (respectively, negative) check node if the state
bit node connected to this check node has a positive (respec-
tively, negative) coefficient.

We now present a property of the PR Tanner graph that, as we
will demonstrate, can be used to identify a proper channel.

Cycle Condition (CC): Every cycle in the channel
graph contains an even number of negative check nodes.

The following theorem shows that satisfaction of the CC is a
necessary and sufficient condition for a channel to be proper.

Theorem 1: Consider a PR channel with ML detection
problem defined by (9), where . If the associated
channel graph satisfies the CC, then the channel is proper.
Conversely, if the CC is not satisfied, there are instances of the
corresponding LP relaxation that do not have an integer vector
solution, implying that the channel is not proper.

Proof: If a bounded LP has a unique solution, it is always
at one of the vertices of the feasible region. Hence, the pro-
posed LP relaxation of problem (9) is exact if and only if all the
vertices of its feasible region—i.e., all its potential unique so-
lutions—are integer-valued. We first prove sufficiency: the CC
guarantees that all the vertices of the feasible region of the LP
relaxation are integral. We then prove necessity: if the CC is not
satisfied, then some of the coordinates in the LP solution have
fractional values.

1) Sufficiency: The objective function in (15) is a piecewise
linear function . We call a breakpoint of if the
derivative of with respect to changes at , for
any nonzero vector .

Now, consider (15) without the box constraints. The unique
optimum point of the objective function has to occur ei-
ther at infinity or at a breakpoint of . Since the nonlinearity in
the function comes from the terms involving the absolute value
function, each breakpoint is determined by making of these
absolute value terms active, i.e., setting their arguments equal
to zero. These terms should have the property that the linear
system of equations obtained by setting their arguments to zero
has a unique solution.

When the feasible region is restricted to the unit cube ,
the optimum can also occur at the boundaries of this region.
Without loss of generality, we can assume that the optimum
point lies on hyperplanes corresponding to the box constraints
in (15), where . This will make exactly vari-
ables, , equal to either 0 or 1, for some index set

with . In addition, at least other
equations are needed to determine the remaining fractional
variables. Each of these equations will be the result of making
some number of absolute value terms active, each having the
form or , depending on whether

or , respectively. When an absolute value
term in (15) is active, either both or neither of its variables can
be integer-valued. Since the former case does not provide an
equation in terms of the fractional variables, we can assume that
all of these active absolute value terms involve only fractional
variables.

Fig. 3. The dependence graph of the system of linear equations with one cluster
of cycles. Solid lines represent positive edges and dashed lines represent nega-
tive edges.

We now examine the question of when such equations can
have a unique and nonintegral solution. To determine the an-
swer, we represent the system of equations by a dependence
graph. The vertices correspond to the unknowns, i.e., the
fractional variable nodes. Between vertices and , there
is an edge if a check node connects them in the PR Tanner
graph. We refer to the edge as a positive edge if is a positive
check node (i.e., ) and a negative edge if is a neg-
ative check node (i.e., ). An example of a dependence
graph is shown in Fig. 3, where a a solid line denotes a posi-
tive edge and a dotted line denotes a negative edge. Note that
the corresponding Tanner graph satisfies the CC. If two vertices
are connected in the dependence graph by a positive edge, the
corresponding variables will have the same value in the solution
of the system of equations. Hence, we can collapse the positive
edge and merge these two vertices into a single vertex, and the
value that this combined vertex takes will be shared by the two
original vertices. If we perform this collapsing for every posi-
tive edge, we will be left with a reduced dependence graph that
has only negative edges.

We claim that, if the PR Tanner graph satisfies the CC, the
reduced dependence graph will not contain any cycles of odd
length. To see this, consider a cycle in the original dependence
graph, passing through a negative edge , which connects
vertex on its “left side” to vertex on its “right side.”
The CC ensures that any path other than from vertex to
vertex passes through an odd number of negative edges.
This property will be inherited by the reduced graph, since only
positive edges collapse and no new path will be created between

and . This proves the claim.
Now consider a cycle of length in the reduced dependence

graph. The system of linear equations corresponding to the
edges in this cycle, possibly after some row and column per-
mutations in the coefficient matrix, will have the form

...
. . . ...

