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High-Order Spectral-Null Codes- 
Constructions and Bounds 

Ron M. Roth, Member, IEEE, Paul H. Siegel, Senior Member, IEEE, and Alexander Vardy, 
Senior Member, IEEE 

Abstract-Let Y ( n ,  k )  denote the set of all words of length n 
over the alphabet { + 1, - 11, having a kth order spectral-null at 
zero frequency. A subset of Y ’ ( n , k )  is a spectral-null code of 
length n and order k. Upper and lower bounds on the cardinal- 
ity of 9 ( n ,  k )  are derived. In particular we prove that ( k  - 1) 
log, ( n / k )  I n - log, l Y ( n ,  k)l I log, n )  for infinitely 
many values of n. On the other hand, we show that Y ( n ,  k )  is 
empty unless n is divisible by 2m, where m = [log,k] + 1. 
Furthermore, bounds on the minimum Hamming distance d of 
Y ( n , k )  are provided, showing that 2k 5 d I k ( k  - 1) + 2 for 
infinitely many n. We also investigate the minimum number of 
sign changes in a word x EY’(n, k )  and provide an equivalent 
definition of Y ( n , k )  in terms of the positions of these sign 
changes. An efficient algorithm for encoding arbitrary infor- 
mation sequences into a second-order spectral-null code of re- 
dundancy 3 log, n + O(log log n )  is presented. Furthermore, we 
prove that the first nonzero moment of any word in 9 ’ ( n , k )  is 
divisible by k! and then show how to construct a word with a 
spectral null of order k whose first nonzero moment is any even 
multiple of k!. This leads to an encoding scheme for spectral-null 
codes of length n and any fixed order k, with rate approaching 
unity as n - W .  

Index Terms-Input-constrained channels, spectral-null codes, 
spectral encoders. 

I. INTRODUCTION 
denote the bipolar binary alphabet { + I, - 1) L regarded as a subset of the real field R. We shall 

often use + and - as a shorthand notation for + I  and 
- 1. With every word g = (x,, xz;.., xn) E an, we associ- 
ate a so-called z-polynomial in the indeterminate 2, 

ET 

X ( z )  = x,z + x*z2 + ... +xnzn. 
The discrete Fourier transform X(e - lw)  of g is then 
obtained by substituting z = e-Jw in the z-polynomial of 
x, where j = m. That is, X(e-’w) = C;=,x,e-’”‘. The 
power spectrum of g is defined as (l/n)lX(e-’u)12. 
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A word g = (xL,x2,-..,xn) in an is said to be a kth 
order spectral-null word, if its Fourier transform satisfies 

d w ’  l w = o  

It is fairly easy to verify that these k equalities hold if and 
only if 

dz’ I z =  1 

Hence, a word over @ is a k th order spectral-null word if 
and only if its z-polynomial is divisible by (2 - l )k .  This 
property serves as an alternative common definition of 
kth order spectral-null words. 

We let Y ( n ,  k)  L @ ”  denote the set of all kth order 
spectral-null words of length n over @. Any subset E’ of 
9 ( n ,  k)  is called a spectral-null code of length n and order 
k. We shall refer to p(5??”> = n - log, \%?I as the redun- 
dancy of g. The minimum distance d(E’) of ‘i? is the 
minimum Hamming distance between any two distinct 
words in B’. 

Codes consisting of words with prescribed spectral-null 
properties have been extensively studied over the years. 
For instance, there is a vast body of literature on the 
first-order spectral-null codes, commonly known as dc-free 
codes. See for example [11-[41, 161, [71, 191, [131, 1181, [28l. 
High-order spectral-null codes-that is, subsets of 9’( n,  k)  
for k > 1 -have been recently considered in several works 
[5], [I314 151, [22], for various applications. In particular, 
high-order spectral-null codes have been found useful for 
achieving a better rejection of the low-frequency compo- 
nents than is possible with the conventional dc-free codes 
[13], [14]. It is not too difficult to show (see [13, p. 2411) 
that for any kth order spectral-null word we have 

= 0 
d’lX(e-’“)12 1 

for i = 0,1;..,2k - 1 
do‘ w =  0 

Thus, using k th order spectral-null words with larger 
values of k results in a power spectrum with a wider 
notch at zero frequency. Another notable application of 
high-order spectral-null codes for enhancing the error- 
correction capability of codes used in partial-response 
channels has been recently suggested in [SI, [151. 

The problem of analyzing and synthesizing high-order 
spectral-null codes has been dealt with in a number of 
papers [12], [14], [15], [22]. Some of the constructions [lS], 
[22] are based on approaching the set 9 ( n ,  k), when n 
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goes to infinity, by sets of words generated by all possible 
walks on certain labeled directed graphs. However, as the 
order of the spectral null increases, these graphs quickly 
become prohibitively complex. An alternative enumera- 
tive encoding scheme for P ( n , 2 )  was proposed in [12]. 
Still, there is no general construction of block codes that 
are subsets of 9 ( n ,  k )  with fairly small redundancy. The 
case of combining such constructions with prescribed er- 
ror-correcting capability, and the design of efficient en- 
coders and decoders for such codes, seem to be even 
more difficult problems that have yet to be explored. 

This work has two main objectives. The first is to study 
the properties of the set Y ( n ,  k )  and, in particular, derive 
upper and lower bounds on its cardinality and minimum 
distance. The second is to provide constructions of block 
codes that are subsets of P ( n ,  k )  with rate approaching 
unity as n + 00. 

The case k = 0 corresponds to unconstrained words 
and is therefore trivial. Thus 9 ( n , O )  = W with p ( 9  
( n ,  0)) = 0 and d(P(n,O))  = 1. The set P ( n ,  1) consists 
of all balanced, or dc-free, words with (cf. [131, [IS]) 

p ( y ( n ,  1)) = 0.510g2 n + 0(1) 

d ( P ( n ,  1)) = 2 

for all even n. Indeed, P ( n ,  1) is empty if n is odd. 
In general, no explicit expressions are presently known 

for the redundancy and minimum distance of P ( n ,  k )  for 
k 2 2. However, in the next section we shall derive bounds 
on these parameters. We start in Section II-A with several 
equivalent presentations of the set P ( n , k )  in terms of 
null spaces of certain matrices. Such presentations will 
turn out to be instrumental in the sequel. Then we show 
in Section II-B that 9 ( n ,  k )  # 0 only if n is divisible by 
2”, where m = [log, kl + 1. Next, we discuss in Section 
II-C a curious relationship between spectral-null codes 
and the so-called Morse sequences (cf. [SI, [241). In Sec- 
tion II-D we derive lower and upper bounds on the 
cardinality of 9 ( n ,  k ) ,  showing that 

( k  - 1)(10g2 ( n )  - log2 ( k  - 1)) 

5 p ( Y ( n , k ) )  I 0 ( ( 2 k  - l)(log,(n) - k + 1)) (2) 

for all n divisible by 2 k .  Finally, in Section II-D we employ 
a well-known result from number theory (the Prouhet- 
Tarry problem cf. [lo], [ l l])  to show that the minimum 
distance of P ( n ,  k )  is bounded by 

(3) 
for all sufficiently large n divisible by 2 k .  

In Section I11 we introduce yet another presentation of 
the set P ( n ,  k )  in terms of the positions of sign changes 
in every word x E P ( ~ ,  k) .  A n  interesting feature of this 
presentation is that it characterizes P ( n ,  k )  as the set of 
all integer solutions of a certain system of Diophantine 
equations, without the additional constraint that these 
solutions belong to the binary alphabet @ = { + 1, - l) ,  
which is usually implicit in all other definitions. Using this 
characterization of 9 ( n ,  k ) ,  we show that the lower bound 

2k 5 d ( 9 ( n , k ) )  I k ( k  - 1) + 2 

of k on the number of sign changes in a kth order 
spectral-null word, given in [15], is not tight. 

The remaining two sections are devoted to construc- 
tions of block spectral-null codes of length n and order k ,  
for increasing values of k .  Using enumerative encoding 
[12], [13], it is fairly easy to encode an arbitrary binary 
sequence of length m = n - 0.5 log, n - 0(1), regarded 
as an m-bit representation of an integer N ,  into a word 
g N  E 9 ( n ,  1) indexed by N according to the standard 
lexicographic order on P ( n ,  1). Henry [29] and indepen- 
dently Knuth [18] described a simpler encoding method 
into a subset of P ( n ,  1) whose redundancy is about twice 
the redundancy of P ( n ,  1). See also [l], [2], [91. In Section 
IV we present an algorithm for encoding arbitrary se- 
quences into a subset of 9 ( n ,  21, which is, in some sense, 
a generalization of the encoding method of Knuth [181. 
The redundancy of the resulting second-order spectral-null 
code is bounded from above by 3 log, n + 0(log logn). 