...
(16)

where the coefficient matrix contains exactly two ones in
each row. Since is even, the coefficient matrix is rank deficient,
and we can remove any one of its rows without losing any useful
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equation. Hence, we can break any cycle of the reduced depen-
dence graph by removing an edge from it without changing the
space of system solutions. By repeating this for every cycle, we
will be left with an equivalent dependence graph which is a tree.
Since trees have fewer edges than vertices, the system of equa-
tions for determining the unknown variables will be underdeter-
mined, and none of the nodes in the dependence graph will have
a unique solution. Consequently, the only case where we have
a unique solution for any of the variables will be , which
means that all of the variables are integral. This proves the
sufficiency of the CC.

2) Necessity: We now prove the necessity of the CC by
means of a counterexample. Consider a case where the realiza-
tion of the noise sequence is such that the received sequence
is zero. This will make , the coefficients of the linear
term in (15), equal to zero. Hence we are left with the posi-
tive-weighted sum of a number of absolute value terms, each of
them being greater than or equal to zero. The objective function
will become zero if and only if all these terms are zero, which
is satisfied if . We need to show that if the CC
is not satisfied, equating all of the absolute value terms to zero
will determine a unique, fractional value for at least one of the
elements of , thereby implying that the relaxation is not exact.

Consider the dependence graph of this system of equations,
and for simplicity assume that all of the positive edges have been
collapsed in order to obtain a reduced dependence graph with
negative edges only, following the procedure described in the
proof of sufficiency. Note that, in contrast to what was assumed
in the sufficiency proof, here there is at lease one cycle of odd
length. For any such cycle, the corresponding coefficient ma-
trix in (16) has full rank, and therefore the unique solution to
this system is . This means that no inte-
gral vector can make the objective function in (15) zero, and
therefore no integral vector can be a solution to the problem.
This completes the proof of the necessity of the CC for the LP
relaxation to be exact, and for the channel to be proper.

Corollary 1: The unique solutions of the LP relaxation of
the uncoded graph-based detection problem are in the space

.
Proof: The values of the fractional elements of are the

unique solutions of a system of linear equations, each of the
form or . The vector satisfies
all these equations, and, hence, it must be the unique solution.

B. Implications of the CC

In the uncoded PR detection problem, validity of either of the
following conditions is sufficient for the CC to be satisfied and
therefore, by Theorem 1, for the channel to be proper.

1) Acyclicity Condition (AC): The PR Tanner graph is
acyclic.

2) Nonnegativity Condition (NC): All state variables have
nonnegative coefficients; i.e., .

The following lemma shows that the Acyclicity Condition
also has implications for the coefficients of state variables.

Lemma 1: If the PR channel satisfies the Acyclicity Condi-
tion, the number of nonzero state-variable coefficients

must be less than .

Proof: Let be the number of nonzero elements of
. Then, it is easy to see that the

PR Tanner graph will have edges and vertices (i.e.,
variable or check nodes). But the graph can be acyclic only if

, which means that .

Example 1: It is easy to see that the memory-1 PR channel
with satisfies the AC.

The state-variable coefficients are given by
. Lemma 1 is of course satisfied. On the other hand, these

coefficients are not necessarily nonnegative. Therefore the NC
may not hold. The memory-2 channel
also satisfies the AC, as well as Lemma 1. However, the state-
variable coefficients satisfy

and . Therefore this
channel satisfies the NC, as well.

In a one-dimensional ISI channel, where the state coefficients
are given by (10), the NC implies that the autocorrelation func-
tion of the discrete-time impulse response of the channel should
be nonpositive everywhere except at time zero. As the memory
size of the channel increases, this condition becomes more re-
strictive, so that a long and randomly-chosen impulse response
is not very likely to satisfy the NC. However, in some applica-
tions, such as magnetic recording, the impulse response of the
channel is first equalized to an optimized, constrained-length
target response in order to simplify the subsequent sequence de-
tection algorithm, which is often a trellis-based, Viterbi-like al-
gorithm with complexity exponential in the target length. A pos-
sible alternative, based upon the linear relaxation of graph-based
detection, might be to optimize the target channel subject to the
NC. This should make it possible to achieve performance com-
parable to that of the trellis-based detector, without incurring the
exponential complexity penalty.