In Section V we present a general encoding scheme 
into a subset of Y ( n ,  k )  for any fixed order k .  First we 
describe in Section V-A an alternative algorithm for en- 
coding arbitrary sequences into a subset of P ( n , 2 ) .  The 
redundancy of the resulting second-order spectral-null 
codes is substantially greater than 3 log, n + O(1og log n). 
Hence these codes are inferior to the second-order spec- 
tral-null codes introduced in Section IV. Nevertheless, the 
rate of these codes still approaches unity as n + x.  

Furthermore, unlike the construction of Section IV, the 
construction of Section V-A lends itself to generalization 
for values of k greater than 2. One of the key ingredients 
required for such generalization is the existence of an 
algorithm which, given a certain word 3 ~ 9 ( n , ,  k ) ,  pro- 
duces a word y such that ( g l y )  ~ 9 ( n , ,  k + 1) for some 
n2 > n,, wher&(-I .) denotes concatenation. Such an algo- 
rithm is derived in Section V-B. Finally, in Section V-C 
we employ this algorithm to describe a recursive encoding 
scheme for spectral-null codes of length n and any fixed 
order k.  It is also shown in Section V-C that these codes 
are asymptotically optimal, in the sense that their rate 
approaches unity as n -+ CO. 

11. BOUNDS ON THE PARAMETERS OF 9 ( n ,  k )  
In this section we derive several equivalent presenta- 

tions of the set 9 ( n ,  k).  We then show that 9 ( n ,  k )  is 
nonempty only if the length n satisfies a certain con- 
straint. Following a discussion on Morse sequences as 
examples of spectral-null words, we devote the rest of the 
section to our main results herein-namely, upper and 
lower bounds on the cardinality and minimum distance of 
Y ( n ,  k ) .  

A. Definitions of Y ( n ,  k )  
We start by summarizing several necessary and suffi- 

cient conditions for a given word to be a kth order 
spectral-null word. Thus, Lemmas 2.1-2.3 below provide 
characterizations of P ( n ,  k )  in the form of null spaces of 
certain matrices. As such, these matrices may be regarded 
as “parity-check” matrices of 9 ( n ,  k ) .  Most of these 
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1 ... 1 1 - 7 

1 1 ... 1 l + c  2 + c  ... n + c  
def  
- - ( 1  + ( 2  + c)' *.. ( n  + C l 2  ( i j  ( ? j  ... (7) . 

for i = 0,1, ... k - 1 1 .  

Q ( a , k I d z f  (;) (z) "' (i)  . 

I 
Proofi It is known [16, p. 551 that the polynomials 

I =  1 

- ( 1  + dk-'  ( 2  + elk-' ... ( n  + C ) k - '  - 

z (z  - 1) 
1, z ,  ___ ... 

z (z  - 1 )  ... ( z  - i + 1 )  
Proofi Let x = ( x ~ ,  xZ;--, x,) be a word over @ and 

let X ( z >  be the corresponding z-polynomial. It is straight- 2 " i! 
forward to verify that form a basis of the (i + 1)-dimensional linear space of all 

real polynomials of degree I i in the indeterminate z. 
This linear space is also spanned by a shifted form of the 
standard basis 1, z + c, ( z  + c ) ~ ,  ... ( z  + c)' for every real 
c. It thus follows that there is a nonsingular lower-triangu- 
lar k 

dL;z(:)lz=, = i !  I =  5 1 (()XI. 

The lemma now follows immediately from ( 1 ) .  Note that k = [tl,,~;l;n say, such that [ : \  

- ( k ! l )  ( k 2 1 )  " *  ( k n l )  - 

the binomial coefficient is assumed to be zero for 

i < i. U ( j  + c)' = t , ,o (  J,) + t , , ] (  i )  + t , ,z(  t )  + +t, , , (  i )  

Then 

P(n, k )  = {x E an: H ( n ,  k ;  C ) X '  = 0) 

Let V ( n ,  k )  be the null space of Q ( n ,  k )  - that is, the 
vector space over the real field R of dimension n - k 
consisting of all words y E R" satisfying Q ( n , k ) y '  = 0. 
Then, obviously, P ( n ,  k )  = Y ( n ,  k )  n @.". It therefore 
follows that if M is any k x n matrix with entries from R 
such that the null space of M is equal to that of Q(n, k ) ,  
then 

(4) 9(n, k )  = {g E an: Mx' = Q}. 

We now specifically indicate two such matrices: 

where 

I 1  i f j = i  

Substituting these matrices into (4) leads to equivalent 
characterizations of 9 ( n ,  k ) ,  which will prove to be useful 
in the sequel. 

\ I  \ ,  

for all integers j .  Hence, the rows of H ( n ,  k ; c )  and 
Q ( n , k )  span the same linear space and, so, the null 
spaces of H ( n , k ; c )  and Q ( n , k )  must be equal. The 
lemma now follows from Lemma 2.1. 0 

The foregoing lemma shows that the spectral properties 
of a word x E an are position (or time, or shift) invariant. 
That is, a word x is a kth order spectral-null word if and 
only if so is any shifted version of x. Indeed, this can as 
well be observed from the following simple fact. For any 
positive integer c, the z-polynomial X ( z )  of x is divisible 
by ( z  - l )k  if and only if zcX(z) is also divisible by 
( z  - l ) k .  This property will be of importance in Section 
11-D and also in Sections IV and V. 

However, in most cases we will make use of Lemma 2.2 
with c = 0. We shall employ the shorthand notation 
H ( n ,  k )  for H ( n ,  k ;  0). For an integer k 2 0 and a real 
vector g = (x,,x2;.. xn), the kth order moment of x is 
defined as in [14],  [15] by mk(x) = E;= ,jkx,. Substituting 
c = 0 in Lemma 2.2, we thus arrive at the same character- 
ization of P ( n ,  k )  as in [14],  [151, namely 

def  

n 

x E a": m,(x)  = j'x, = O 

for i = 0,1;.., k - 1 

]=1  
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Lemma 2.3: Let D(n ,  k )  be the k X n matrix 
[Ik&n, k ) ] ,  where Ik is the identity matrix of order k and 

D ( n ,  k )  = 

Then 

- x , + ]  for i = 0, l ; . . ,  k - 1 . 1 - - 

Proog Let B ( k )  = [b,,,]f:,',;k=&' be the k X k matrix 
whose entries are coefficients of the following polynomials 
in the indeterminate Z: 

b , (Z )  = b,,,Z' 
k -  1 

J = O  

n;:;(z - 1 - 1 )  

/ # i  

( 7 )  

We now show that D(n,  k )  = B ( k ) H ( n ,  k ) .  Denoting 
B ( k ) H ( n ,  k )  = [c .  . I .  k - 1 , n - 1  and referring to (71, we have i , j  r = O , j = O  

/ # I  

(8) 

for i = 0, l ; . . ,  k - 1 and j = 0, l , . - - , n  - 1 .  Now, for j < 
k we see from (8) that ci, is equal to the Kronecker delta 
function 6( i ,  j )  and therefore the first k columns of 
B ( k ) H ( n ,  k )  form the identity matrix. That is, B ( k )  is the 
inverse of H ( k ,  k ) ,  see [16, p. 361. As for j 2 k ,  we have 

where d f , j  is as defined in (5). This shows that indeed 
D(n, k )  = B ( k ) H ( n ,  k ) ,  and since B ( k )  is nonsingular, 
the lemma now follows from (4). 0 

1829 

The matrix D(n, k )  is a "systematic" parity-check ma- 
trix of 9 ( n ,  k ) ,  which allows us to express the first k 
positions of any word x E P ( n ,  k )  as a function of the last 
n - k positions. In fact, since any k x k submatrix of 
H ( n , k )  is a nonsingular Vandermonde matrix, any k 
positions in x may be expressed in terms of the remaining 
n - k positions in a manner similar to that of Lemma 2.3. 
Furthermore, we have for j 2 k 

Thus &n, k )  is a generalized Cauchy matrix with integer 
entries (see [26]). All these properties of spectral-null 
codes resemble to a certain extent the properties of 
Reed-Solomon codes [19, ch. 111. 