This alternative approach can be applied to two-dimensional
(2-D) ISI channels, for which there is no tractable extension of
the Viterbi algorithm [7]. In a 2-D channel, the received signal

at coordinate in terms of the transmitted symbol se-
quence has the form

(17)

Hence, following the same procedure that resulted in (10), one
can obatain the coefficients of the state variables in the 2-D
channel. In particular, the state variable defined as

will have the coefficient

(18)

For simplicity, we have dropped the index in (18) because
is independent of and , except near the boundaries of the

transmitted array, where appropriate truncation may be used.
Theorem 1 guarantees that ML detection can be achieved by LP
detection if the NC is satisfied, i.e., for any .
An example of a 2-D channel satisfying the NC is given by the
impulse response matrix

(19)
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C. Error Event Characterization: Asymptotically Proper and
Improper Channels

In the preceding subsection, we showed that if the CC is not
satisfied, there are noise configurations that result in the failure
of LP detection to find the ML sequence. We now present a prob-
abilistic analysis of the performance of LP detection for general,
uncoded ISI channels and determine conditions under which
such failure occurs. Specifically, we develop a notion of “dis-
tance” for detector error events that is helpful in understanding
the behavior of channels that are not proper. We focus here on
stationary 1-D PR channels, so we can assume that is
independent of , as discussed in Section II.C. However, we note
that, with some modifications, a similar analysis can be applied
to 2-D ISI channels.

We begin the error event analysis with a useful definition.

Definition 3: Given the solution, , of LP detection on a PR,
the fractional set, , is the set
of indices of the information bit nodes in the Tanner graph of
the PR channel that have fractional values in the solution, .

Our analysis is based upon the following assumption, which
is supported by extensive computer simulation at high SNR.

Assumption: If the ML solution, which we denote by , is
correct, then the integer-valued elements of the LP detection
solution, , are also correct.

We know from Corollary 1 that the fractional elements in the
LP solution, , are all equal to . Therefore, the assumption
implies that we have

(20)

Since minimizes the objective function of (15), we
can associate with it a nonnegative penalty defined by

(21)

Expanding using the expression in (15), we can write this
inequality in terms of , and . To help simplify the
resulting expression, we make use of the following lemma.

Lemma 2: Let and be binary variables and and
be their bipolar versions, respectively. Define

(22)

Then, the following equations hold:
1)
2) ,
3) .

Proof: The equations can be verified by using (1), and
testing all possible values for and .

By using Lemma 2, and cancelling the common terms in
and , we can write as

(23)

where is defined to be zero if . Since
we assumed that is equal to the transmitted sequence, we can
expand as

(24)

where . By substituting (24) into (23), and using
the fact that , we obtain

(25)

In this equation, and are obtained, respectively, from
and by keeping only the elements with indices in

is a submatrix of (defined in Section II-B) consisting of the
elements of with column and row indices in and its diagonal
elements made equal to zero, and

(26)

Equations (21) and (25) lead to the following theorem, de-
scribing a condition for LP detector failure (in the assumed
scenario where the ML sequence equals the transmitted
sequence and agrees with on integer-valued elements).

Theorem 2: Uncoded LP detection fails to find the
transmitted (and ML) sequence if there is an index set

for which

(27)

If the transmitted sequence, , is given, we can estimate the
probability that the failure condition given by Theorem 2 is sat-
isfied, and determine the dominant error event causing such a
failure. In order to do that, for any given , we define a “dis-
tance” for the corresponding error event as

(28)

The corresponding noise variance is given by

(29)
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where is the variance of each noise sample . The proba-
bility that the error event corresponding to occurs will then
be equal to

(30)

where is the Gaussian -function. In order to find the
dominant error event over all transmitted sequences, for every
choice of the index set , we should find the vector

that maximizes the probability in (30). However,
this will require an exhaustive search over all . As an alterna-
tive, we can upper bound this probability by finding the smallest
distance and the largest standard deviation

, and computing . Fortu-
nately, each of these two optimization problems can be solved
by dynamic programming (in particular, the Viterbi algorithm)
using a trellis of at most states.

Referring to (28), we note that the minimum distance can
be negative. In that case, the probability that the corresponding
sequence exists in the transmitted block is independent of
the SNR. This means that the probability of failure
will be greater than for any SNR value. Therefore, there will
be a nondiminishing probability of failure as the SNR goes to
infinity. This reasoning leads to the following corollary.

Corollary 2: If for an ISI channel, there is a index set
and a vector for which , as

defined in (28), is negative, LP detection on this channel will
have a nondiminishing word error rate (WER) as SNR grows.

We call a channel for which LP detection has nondiminishing
probability of error as the SNR increases an improper channel.
Thus, the corollary provides a condition that implies the channel
is improper.

For some ISI channels, for sufficiently large SNR, the prob-
ability of failure becomes dominated by the probability that the
ML sequence is different from the one that was transmitted. For
such a channel, the WER of graph-based detection is asymptot-
ically equal to that of ML detection as the SNR increases, so we
call it asymptotically proper.

Remark 1: The error events considered in the analysis do not
represent all possible modes of detector failure. Rather, our anal-
ysis is intended to provide an estimate of the gap between the
performance of LP and ML detection methods by estimating
the probability that graph-based detection fails to find the ML
solution when the ML detector is successful. Moreover, as men-
tioned before, we only studied the events where a sequence sat-
isfying (20) has a lower cost than the transmitted sequence.
Therefore, even if (27) does not hold for any , it is theoret-
ically possible that LP decoding for graph-based detection has
a fractional solution. However, a substantial body of empirical
evidence suggests that this is not very likely.

D. The Fully Fractional Solution

Of particular interest among the possible error events is the
one where the all- sequence has a lower cost than the cor-
rect solution; i.e., in (27). For a given trans-
mitted sequence , this event is not necessarily the most likely

one. However, studying this event provides us with another, sim-
pler sufficient condition for the failure of LP detection, further
clarifying the distinction between the different classes of ISI
channels.

The distance, , corresponding to this event is obtained by
putting in (28). If the block length is much
larger than the channel memory length , we can neglect the
“edge effects” caused by the indices that are within a distance
of one of the two ends of the sequence. We will then have

(31)

where is the autocorrelation of corresponding to a shift
equal to . On the other hand, for the noise variance, , corre-
sponding to this event we see from (29) that

(32)

Note that and have a similar dependence on the transmitted
sequence.

A possible approach for finding the likelihood of occurrence
of an all- error event is to maximize over all possible trans-
mitted sequences. However, with a long, randomly chosen trans-
mitted sequence, the probability that this ratio will be close to its
worst case value may become very low. On the other hand, as we
now show, as grows with remaining fixed, the dependence
of both and on the transmitted sequence becomes negligible
compared to the constant terms in their respective definitions.

Lemma 3: Let be a sequence of i.i.d. random
variables, each equally likely to be or , and let

. Then, for fixed , as

almost surely (33)

Proof: For each is the sum of terms
of the form . Clearly, each of these terms is equally likely
to be or . Furthermore, it can be shown that these terms
are mutually independent2. Hence, using the strong law of large
numbers, we have

(34)

2For a proof of this statement, refer to Proposition 1.1 of [13].
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where we have used the fact that , since .
Consequently

(35)

since the sum is a linear combination of a finite number of vari-
ables, each going to zero almost surely.

Using Lemma 3 in (31) and (32), with large, we can write

(36)

(37)

where we have used the fact that . Since
the probability of the all- error event is equal to , these
results motivate us to define the following parameter to charac-
terize the limiting probability as .

Definition 4: The LP distance, , of a partial-response
channel is given by

(38)

The LP distance is a dimensionless parameter that can take
values between and 1. The following theorem gives a new
sufficient condition for a channel to be improper, expressed in
terms of the distance .

Theorem 3: The WER of uncoded graph-based detection by
LP decoding over an ISI channel with the transmitted sequence
generated as a random sequence of i.i.d. Bernouli binary
symbols goes to 1 as the block length goes to infinity for any
SNR. That is, the channel is improper if the LP distance of
the channel is nonpositive.