Lemma 2.3 will be employed in Section V-B to show 
that the kth moment of every g in P ( n ,  k )  is divisible by 
k ! .  This property is crucial for the construction of high- 
order spectral-null codes presented in Section V. 

B. A Constraint on the Length of 9 ( n ,  k )  
It is obvious that Y ( n ,  1 )  # 0 only if n is even, and it 

is well-known that P ( n ,  2)  # 0 only if n is divisible by 4 
[14].  How does this constraint on the length of a (non- 
empty) spectral-null code of order k extend to values of k 
greater than two? In particular, is it true that as the order 
k of the null increases, the length of a spectral-null code 
of order k must be divisible by increasing powers of 2? In 
this section we settle the latter question affirmatively. 

Theorem 2.4: The set Y ( n ,  k )  is empty unless n is 
divisible by 2"' where m = [log, k1 + 1 .  

Proof: Let x be a kth order spectral-null word of 
length n. Then the z-polynomial X ( z )  of x can be fac- 
tored over the rationals into ( z  - l l k Y ( z )  for some poly- 
nomial Y(z) .  In fact, by Gauss's lemma (cf. 117, p. 4041), 
the polynomial Y( z )  has integer coefficients. Reducing 
the equality X ( z )  = ( z  - l ) k Y ( ~ )  modulo 2, we find that 
over GF(2) the polynomial ( z  - l )k  divides the polyno- 
mial z + z 2  + ... +z" = Z(Z"  - l ) / ( z  - 1 ) .  Thus, we may 
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conclude that over GF(2) the polynomial ( z  - I l k + '  di- 
vides the polynomial Z" - 1. 

Now let m be an integer such that 2"-' < k + 1 I 2". 
That is, m = [log, k ]  + 1 as in the statement of the 
theorem. Then (2 - l ) k + '  obviously divides (2 - 112"'. 
Note that in GF(2) we have (2 - 1)'" = z2" - 1. Hence, 
over GF(2) the polynomial ( z  - l)kf'  divides both z" - 1 
and z2'" - 1. AS such, it must also divide gcd(z" - 1, z'"' 
- 1). Using Euclid's algorithm we obtain that gcd(z" - 
1, 2,"' - 1) = z d  - 1 where d = gcd(n, 2"). This, in fact, 
is true over any field. Therefore, z k +  ' - 1 divides z d  - 1, 
which, in particular, implies that k + 1 I d. Now, d is a 
divisor of 2" and so it is a power of 2. Recalling that 
2"l-I < k + 1 I d I 2", it follows that d must be equal 
to 2"'. Thus gcd(n,2") = 2", which implies that 2" di- 
vides n (see also [21, p. 1031 for a slightly weaker state- 
ment). 0 

We shall see in the next section that Theorem 2.4 is 
tight for k = 1,2,3,4,5. Whether this bound is tight in 
general remains an open question. Equivalently, we have 
the following. 

Question: Is it true that 9'(2"q72" - 1) f 0 for any 
fixed m and sufficiently large q? 

We point out that it would suffice to show that 
Y(2"q0,2"' - 1) # 0 for one particular odd qo, for any 
given m. Indeed, the set Y(22"- ' ,2"  - 1) is nonempty, 
as will be shown in the sequel. If q,, is odd then gcd(q,, 

1 = 1. Hence, by the conductor theorem of Fro- 
benius [27, p. 2761 every sufficiently large q can be written 
as q = aq, + b2'"'-'-"' , for some positive integers a and 
b. Therefore, by concatenating a copies of a word in 
9'(2"q,,2m - 1) with b copies of a word in P(22" ' - ' ,2m 
- 1) we obtain a spectral-null sequence of length 2"q 
and order 2" - 1. 

22'"-1 - m  

C. Spectra/-Null Codes of Short Length and Morse Sequences 
The cardinality of the set P ( n ,  k) for small values of n 

may be easily calculated, using for instance the generating 
function of [141 or direct enumeration. Table I below 
(which is calculated from the table in [141) lists the values 
of p ( P ( n ,  k)) for lengths n I 32 that are divisible by 4. 
Empty entries in the table correspond to empty sets 
Y ( n ,  k). 

Several observations are evident from Table I. In par- 
ticular, it readily follows from the table that the condition 
of Theorem 2.4 is not sufficient for 9 ( n ,  k)  to be 
nonempty. For example, taking n = 16, k = 5, and m = 

[log, k ]  + 1 = 3, we see that 2" divides n, and yet 
9 ' ( f i ,  k)  = 9'(16,5) = 0. On the other hand, it follows 
from the table that 9 ( 4 q , 3 )  # 0 for q = 2,3. Since 
g, E Y ( n l ,  k)  and g, E 9 ( n 2 ,  k )  can always be concate- 
nated to produce (g11g2) E 9 ' ( n ,  + n2 ,  k), we deduce 
from Table I that Y(4q,3) # 0 for q 2 2 and 9'(4q,2) 
# 0 for q 2 1. Furthermore, it can be verified by com- 
puter search that 9'(8q, 5 )  # 0 for q = 4,5,6,7. Hence, 
P(Sq,5) # 0 for q 2 4 and 9 ( 8 q , 4 )  f 0 for q 2 2. 

We also point out that for k 2 1 and n I 32, the 
minimum distance of a nonempty set P ( n ,  k) equals 2k, 

TABLE I 
REDUNDANCY OF Y(n, k )  FOR n 5 32 WITH 41n 7 5 6.14 

24 

2.63 

8.10 

14.49 

25.71 

except when the redundancy is n - 1. In the latter case, 
the two words in 9 ( n ,  k)  are complements of each other 
and, therefore, the minimum distance is n. 

The following two facts particularly stand out in 
Table I. For all k 5 5: 

the smallest integer n for which Y ( n ,  k)  # 0 is 
n = 2k;  

the set Y(2L ,  k) contains exactly two words. 
We now show that these two words are (the truncations 

of) the binary Morse sequence (cf. [SI, [24]) and its com- 
plement. The following lemma is slightly more general. 

Lemma 2.5: For any k 2 0 and any word g E @" there 
exists a word y ~ 9 ' ( 2 ~ n ,  k )  containing g as its prefix. 

Prooc L 6  X ( z )  be the 2-polynomial of 5. Then 

Y ( Z >  = x ( Z ) ( i  - ~ ) ( i  - z2")(i - 24") ... (1 - z ~ ~ - ' ~ )  
(9) 

is a z-polynomial of a word y E @ ) n 2 L  that contains g as a 
prefix. Since ( z  - 1) divideseach of the k factors multi- 
plying X ( z )  in (9), it is clear that Y ( z )  is divisible by 

0 
Applying the construction of Lemma 2.5 to the word 
= (+) E a' produces, for k --3 x, the infinite binary 

( z  - 1 I k .  Hence y ~ Y ( 2 ~ n ,  k). 

Morse sequence 

+ - - + - + + - - + + - + - - + - + + -  
+ - - + + - - + - + +  _ . . .  

which is well-known in symbolic dynamics [SI, [24]. It is 
easy to see that this sequence contains a + in position i 
(starting at i = 0) if and only if the binary representation 
of i has even Hamming weight. We shall denote by p(k)  
the truncation of the Morse sequence to its first 2k 
positions. Then it follows from Lemma 2.5, in conjunction 
with Table I, that for all k I 5 the Morse sequence p(k)  
is the shortest spectral-null word of order k.  Furthermore, 
for k _< 5 ,  the Morse sequence p(k)  and its complement 
are the only elements in 9 ( 2 k ,  k ) .  

It is tempting to ask whether the two properties of the 
Morse sequence exhibited in Table I extend beyond k = 5. 
Thus, we have the following. 

Question: Is p ( k )  the shortest spectral-null word of 
order k,  for all k?  

Question: Is it true that Y(2k ,  k) = { p ( k ) ,  p ( k ) }  for 
all k? 

While the first question remains open, the answer to 
the second question is, surprisingly, negative. For k = 6, 

- 
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the set 9'(2', 6) contains words other than the Morse 
sequence, e.g., the word del 

+ + - - - - + + - + - - + - + + + + + - -  

For each a E A(h,  k)  define the set 9 ( n ,  k; a)  by 

9 ( n ,  k ;  a )  = ( ( T I T )  E a.": x ~ 9 " ( h ,  k;  a)  and 

+ - - + - - + - - + +  - y E9 ' (h ,  k ;  - a ) > .  

concatenated with its reflection. The construction of 
Lemma 2.5 may now be applied to this word to show that 
Y ( 2 k ,  k) # { p(k), p (k ) )  for all k 2 6. 