Proof: As mentioned above, the probability of the all-
event is equal to . From (36) and (37), we have, for large

(39)

If , the RHS will approach as increases, hence,
will go to 1.

The theorem shows that can provide evidence that a
channel is improper. It is, therefore, natural to ask how it
behaves for proper channels; i.e., channels satisfying the CC in
Theorem 1. The following lemma provides an answer.

Lemma 4: For proper channels that satisfy the NC, .
Proof: For any ISI channel, we can write

(40)

Fig. 4. BER for CH1-CH3. SNR is defined as the ratio of the transmitted signal
power to the received noise variance.

Hence

(41)

Since the NC is satisfied, . Therefore, we have

(42)

E. Simulation Results

We have simulated graph-based detection on the PR Tanner
graph using LP decoding and the min-sum algorithm (MSA) for
three PR channels of memory size 3:

1) CH1: (with ,
satisfies CC; proper);

2) CH2: (with );
3) CH3: (EPR4 channel with

; improper).
Bit error rates (BER) obtained on these uncoded channels using
LP and MSA are shown in Fig. 4. Since CH1 satisfies the CC,
LP will achieve ML performance on this channel. For CH2, the
BER curve can be compared to that of the ML detector, which is
also shown. Except at very low SNR where there is a small dif-
ference, the performance of LP and ML are nearly equal, which
means that CH2 is an asymptotically proper channel. For both
CH1 and CH2, the MSA detector converges in at most three it-
erations and has a BER very close to that of LP detection. In
contrast, CH3 (i.e., the EPR4 channel) is an improper channel,
and we observe that the BERs of the LP and MSA detectors are
almost constant. It is interesting to note that Kurkoski et al. also
observed a similar constant error-floor behavior in their mes-
sage-passing detection of the uncoded EPR4 channel [4]. The
floor was eliminated by the introduction of a suitably chosen
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Fig. 5. Upper and middle plots: Performance of graph-based LP detection versus � for random ISI channels of memory 4, with ��� � �� dB. Lower plot: His-
togram of � values for the same set of channels.

precoder. In an LDPC-coded system, on the other hand, their
simulation results showed no evidence of a minimum BER. In
the next section, we will similarly observe that, in the presence
of coding, the error floor observed in Fig. 4 does not appear for
message-passing algorithms on the proposed graph representa-
tion of the EPR4 channel.

We also studied the relationship between the ISI channel pa-
rameter and the performance of graph-based detection. We
randomly generated 200 ISI channels with memory 4, choosing
the taps of the impulse response to be i.i.d. samples from a
zero-mean, unity-variance Gaussian distribution. The total en-
ergy of the impulse response was also normalized to one, i.e.,

. For each channel, we then simulated the uncoded
LP detector at an SNR of 11 dB with randomly chosen channel
input sequences of length 100. In the upper and middle plots of
Fig. 5, respectively, we show the WER of LP detection as well
as the ratio of that WER to the WER of ML detection as a func-
tion of for all 200 of the ISI channels.

The results in Fig. 5 demonstrate a strong correlation between
the performance of the LP detection algorithm and the value of

. In particular, almost every channel with has a
WER close to 1, while for almost every channel with ,
the WER of LP detection is very close to that of ML detec-
tion. Simulation results for the MSA detector showed a similar
behavior, except for some channels with ,
for which MSA performance was significantly better than that
of the LP detector. This suggests that, for MSA, the transition
from “improper” to “proper” error-rate characteristics begins at
smaller values of than for LP.

Finally, to give a sense of the probability density function of
corresponding to this random construction of ISI channels,

we show in the lower plot of Fig. 5 a histogram of the values
of the 200 ISI channels whose performance was simulated.

IV. COMBINED EQUALIZATION AND LDPC DECODING

One of the main advantages of the graph-based detection pro-
posed in Section II is that it lends itself to the combining of
the channel equalization with the decoding of an underlying
error-correcting code. In this section, we study this joint detec-
tion scheme using both linear progamming and iterative, mes-
sage-passing algorithms.

A. Coded LP Detection

Joint LP equalization and decoding is represented by a
linear relaxation of the IQP problem in (9), incorporating the
constraints that apply to the uncoded graph-based detection, as
well as the linear inequalities corresponding to the relaxation
of parity-check constraints of the code. The latter constraints
cut from the feasible polytope some of the fractional vertices
that can cause the uncoded LP detector to fail, but they also add
new fractional vertices to the polytope.

Unfortunately, except for certain structured codes, no general
systematic method has been reported in the literature for com-
puting the performance of LP decoding of explicitly given codes
even on a memoryless channel. Performance analysis becomes
even harder in the case of LP detection on ISI channels. Hence,
we have not been able to fully generalize to the coded case the
conditions derived for the uncoded LP detection in the previous
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section. However, we can generalize Theorem 3, which formu-
lated in terms of a condition that implies the channel is im-
proper, with nondecreasing WER asymptotically in the block
length.

Corollary 3: Consider a linear code with no “trivial” (i.e.,
degree-1) parity checks, used on a channel satisfying .
Then, coded LP detection on this system has a nondiminishing
WER for large block lengths.

Proof: We have shown in Section III-C that if this condi-
tion is satisfied, the all- vector will with high probability have
a lower cost than the transmitted vector.3 It is now enough to
show that the all- vector will not be cut from the polytope
by any error-correcting code. To see this, consider a relaxed
parity-check inequality of the form

is odd (43)

where . To prove that this constraint is satisfied by the
all- vector, we consider two cases: , and .
If , the first sum in (43) will be equal to , and the
second sum will be greater than or equal to , since has
at least one element. Hence, the left-hand side (LHS) of (43) will
be less than or equal to . Also, if , the first
sum will be equal to , while the second sum is
nonnegative. Therefore, the LHS of the inequality will be less
than or equal to its RHS. Consequently, in both cases (43) will
be satisfied.

B. Coded Message-Passing Detection

Similar to LP detection, graph-based IMP detection can
be extended to coded systems by adding the parity-check
constraints of the code to the PR Tanner graph, as shown in
Fig. 2, and treating it as a single Tanner graph defining a linear
code. Despite many similarities, LP and IMP decoding schemes
behave differently when used for joint detection and decoding.
For example, there is no immediately evident analog to Corol-
lary 3 for IMP detection. On the contrary, we have observed in
simulation studies that there are improper channels for which
coded IMP detection does not exhibit the poor performance
seen in the uncoded setting.

In this paper, we used both the min-sum algorithm (MSA)
and the sum-product algorithm (SPA) for the implementation of
coded IMP detection. As in the uncoded case, we use as the ob-
jective coefficients of MSA the same coefficients as those used
for LP detection, i.e., and , since MSA is invariant
under coefficient scaling. For SPA, note that each contains a
Gaussian noise term with variance proportional to . Hence,
one can argue that a suitable normalization of the objective co-
efficients to estimate the “equivalent LLRs” is achieved by mul-
tiplying all the objective coefficients by . An advantage of
this normalization is that, in the absence of ISI, the normalized

3The derivation of the limit of � was based on the assumption that the trans-
mitted sequence is an i.i.d. sequence, so that (33) holds. While the transmitted
sequence is no longer i.i.d. in the presence of coding, we implicitly assume that
(33) still holds. This is a sufficiently accurate assumption for all codes of prac-
tical interest. In particular, (33) can be proved for a random ensemble of LDPC
codes.

Fig. 6. Selective message passing at the information bit nodes. (a) Calculating
a message outgoing to the code layer. (b) Calculating a message outgoing to the
PR layer.

coefficients become the true LLR values of the received sam-
ples. Consequently, we have used for SPA detection the equiv-
alent LLRs obtained by this normalization.

Decoding with MSA (respectively, SPA) on the Tanner graph
defining the code represents an approximation of ML decoding
(respectively, a posteriori probability decoding). The approxi-
mation becomes exact if the messages incoming to any node are
statistically independent. This happens if the Tanner graph is
cycle-free and the channel observations (i.e., the a priori LLRs)
are independent. In the graph-based detection that we propose,
neither of these two conditions is satisfied. In particular, the PR
layer of the graph may contain many cycles of length 6, while
the channel observations result from matched filtering of
the received signal and, therefore, contain colored noise.