D. Bounds on Redundancy 
Let P ( k )  = U ~ I Y ( n ,  k)  denote the set of kth order 

spectral-null words over @. The set P ( k )  may be thought 
of as the set of all words admitted by the binary-input 
spectral-null channel of order k. The capacity of a spec- 
tral-null channel of order k is then defined by 

- 

log, IY(n,  k )  I 
n 

c a p ( Y ( k ) )  = limsup 
n + x  

It was noted in [151, using arguments based on canonical 
finite-state transition diagrams, that the capacity of a kth 
order spectral-null channel should be equal to unity for 
any fixed order k. We prove here that indeed cap(Y(k)) 
= 1. Furthermore, we provide upper and lower bounds on 
IP(n,  k) ( ,  or equivalently on p ( f l n ,  k)), establishing the 
stronger claim of (2). 

The following theorem is essentially a sphere-packing 
upper bound on the cardinality of the set P ( n ,  k ) .  

Theorem 2.6: For all n > k 2 1. 

p ( Y ( n , k ) )  2 ( k  - l)(log,(n) - log,(k - 1)).  

Proof It is shown in [14], [15] that the minimum 
distance of f i n ,  k)  is at least 2k.  Thus, by the sphere- 
packing bound [19, ch. 11 we have 

log,lY(n, k)l I n - log, V ( n ,  k - 1) 

where V(n,  k)  = Z:f=" denotes the volume of the 
Hamming sphere of radius k in an. The theorem now 

( k l  l ) >  follows from the inequality V(n,  k - 1) 2 

The following theorem is a nonconstructive lower bound 
on the cardinality of Y ( n ,  k), which implies in particular 
that cap(Y(k)) = 1. In Section V we present a construc- 
tion of spectral-null codes that attains the capacity. How- 
ever, the existence result of Theorem 2.7 provides a much 
better bound on the redundancy of 9 ( n ,  k). 

Theorem 2.7: For all n 2 1 such that 2k ln ,  

i:') 
(n/(k - l ) )kp ' .  0 

p ( Y ( n ,  k))  I 0 ( ( 2 k  - l)(log, ( n )  - k + 1)).  

Proof The result is obviously true for k = 0 , l .  Hence 
we hereafter assume that k > 1, in which case n is even. 
Write n = 2h and let P ' ( h , k ; a )  denote the set of all 
words T in Y ( h ,  k - l), such that m k p  = a for some 
fixed integer a.  Further, let A(h, k)  denote the set of all 
the integers a for which Y ( h ,  k; a)  is nonempty. 

It follows from Lemma 2.2 that B ( n ,  k; a )  c P ( n ,  k) for 
every a E A(h, k). Furthermore, I N n ,  k; a)l = lY (h ,  k; 
all2 since IP(h ,  k; all = l P ( h ,  k; -U ) \ ,  and g ( n ,  k; a) n 
9 ( n ,  k; b )  = 0 whenever a # b since the sets P ( h ,  k; a )  
form a partition of Y ( h ,  k - 1). Hence we have 

l Y ( n ,  k)l 2 l P ( h ,  k ;  all2 (10) 
a E A ( h , k )  

and 

I P ( h ,  k ;  a)l = l Y ( h ,  k - 111. (11) 
a s A ( h , k )  

By the U-convexity of the function f ( z )  = z 2 ,  the mean 
of the squares of real values is not smaller than the 
square of their mean. Hence, 

IA(h, k)l ( lA(h, k)l i: ,zf(h,k)lY(h, k ;  C a E ~ ( h , k l l p ( h )  k ;  a)i 

I Y ( h , k  - 111, 
IA(h, k>I2 

- - 

where the last equality follows from (1 1). Therefore (10) 
implies 

(12) 

Taking logarithms of both sides in (12) yields 

p ( P ( ~ 1 ,  k))  5 2 p ( P ( h ,  k - 1)) + log,IA(h, k)I. (13) 

Obviously, lA(h, k)J I 1 + 2C:= , J k - '  I nk whenever k 
2 2. Substituting this upper bound on A(h, k) into (131, 
and writing n = 2"q for some m 2 k, we obtain 

p(Y(2"q, k ) )  I 2p(Y(2"p 'q ,  k - 1)) + k(m + log, q ) .  
Taking into account that p ( Y ( n ,  0)) = 0 for all n,  we can 
solve the above recursion to show that 

k -  1 

p ( 9 ( 2 " q ,  k))  5 C 2'(k - i ) ( m  - i + log, 4) 
i = O  

= 0 ( ( 2 k  - l)(log,(q) + m - k + 1)) 
as claimed. 0 

Remark: Theorem 2.7 can be slightly improved by using 
better estimates for the size of A(n,  k) and observing that 
the sizes of Y ( n , k ; a )  depend on a. In particular, an 
improvement can be obtained by taking into account that 
k! must divide a for every a E A(n,  k), as will be shown in 
Section V-B. However, such arguments will not get rid of 
the 2k term in the bound of the Theorem 2.7, and are 
therefore omitted. 

Remark: Referring to Table I, it is clear that Theorem 
2.7 does not cover the entire range of values of n and k 
for which P ( n ,  k) # 0. For instance, taking n = 12 and 
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k = 3, we see that 2 k  does not divide n,  and yet 9 ( n ,  k )  
=9(12 ,3)  # 0. 

E. Bounds on the Minimum Distance 
It is shown in [14], [ lS]  that the minimum distance of 

9 ( n ,  k )  is bounded from below by 2k. We present next an 
upper bound on the minimum distance of 9 ( n ,  k )  for 
infinitely many values of n, establishing (3). 

Both [14] and [lS] make use of a well-known result from 
number theory-The Prouhet-Tarry problem. Suppose 
that A = { a l ,  u2,"*,  U, )  and B = {b,,  b2;.., 6,) are two 
disjoint sets of distinct positive integers and consider the 
system of k equations 

U ;  + U ;  + + U :  = b; + b; + ..* +bf 

for i = 0, l;.., k - 1. (14) 

Then the Prouhet-Tarry problem asks for the least value 
of s for which (14) has a solution. We shall use P (k )  to 
denote this value of s. 

Lemma 2.8 (Prouhet-Tarry [lo, p. 3291): 

P ( k )  I i k ( k  - 1) + 1 

The proof of the lower bound on d ( Y ( n ,  k ) )  in [151 is 
based on the lower bound P ( k )  2 k .  Herein we employ 
the upper bound on P ( k )  of Lemma 2.8 to derive an 
upper bound on d ( Y ( n ,  k) ) .  

Theorem 2.9: For any fixed k and any sufficiently large 
n that is divisible by 2 k ,  

d ( P ( n ,  k ) )  I 2 P ( k )  I k ( k  - 1) + 2 .  

Proog Set s = P ( k )  and let A = {ul ,  a 2 ; - * ,  a s }  and 
B = { b l ,  b2; . - ,  b,) be the two solutions of (14) guaranteed 
by Lemma 2.8. Take N to be an integer greater than any 
of the elements in A U B, and consider the word $ = 

(x,, x 2  xN) E a", where x, = - 1 if a E A and xu = 1 
otherwise. Let y = ( y l ,  y 2 ; - . ,  yN) E O N  be a similar word 
with respect to the set B. Clearly, x, = y ,  for all the 
positions i that are not in A U B ,  and therefore the 
Hamming distance between x and y is 2 P ( k )  I k ( k  - 1) 
+ 2. In view of Lemma 2.5, there exists a word _w E 

9(2 ,N,  k )  that contains x as its N-prefix. Replacing this 
prefix by y ,  we obtain another word in 9'(2kN, k )  at 

0 
Remark: It is known [ l l ,  p. 5071 that P ( k )  = k for all 

k I 10. Hence, it follows from Theorem 2.9 that for 
k I: 10 the minimum distance of P ( n ,  k )  is exactly 2k for 
infinitely many values of n. 

distance 2 k ( k  - 1) + 2 from _w. 

rII. ON SIGN CHANGES IN SPECTRAL-NULL SEQUENCES 

The characterizations of P ( n ,  k )  in the previous 
section may be recast into a form involving only the posi- 
tions i where the component values in a word x = 

(x l ,  x2;..,x,) E9' (n ,  k )  change sign, that is x , + ~  = -x,. 
We shall denote these positions by the sign-change list 
T = (71, T ~ ; . . ,  T ~ ) ,  where O < r ,  < T~ < ... < r1 < n. 