1) Selective Message-Passing Algorithm: In order to miti-
gate the positive feedback resulting from the cycles of the PR
layer, we propose an alternative IMP approach, which we call
selective message passing (SMP), for coded detection. In SMP,
we use a modified combining rule for messages at the informa-
tion bit nodes, illustrated in Fig. 6. The outgoing message from
an information bit node along an edge in the code layer is com-
puted from the channel observation and the messages coming
into the bit node along all edges, excluding edge . On the other
hand, the outgoing message along an edge in the PR layer is
computed from the channel observation and incoming messages
along the edges in the code layer only. Since there are no 4-cy-
cles in the PR layer of the graph, this modification prevents
any “closed-loop” circulation of messages within the PR layer.
In other words, message passing inside the PR layer becomes
effectively loop-free. However, there still remain cycles in the
code layer, as well as cycles that have edges in both the code
and PR layers. Simulation studies, discussed in more detail in
Section IV-C, showed that SMP improved coded IMP detection
on some channels that would otherwise perform poorly, such as
the EPR4 channel.

2) Performance Analysis: Density evolution provides
a powerful tool for analyzing the average performance of
message-passing decoding of LDPC code ensembles on mem-
oryless channels in the limit as the code length goes to infinity.
The calculation of the ensemble average performance inher-
ently assumes that the messages entering each node of the
Tanner graph are statistically independent, an assumption that
becomes accurate as the code length goes to infinity and the
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Fig. 7. BER versus � �� for coded LP detection and coded MSA detection in four channels.

topology of the Tanner graph of the code approaches that of a
cycle-free graph.

Given the success of density evolution in predicting the wa-
terfall behavior of IMP decoding of LDPC codes, it is natural
to try to extend this approach to the message-passing decoding
of coded ISI channels. Unfortunately, we face some challenges
in applying density evolution to the proposed message-passing
detector in the presence of ISI. A key requirement in the ap-
plication of density evolution is that the incoming messages at
each node be statistically independent, or at least have a con-
trolled statistical dependence which enables us to estimate the
statistics of the outgoing messages. As is done in the setting of
memoryless channels, we can consider the limiting case of an in-
finite-length, random LDPC code with corresponding cycle-free
graph structure in the code layer of the Tanner graph. In the
PR layer, however, there will generally be many cycles, with
cycle length as short as 6, irrespective of the code length, as
well as an overall lack of randomness in the graph interconnec-
tions. These properties notwithstanding, use of the SMP algo-
rithm presented above may allow a meaningful application of
density evolution. Specifically, a message passed from an infor-
mation bit node to a check node in the PR layer of the Tanner
graph is only derived from the channel observations, , and
a number of statistically independent messages coming from
the code layer, as illustrated in Fig. 6. Furthermore, since each
check node in the PR layer is connected to only two informa-
tion bit nodes and one state bit node with a fixed and determin-
istic message, one can approximate the statistics of the messages
going from these check nodes to the information bit nodes. In
particular, the known pattern of statistical dependence between
channel observations, , makes it possible to approximate the
dependence among the messages coming into an information bit
node from nearby check nodes in the PR layer and, hence, to es-
timate the statistics of messages entering the code layer of the
Tanner graph.

Another challenge in applying density evolution to the anal-
ysis of detectors for channels with memory is that, unlike the
case of memoryless channels, the performance of the detector
depends on the transmitted codeword. Hence, the simplifying
assumption that the all-zeros codeword is transmitted cannot
be used, and one needs to instead assume that a random (but
valid) codeword is transmitted. In [15], Kavčić and Mitzen-
macher proposed a method to tackle this problem based on mes-
sage flow neighborhoods in the channel factor graph. A similar
technique may be applicable to the performance analysis of the
SMP detector.

In summary, with careful consideration of the structure of the
PR layer, and the assumption of a random tree-like structure in
the code layer, it should be possible to use suitably modified
density evolution techniques to analyze the performance of the
proposed SMP detection technique. We leave the pursuit of this
idea to future research.