Let f k ( n )  denote the sum of kth powers of consecutive 
integers, 

n 

fk(n> = C j k .  
] = I  

It is well-known [16, p. 4991 that f k ( n )  is an integer 
polynomial of degree k + 1. Specifically, 

f k ( n )  = - 
n k +  1 nk k n k P 1  + - + B , -  

2 !  
k ( k  - l ) ( k  - 2)nk-'  

4! 

k + l  2 

+ ... 

where B, is the ith Bernoulli number [16, p. 6151, and the 
series terminates at the n 2  term if k is odd, or the n term 
if k is even. For example, since B ,  = 1/6 and Bz = 

- 1/30, we have 

+ B2 

n2 n n ( n  + 1) 

2 2  2 
f l ( n )  = - + - = 

n' n2 n n ( n  + 1)(2n + 1) 
3 2 6  

f 3 ( n )  = - + - + - = 

6 
f 2 ( n )  = - + - + - = 

n4 n3 n2 n2(n + 112 
4 4 2 4  

n5 n4 n3 n 
f , (n> = - + - + - - - 

5 2 3 3 0  
n ( n  + 1)(2n + 1)(3n2 + 3n - 1) 

30 
- - 

For a word x with sign-change positions { T , ,  T ~ ; - * ,  T ~ } ,  we 
can rewrite the moments m k ( x )  = Cy=ljkx, in the form 

m , ( x )  = sgn (XI)[ f k ( T 1 )  - r f k ( T 2 )  -fk(T1)l f "' 

+ ( - l ) ' [ f k ( n )  - f k ( T , ) ~ ]  

for all k 2 0. This clearly reduces to 

m , ( x >  = sgn(x1)[2fk(7,) - 2 f k ( ~ 2 )  + 
f ( -  1)'- '2fk(T/)  + ( - l)'fk(n)]. (15) 

When 3 ~ 9 ( n ,  k ) ,  the expression above translates the 
vanishing moment conditions of (6) into simple conditions 
on the sign-change positions, as shown in the following 
lemma. 

with sign-change 
list T = { T , ,  T ~ , . . . ,  T / ) .  Then, 

Lemma 3.1: Let g be a word over 

(a) The word is in P ( n ,  k )  if and only if 
I 

( - l) 'nl+I + 2 C (-1)'- 'T;+' = 0 
J = 1  

for i = O , l , . - . , k  - 1. 
(b) If ~ 9 ( n ,  k )  then 
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Proo$ We proceed by induction on k.  Part (a) is 
vacuous when k = 0, while part (b) follows from (15) with 
f & n )  = n. That is, 

m,(x> = sgn(xl)[2T, - 2T2 + 1. -  +(-1)'-'T[ + ( - ~ ) ' n ] .  

This establishes the induction base. 
Now assume that the lemma holds for k - 1. By part 

(a) we have that g EY(~ ,  k - 1) if and only if 
1 

(-1)'n'+' + 2 ( - 1 ) ' - ' T ; + '  = 0 
j =  1 

for all i = 0, l;.., k - 2. (16) 
Part (b) implies that for x ~ 9 ( n ,  k - 1) we have 

(17) 

Clearly, x E Y ( n ,  k)  if and only if the following two 
conditions both hold: x E P ( n ,  k - 1) and mk-  '(x) = 0. 
While the former condition is given by (161, the latter 
condition is equivalent to 

I 
( - l ) ' n k +  2 ( - l ) ' - l f  = 0 

J = 1  

in view of (17). This completes the proof of part (a) of the 
lemma, and we now proceed with the proof of part (b). 
Write the polynomials fk(n) in the form (recall that these 
polynomials do not have a constant term): 

k 

f k (n> = c fk,,12'+l 
r = O  

and rewrite the moment m,(g) as 

k 

mk(5) = sgn(x1) 2 fk,,T;+' f * "  i 1 = O  

I *  
1 

k k 

+(-1>'- '2  Cf,,,r;+l + (-1) '  C f k , , n [ + l  
1 = O  r = O  

Grouping terms of equal degree, we find 

m k ( x )  = sgn(x , )  
I 

. cf,,, ( - ~ ) ' n , + ~  + 2 (-1)'-'T;+' . 

Now suppose that x is in P(n ,  k). By part (a), which has 
been already established above, the sums corresponding 
to i I k - 1 are all zero. Since f L , L  = l / ( k  + 11, we 
conclude 

r = O  k (  / = I  

For small values of the null order k, the conditions on 
the sign-change positions in parts (a) and (b) of Lemma 
3.1 may be used to determine elements x ~ 9 ( n ,  k), as 
well as to find bounds on the first nonzero moment m k ( g )  
for such x. 

For example, when k = 1 we have 

implying that r ,  I n/2.  That is, the first sign change 
occurs not after the halfway point. Consequently, for any 
x: E 9 ( n ,  l), we have the bound 

n2 
Im,(x)l 5 'i 2 n2 - 2( 5);) = -. 4 (18) 

We recall that a word with a kth order null must have at 
least k sign changes [15]. If we restrict attention to words 
in Y ( n ,  1) with precisely one sign change, the conditions 
of Lemma 3.1 produce the unique solution T = (n/2},  
which attains both the lower bound on the number of sign 
changes and the upper bound (18) on ml(x). 

For k = 2, we may solve for a word x E Y ( n ,  2) having 
exactly two sign changes. The conditions are 

27' - 2~~ + n = 0 

From these equations we easily derive T = {n/4,3n/4), 
which leads to 

n3 
m,(x> = - 

16 

if we assume x, = + 1. Note that if y ~ 9 ( n ,  2) has more 
than two sign changes, then m,(_y) 3 m2(x).  This follows 
from the observation that there must exist sign change 
positions i < j  such that y ,  = -1 and y, = +l.  If we 
transpose the symbols y ,  and y,  + ', and then transpose the 
symbols y, and y, + ', it is easily checked that the resulting 
word y' is again in 9 ( n , 2 )  and m,(_y') > m,(y) .  Clearly, 
this procedure terminates when y' has only two sign 
changes. Hence the solution T =  {n/4,3n/4} again 
achieves both the lower bound on the number of sign 
changes and the upper bound on m,(x). Note that the 
two solutions, {n/2} E P ( n ,  1) and {n/4,3n/4} E 9 ( n ,  2), 
correspond to the Kronecker product of the word 
(+ + ... + + ) of appropriate length with the Morse se- 
quences p(1) E 9 ( 2 , 1 )  and p(2) E P(4,2),  respectively. 

Application of Lemma 3.1 to the case k = 3 shows that 
the lower bound of k on the number of sign changes is 
not always tight. In particular, after some straightforward 
algebra, the conditions on sign change positions in part (a) 
of Lemma 3.1 reduce to the equation 

completing the induction step and the proof of the lemma. 
0 8r:n2 - 8r1n3 + n4 = 0. 
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The first sign change position r1 must be of the form an,  
for some rational number a. The condition that a must 
therefore satisfy is 

s a 2  - 8 a  + 1 = 0. 

This quadratic equation has the two solutions 

2 + a  
L y =  ___ 

4 

neither of which is rational. It follows that there is no 
element of 9 ( n ,  3) with only three sign changes. 

Knowing that the Morse sequence p(3) E 9T8,3)  has 
five sign changes, one might naturally inquire if five sign 
changes is the minimum number among the words with a 
null of order 3. If we assume that a word with four sign 
change positions 0 < r l  < r2 < r3  < r4 < n has a third- 
order null, and proceed as before, we obtain the following 
relations expressing r 2 ,  r3 ,  and r4 in terms of rl: 

r2  = a + /3 + y 

r3  = rw + 2 p  

r 4 = a + / 3 -  y 

where 

This implies that r1  < n/4, or else r3 would not be 
strictly in between r2  and r4. Further, to show that we 
cannot have a third-order spectral-null word with four 
sign changes it would suffice to show that y is irration- 
al whenever 0 < r ,  < n/4. Write p / q  = 4r1/n, where 
gcd ( p ,  q )  = 1. Then y is irrational if and only if the 
following equation 

p4 + ~ q ( q  - p 1 3  = r2  (19) 

does not have integer solutions in the range 0 < p  < q. 
The proof that (19) has indeed no integer solutions is 
rather elaborate, and is therefore deferred to Lemma A.l  
in the Appendix. The foregoing discussion in conjunction 
with Lemma A.l  implies that five sign changes are indeed 
necessary for a binary word with a third-order null. 

IV. AN ENCODER FOR SECOND-ORDER 
SPECTRAL-NULL CODES 

While the previous two sections are devoted to the 
study of various properties of Y ( n ,  k) ,  in this and the next 
section we present explicit constructions of encoders into 
subsets of P ( n ,  k)-viz. spectral-null codes of order k.  
We start with an encoding scheme for second-order spec- 
tral-null codes. In the next section we present an alterna- 
tive encoding scheme, which extends to spectral-null codes 
of any fixed order. 

One way of encoding an arbitrary word y = (yl, y ,  
, y,) of length m = n - [ p ( Y ( n ,  k))l over-the alpha- 

bet F = {O, 1) into a word 5 E9' (n ,  k )  is by enumerative 
coding. For instance, assume that all the elements of 
Y ( n ,  k )  have been arranged in lexicographic order, and a 
1-1 map b:F" + {0,1,-.. 2" - l} has been established, 
say b ( y )  = Cy=1yy,2'-1. Then the enumerative encoder, 
presented with the word y ,  encodes y into g E Y ( ~ ,  k )  
whose rank in the lexicographic orderhg is equal to b(y) .  
In particular, such an enumerative encoder for 9(n;2) 
was proposed in [12]. 

We note that the enumerative encoding technique can 
be, in principle, extended for k 2 2. This, however, would 
require precomputing and storing a prohibitively large 
amount of information. For an integer vector _a = 

(ao, a,;.., ak-  
9 ( n ,  k ;  g) = (5 E a": H ( n ,  k)&.' = g } .  

Then the enumerative encoding algorithm requires the 
knowledge of the (nonzero) values of W(Z, k ;  g)l for all 
g E Z k  and all 1 = 1,2;..,n. These values may be pre- 
computed using dynamic programming. However, for any 
fixed k ,  the ith entry a, of g in 9 ( l ,  k ;  g) may range over 
@(l '+ ' )  values.' Hence, for each 1 we may end up with 
@ ( l " k + 1 ' / 2 )  nonzero values lci"(l, k; g)l, and therefore the 
number of nonzero values we would need to compute and 
store in this way is O(nk(kf1)/2+1) .  This makes the enu- 
merative method quite impractical even for small values 
of k.  

In this section we concentrate on the case k = 2. The 
enumerative coding technique we have just outlined will 
require us to precompute and store @(n4) values of 
lP(1,2; g>l, and the redundancy of the encoded set of 
words of 9 '(n,2) thus obtained is O(1ogn). We now 
present an alternative encoding algorithm for k = 2 that 
requires O(n log n )  bit operations for encoding, without 
any precomputation, and whose resulting redundancy is 
still @(log n). In a way, this algorithm may be regarded as 
a generalization of one of the algorithms in Knuth's paper 
[18] for the case k = 2. 

Let n be a positive integer and let m be the smallest 
integer such that n + m + 1 I 2". We further assume 
that n + m + 1 is divisible by 4, or else we may increase 
n by at most 3 to meet this condition. Thus, let h be the 
even integer (m + n + l)/2. We now show how to en- 
code an arbitrary word y in @" into a word of 9 (2h ,2 ) .  

As a first phase, we encode y into a word 6 = 

( x - ~ x - ~ + ,  ... x o x l  . S .  over @, which satisfies the 
equation al(g) = C::!, jx, = 0. Note that al(x) is essen- 
tially the first moment of g with respect to the matrix 
H(2h, 2; - (h + 1)). The encoding procedure may be spec- 
ified as follows. 

E zk let 

- 
def 

Phase A-Balancing U* (5): 
Step AI: Assign the entries of y to the entries xi, 

where j ranges over all integers between -h and h - 1 

'Here, O(f(rr)) denotes a function in n that is bounded from below 
and above by c, . f ( n )  and c2 . f ( n ) ,  respectively, for some constants c, 
and c2 independent of n. 
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that are not equal to - 1,0,1,2,4;.., 2"- . For the time 
being, set the m + 1 unassigned entries of xJ to zero. 

StepA2: For increasing values of 1 = -h ,  -h  + l,..., 
flip the sign of x,. Let a l ( g ;  1)  denote the value of a,(&) 
just prior to flipping the sign of x I .  Proceed until the 
absolute value of a,(&; I )  is not greater than h ,  and let I ,  
denote the (smallest) index 1 for which this condition is 
met. Set I,, = h if the whole word x was negated. 

set the entries 
xJ to + 1 or - 1 so that the resulting overall sum al(x) = 

C::Ihjx,  is zero. 
We point out that the value of x0 has not been set in 

the above procedure, neither does its value affect a,(&) = 

We now show that the foregoing algorithm will always 
find an index 1 < h for which la,(&; 1)l I h. Indeed, flip- 
ping the signs of every entry in & negates a,(&) with 
respect to its initial value, that is a,($; h )  = - a,(&; -h).  
Thus, there exists an 1 such that a,(&; 1)  . a,(&; 1 + 1) I 0. 
Furthermore, la,(&; 1 + 1) - a , (g ;  111 I 2h for all 1 = 

-h, -h  + l;..,h - 1. Hence, we must reach in step A2 
an index 1,) for which la,(&; Z,)I 5 h. 

Next, we show how to compute the entries xJ for 
j = - 1,1,2,4;.., 2"-2 in step A3 of the algorithm. De- 
note S = a,(&; lo).  First note that the value of a,($; l )  is 
always even. This is due to the fact that j ( x J  - x - ~ )  is 
even for every 0 < j < h, and so is -hx-, .  It remains to 
prove that every even integer S in the range -2"-' I S 
- < 2"- can be written in the form 

Step A3: For j = - 1,1,2,4;.., 2"- 

t 1 - 1  ' cl= - / , ] X I .  

m - 2  

S = -x-1 + X 2 ' 2 ,  
s = o  

where x - , , x , ,  x ~ , . . - , x ~ ~  E a. 
Without loss of generality assume that S is nonnega- 

tive, or else apply the following argument to -S .  The 
binary expansion of an odd integer S + 2"- ' - 1 may be 
written as 

m - 2  
S + 2"-' - 1 = 1 + C bS2'+' 

s = o  

where b, E (0,l)  for s = 0, l;.., m - 2. Substituting 2"- 
- 1 = CT=-(f2' in the expression above, we obtain 

m - 2  
S =  1 + (2b,- 1)2s. 

Step B2: If a,(&; io) = + 1 set x ,  = - 1. Otherwise, 
set x ,  = +l.  

To verify that the condition of step B1 is indeed met for 
some i < h ,  notice that a,(&; i) is odd for every qualifying 
index i and, at each sign flip, the value of a,,(.~; i )  may 
either increase or decrease by 4, or otherwise remain 
unchanged. Flipping the signs of x ,  and x - ,  for all quali- 
fying indices i in the range 1 I i < h will result in negat- 
ing the initial value of a,(g).  Hence the condition of step 
B1 must be met for some i < h. 

Note that Phase B of our algorithm essentially consists 
of one of the algorithms in Knuth's paper [181, applied 
only to those positions in x where the two (reflected) 
halves of g agree. Such a process guarantees that the 
value of a,($) will not be affected by the sign flippings 
performed in Phase B. Thus, at the output of Phase B we 
have a word & E @ 2 h  such that a,,(&) = a,(&) = 0. By 
Lemma 2.2 it therefore follows that g E 9'(2h,  2). 

The final phase of our algorithm may be specified 
recursively as follows. 

Phase C-Encoding the Indices: 
Step Cl:  Apply Phase A and Phase B recursively to 

the binary representations of lo + h and io that were 
computed in steps A2 and B1, respectively. Concatenate 
the resulting word with 5 as the final output of the 
encoder. 

Example: Assume that n = 26, in which case m = 5 
and h = 16. Assume also that the word y E to be 
encoded is given by 

y = ( - - - - + + + + - - - - - + + + - -  

+ - - - +  + + +). 

After step A1 we have 

x = ( - - - -  + + + + - - - - - + + o o o o  
+ o -  - + o -  - - + + + + )  

with a l ( x )  = 64. Applying the procedure of step A2 yields 
l,, = - 14 and we have 

x = ( + + - - + + + + - - - - - + + o o o o  
+ o -  - + o -  - -  + + + + I  

s = o  
with S = a,(&; - 14) = 2 I 16. The binary representation 

Hence we set x - ,  = + 1 and x2' = 1 - 2b, for = 0, of the integer s + 24 - 1 = 17 is given by 1 + Z4. Hence 
l;..,m - 2. (bo ,  b , ,  b,, b,) = (O,O, 0, l), and after step A3 we have 

Having encoded y into a word g that satisfies the 
condition a,(&) = 0, we now apply the second phase of x - = (+ + - - + + + + - - - - - + + + 0 

def 
the algorithm that ensures that ao(&) = E::it lx,  = 0. 