C. Simulation Results

In this subsection, we present simulation results for coded de-
tection in the presence of ISI using the schemes proposed above.
In all cases, we have used a rate- , length-200, (3,4)-regular
LDPC code. The following PR channels were considered:

1) Memoryless Channel: ;
2) PR4 Channel: ( ; proper),
3) EPR4 Channel: ( ,

improper);
4) Modified EPR4: ( ,

asymptotically proper).
In Fig. 7, the BER of coded LP and MSA detection on these

channels has been plotted as a function of . For all but the
memoryless channel, coded MSA detection outperforms coded
LP detection. In particular, for the EPR4 channel, coded LP de-
tection has a BER of about for all SNR values, as predicted
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Fig. 8. BER versus � �� for various coded detection schemes in the EPR4 channel.

by Corollary 3, while coded MSA detection has a monotonically
decreasing BER.

For the EPR4 channel, the BER for LP, MSA, selective MSA,
SPA, and selective SPA are compared in Fig. 8. SPA shows a
gain of about 2 dB over MSA. (Although not shown in the figure,
the gap between MSA and SPA for the other three PR channels
was between 0.3 and 0.7 dB.) Selective message passing pro-
vides an additional gain of approximately 0.5 dB for MSA, but
appears to offer little benefit when applied to SPA.

V. CONCLUSION

In this paper, we introduced a new graph representation of
ML detection in ISI channels, which can be used for combined
equalization and decoding using LP relaxation or iterative mes-
sage-passing methods. By a geometric study of the problem, we
derived a necessary and sufficient condition for the equalization
problem to give the ML solution for all transmitted sequences
and all noise configurations under LP relaxation. Moreover, for
certain other channels violating this condition, the performance
of LP is very close to that of ML at high SNR. For a third class
of channels, graph-based has a probability of failure bounded
away from zero at all SNR, even in the absence of noise. In a
step toward the analysis of the performance in the general case,
we derived a distance for ISI channels, which can be used as
a tool to estimate the asymptotic behavior of the proposed de-
tection method. Simulation results show that message-passing
techniques have a similar performance to that of LP detection
for most channels. In addition, we studied graph-based joint
detection and decoding of channels with LDPC-coded inputs.
Simulation results indicate that, in contrast to the uncoded case,
message-passing detection significantly outperforms LP detec-
tion for some channels.

APPENDIX

EQUIVALENCE OF THE LP RELAXATION OF BINARY AND

BIPOLAR FORMS OF THE IQP PROBLEM

In this Appendix we show that if we first rewrite the objec-
tive function of the IQP problem (5) in terms of 0-1 variables,
and then relax the resulting problem in to an LP, as done in [8],
the resulting problem will be equivalent to the LP detection pro-
posed in II.C. Clearly, since the parity-check constraints of an
underlying code only involve the information variables, their re-
laxation will not be affected by the way the auxiliary variable
nodes are defined. Hence, for simplicity of the expressions, here
we only consider an uncoded scenario.

We prove the claim by showing that the relaxation of 0-1
form of the IQP problem results in an equivalent minimization
problem identical to (15). We first start by rewriting the objec-
tive function of the IQP problem in (5) as a function of the 0-1
vector . Replacing by , the objective function becomes

(44)

After removing the constant terms and factors and using (10),
we obtain the equivalent objective function

(45)
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where we have defined the auxiliary variables as

(46)

As the next step, we need to relax the constraints above into
linear constraints. Similar to [8], as well as the relaxation of
Feldman et al. [6], we use linear constraints that define the
convex hull of all binary 3-tuples,
that satisfy (46). This results in the four linear inequalities,
which can be summarized as

(47)

or equivalently

(48)

Following a line of reasoning similar to that in Section III,
we know that the value of at the solution of the relaxed LP
problem will be equivalent to either the upper or lower bound
given by (47), depending on the sign of its coefficient in
the objective function. Hence, similar to (14), the cost of in
the optimum objective function will be

(49)

Substituting the expression above in (45), and neglecting the
constant terms, yields the equivalent optimization problem

Minimize

Subject to (50)

Since the second and third sums in the objective function cancel
each other, the equivalent problem becomes identical to that

in (15). This proves that the information bits have equal op-
timal values in the two LP relaxations obtained from the 0-1
and bipolar forms of the IQP problem.
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