Phase B-Balancing a,@: + + + + - - + - - - -  + + + + )  
B1: an index qualifying if x ,  = x - t .  For with a,(&) = 0 as desired. Now ao(&) = 5. Applying step 

increasing values of qualifying indices i 2 1 flip the signs 
of both x, and x - ~ ,  and let a , (g ; i )  denote the value of 
a,($> just prior to flipping x ,  and x - , .  Proceed until 
la,($; ill = 1, and let io denote the (smallest) index i for 
which this condition is met. 

B1 yields io = 2 with 

x: = (+ + - - + + + + - - - - - + + - 0 

- + + + - - + - - - - + + + + I  
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and a,(&; 2) = 1. Thus at step B2 we set x, = - 1, which 
produces the final encoded word 

, y = ( + + - - + + + + - - - - - + + - - -  - 

+ + + - - + - - - - + + + + )  
with E 9(32,2).  The binary representations of I ,  + h = 

2 and i,) = 2 are now encoded recursively and appended 
to x. 

It is clear from the foregoing description that, pre- 
sented with an arbitrary word y of length n,  our algorithm 
will encode y into a second-order spectral-null word of 
length n + 3% + O(logm), where m is the smallest inte- 
ger such that n + m - 1 I 2"'. Obviously m = O(1og n). 
Hence the redundancy of the second-order spectral-null 
code i!? that is the image of the proposed encoder is given 
by p(%) = 3 log, n + O(log log n). 

V. A GENERAL ENCODING SCHEME 
In this section we present a recursive encoding scheme 

for mapping arbitrary sequences over Q, into spectral-null 
words of order k ,  for any fixed value of k .  We start in 
Section V-A with the description of this encoding scheme 
for the special case k = 2, which illustrates the basic ideas 
involved in our construction. The resulting second-order 
spectral-null codes have higher redundancy than the codes 
introduced in Section IV. However, unlike the construc- 
tion of Section IV, the construction of Section V-A natu- 
rally extend to values of k greater than two. We first 
prove in Section V-B that m,(x) is divisible by k !  for any 
x: E P ( n ,  k )  and, furthermore, that mk(x)  is divisible by 
2 k !  if 9 ( n ,  k + 1) # 0. Then we show how to construct a 
word y E P ( k )  such that m,(y) is any prescribed even 
multipie of k ! .  These results are  employed in Section V-C 
to present a recursive construction of spectral-null codes 
of order k ,  for any fixed k .  Furthermore it is shown in 
Section V-C that the rate of these codes approaches 
c a p ( 9 ( k ) )  = 1 as their length goes to infinity. 

We point out that while the encoding scheme described 
herein is fairly simple to implement for the first few 
values of k (say, k I 4), it becomes impractical as the 
order of the null increases. Thus, for large values of k our 
encoder is best regarded as yet another way to prove that 
c a p ( P ( k ) )  = 1. Such a proof differs from the existence 
result of Theorem 2.7, in the sense that it provides an 
explicit encoder from Q," into 9 ( k )  that achieves the 
capacity. Unlike the enumerative encoding scheme, the 
proposed encoder features complexity that is polynomial 
in both n and k (although n has to tend to infinity 
nonuniformly with respect to k in order for the rate to 
approach unity). 

A. An Altemative Encoder for Second-Order 
Spectral-Null Codes 

Let c be the word over Q, which is to be encoded into 
P(2) ,  and further assume that the length of r; is n = n1n2,  
where n1 is odd. We first partition this word as c = ( g ,  I 
e 2  I ... I e,,), where g , , ~ ,  - - . , g n 2  E and then ex- 

tend each E, by an extra coordinate fixed at + 1 to obtain 
= (+ I e,)  of length n1 + 1. Subsequently, each g,' is 

encoded into a word 5, E P ( n ,  + 1 + r ,  1), such that the 
first position in each x, remains + 1. This may be accom- 
plished in a number of ways, To be specific, we assume 
that one of the algorithms of Knuth [18] is employed, in 
which case x, = (g: *g,la,), where . stands for bit-by-bit 
multiplication, 

for some index j such that g: * g j  ~ 9 ' ( n ,  + 1,1), and 
g, ~ 9 ( r ,  1) is a representation of j .  Note that in this 
case, r = log, nI  + O(1). 

Now set y ,  = x,. For i = 2,3,... , n2 define the word y, as 
follows: 

- 

Thus yn2 is essentially a concatenation of the words 
x, ,x,; . . ,x,~,  with some of these words being negated. 
The first position in each such word indicates whether it 
has been negated or not. Note that the first position in yn2 
remains fixed at + l .  Clearly m,(yn2) - = 0. It is also clear 
from Lemma 2.2 that 

m,(y,,> - -  = m,(x,)  -t m,(x,) f ml(xnz) .  (21) 

Furthermore, the simple polarity inversion technique of 
(20) ensures that the terms in (21) always add up in such a 
way that Im,(y,,>l I max,,,sn21m,(x,)l I ( n ,  + 1 + 
r),/4, where t h e  second equality follows by (18). We shall 
assume that n,  + 1 + r = O(mod4), in which case m,(yn2> 
must be even. In order to complete the encoding we need 
a word _w ~ 9 ( 1 )  with m,(_w) = -ml(y,,). Such a word 
always exists, and has length at mos? ( n ,  + 1 + r )  as 
is shown in the following lemma. 

Lemma 5.1: Let n = 0 (mod 4). Then for any even inte- 
ger t with It1 I n2/4, there exists a word _w E P h ,  1) with 

Proofi Let _w = ( w 1 , w 2 ; . . , w , )  and assume that ei- 
ther ( -  + ) or (+ - ) is contained in _w at position j .  
We may then define F,_w = ( w , ,  wZ;.., -w,, -w,+ ,  
w,), where the effect of the flip operator F, amounts to 
interchanging the positions of + and - in the coordi- 
nates j and j + 1. Now set E, = ( -  - - - + + ..* 
+ + ) E y ( n ,  I). Clearly m,(wo) = 0, m,(_w,) = n2/4, 
and ( -  + ) is contained in _w, at position F Z / ~ .  For i = 

1,2;.., n2/4 define 121, = <_wlPl, where j is the smallest 
index such that ( -  + ) is contained in _w,- at position j .  
It is easy to see that as i varies from 0 to n2/4, the first 
moment of _w, takes on all the even values in the range 

Using the algorithm of Lemma 5.1, we can readily 
construct a word E Y ( n ,  + 1 + r ,  1) with 

ml(_w) = t .  

+n2/4 to -n2/4. U 
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ml(_w) = -ml(yn2).  The output of the encoder then con- 
sists of the word y = (_yn21_w>, which clearly satisfies m,(_y) 

Let R(k5') denote the rate of the second-order spectral- 
null code 5i?' consisting of all the words of length ( n ,  + 
l X n ,  + r + 1) obtained using this construction. Then ob- 
viously, 

= m , ( y )  = 0. - 

Since r approaches log n1 as n ,  - w, it is easy to see that 
limn,,n,+J('iF) = 1 .  We note that the optimal choice of 
parameters n,,n,  in this case is n2 = n,/logn,,  which 
yields p('iF) = O ( 4 Z ) .  

B. Construction of the Balancing Sequence 
It is evident that in order to extend the construction of 

the previous section beyond k = 2, we need the analogue 
of Lemma 5.1 for arbitrary values of k > 2. More specifi- 
cally, let x,, x,, 1.. , x, E Y ( n ,  k )  and let S = m,(x,) k 
m,(x,) k *.. * mk(x, )  with IS1 I max, ,< ,Im,(x,)l. Then 
we have to be able to construct a word _w ~ 9 ( k ) ,  whose 
length does not depend on s, such that m k ( ~ )  = S. To this 
end we proceed as follows. First we show that k!lS. 
Furthermore, if Y ( n s ,  k + 1 )  # 0 then 2k!lS. Then we 
show how to construct a word _w E Y ( k ) ,  such that m,(_w) 
is any prescribed multiple of 2 k ! .  

Lemma 5.2: Let x E Y ( ~ ,  k ) .  Then m k ( g )  is divisible 
by k ! .  

Proofi Let D(n, k + 1) be the "systematic" parity- 
check matrix for Y ( n ,  k + 1) as in Lemma 2.3 and let 
B(k + 1) be the inverse of H ( k  + 1, k + 11, as defined in 
Lemma 2.3. Also, for any x E Q n  let ~ ( x )  = (so(&), 

s,(~);.., sk(x))' d"fD(r2, k + 1 ) ~ ' .  Now, if x E Y ( n ,  k )  then 
obviously H ( n ,  k + 1 ) ~ '  = (0, O;.., 0, m,(x))'. Hence we 
have 

_ s ( & )  = D ( n ,  k + 1 ) ~ '  = B ( k  + l ) H ( n ,  k + 1 ) ~ '  

= B ( k  + 1) (0 ,  O;.., 0, m , ( ~ ) ) ' .  

Thus, s , ( & )  = b,,,m,(x) = mk(&) /k!  where the second 
equality follows from (7). Yet, it was shown in Lemma 2.3 
that D(n,  k + 1 )  is an integer matrix and, hence, s k ( x )  
must be an integer. It follows that k !  divides m k ( & )  for all 

Lemma 5.3: If Y ( n ,  k + 1 )  # 0, then m,(x) is divisi- 
ble by 2k!  for all x E P ( n ,  k ) .  

Proofi As we have seen, if x E 9 ( n ,  k )  then s k ( x )  = 

m , ( x ) / k ! .  On the other hand, s k ( y )  = 0 for any y E 

P ( n ,  k + 1 ) .  Since x = y (mod 2)  for-all g, y E On it-fol- 
lows that sk (&)  = s,(yF= O(mod2), provided P ( n ,  k + 
1) # 0. In other words, m , ( x ) / k !  = s k ( x )  -= O(mod2), 

0 
We point out that there are examples of words g E 

Y ( n ,  k )  such that m,(x) is divisible by k !  but not by 2 k ! ,  
where by Lemma 5.3 we must have 9 ( n ,  k + 1 )  = 0. 
One such example is the word = (- + ) E P ( 2 , l )  

x E Y ( n ,  k ) .  o 

and therefore 2 k !  must divide mk(8).  

- 
with m,(/dl)) = 1. For a less trivial example, take the 
word g ~ 9 ' ( 2 0 , 3 )  with m,(x) = 6, obtained by concate- 
nating + - - + - + - + + + with the complement of its 
reflection. Similar examples exist for k = 3 and n = 28. 
In general, however, it can be verified by induction on k 
that m,( F ( k ) )  = ( -  l ) k 2 k ( k - 1 ) / 2 k !  and, hence, mk( p ( k ) )  
is divisible by 2 k !  for all k > 1. In fact, for k > 3, we do 
not know of any word x ~ 9 ( n ,  k )  for which m,(x) is an 
odd multiple of k ! .  On the other hand, it is relatively easy 
to construct a series of temaly words g,, g2,-.*, g,, over 
the alphabet { - 1,0, l } ,  such that m,&) = 0 for all i = 

0, l;.., k - 1 and m k ( g k )  is an odd multiple of k !  for all 
k > 1. Set g, = ( -  + ) and for k = 1 ,2 ; . . ,  define 

Using Lemma 2.2, it is easy to see that mi(gk)  = 0 for all 
i = 0, l , . . . ,  k - 1 and 

(23 )  

where ! ( E , )  is the length of U,. Furthermore, we have 

4 . 2 ,  + ( - l ) k + l  1 - ( - 0 ,  
. (24) 

2 
+ 

3 e(g,> = 

Substituting this into (23) and solving the recursion, we 
obtain 

the empty product being 1 by convention. It is easy to see 
that m,(g,) is indeed an odd multiple of k ! .  

We now employ the series of ternary words g l ,  U,;.., g k  

in order to construct a series of (binary) words _w1,_w2;", 
E,, such that _wk E Y ( k )  and mk(_w) = 2 k ! .  

Lemma 5.4: For any k 2 1, there exists a word _w, E 
9 ( k )  with m,(_w,) = 2 k ! .  

Proof For k = 1 ,2  the lemma follows by consider- 
ing _wl = (- + - + ) ~ 5 @ ( 4 , 1 )  and w2 = (+ - - + ) E 

5@(4,2). As an induction hypothesis, assume the existence 
of a word wk- I E Y ( k  - 1 )  such that m k -  , ( _ w k -  = 

2(k - l)!. We now construct the following ternary word 

1 1' = ..' gk-1  - U,-, ... - Fk-1 ' * *  w k - 1  "' 

r r - L  j ,  3 2  33 34 

meaning that E,-, and -E,+,, given by (221, are con- 
tained in 4' starting at positions j ,  and j,, while 
and are contained in g starting at positions j ,  and 
j,. Let _e be an arbitrary ternary word, such that e, = 0 if 
and only if U ,  # 0. Note that kg + g are both words over 
a. Hence by Lemma 2.5 there exists a word y E P ( k )  
such that + g is a prefix of y .  Consider the binary word 

r 

- 
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- w of length /'(E) = / ' ( y )  obtained from y by changing 
the prefix g + _e to --E-+ _e. From the construction of _w 
and y it follows that 

i / . \  

Since all the moments of E,- , and U,-, vanish up to 
order k - 2, mi(_w) is obviously 0 for i = 0, l,..., k - 2. 
Furthermore, substituting i = k - 1 into the expression 
above we obtain m,-,(y) = 0 and hence _w E Y ( k ) .  A 
similar argument now shows that 

. m k - , ( g k p 1 )  = 2k!-26,  - 2k!* W(k - 1) .  6, 

where W(k) is given by (251, while 6, = j ,  - j ,  and 6, = 

j ,  - j , .  W.1.o.g. we may assume that W(k - 1) is positive, 
otherwise exchange the roles of g k P l  and - g k - ,  in the 
foregoing construction. Clearly 6, and 6, could not be 
less than the lengths of g k - ,  and E,-,, respectively, but 
otherwise are arbitrary. Thus we may take 6, to be the 
smallest odd integer > f ( g , _ , ) ,  such that W(k - 116, > 
2/(_w,- ,). Since both 6, and W(k - 1) are odd, we may 
furthermore take 26, = W(k - 116, + 1. In this case we 
have m,(_w) = 2k! and thereby the lemma is proved. 0 

It is clear from (24) and (25) that / ( g k )  = 0 ( 2 k >  and 
W(k) = 0 ( 2 k ' k +  ')/'I. Substituting this in the construction 
of Lemma 5.4 we see that /(E,) = O ( f ( _ ~ , _ , ) 2 ~ )  = 

2(1/2)k'+0(k! Hence we have the following lemma. 
Lemma 5.5: For any k 2 1 and any integer t ,  there 

exists a word _w E Y ( k )  of length at most t . 2 ( 1 / 2 ) k z + 0 ( k )  
with m k ( y )  = 2tk!. 

Proog In the construction of Lemma 5.4, let 6, 
be odd if t is odd and even otherwise, and let 26, = 

W(k - 1)6, + t .  Take 6 ,  = t (mod 2) and 26, = 

W(k - 116, + t in the construction of Lemma 5.4. 0 
Lemma 5.5 is the required generalization of Lemma 

5.1. 

C. An Encoder for kth-Order Spectral-Null Codes 
It is now clear how the encoder of Section V-A may be 

extended for null orders greater than two. Let H k )  
denote such a general encoder from a" into 9Tk).  Then 
g ( k )  may be specified recursively as follows. Assume that 
the length of the information word to be encoded is 
given by n = n k n k P l  1 . .  n,, and denote m = n /nk  = 

nk-,nk-2... n,. First, is partitioned into nk blocks 
g, ,  g,;-., un4 of length m. Subsequently, each c, is mapped 
into a word g, ~ 9 ( m  + r,  k - 11, where r is the redun- 
dancy associated with the encoder 8 ( k  - 1) applied to 
words of length m. The words 3, are then concatenated, 

and possibly negated, to obtain the series y , ,  y ,  ;.., ynl 
where y ,  = & I  and 

- -  

This ensures that 

Clearly, ynk ~ P ( n , ( m  + r ) ,  k - 1) and, therefore, Lem- 
ma 5.3 implies that m,(ynk)  is divisible by 2k! provided 
9'(nk(m + r ) ,  k) # 0. In- view of Lemma 2.5, to satisfy 
the latter condition it would suffice to choose any value of 
nk that is divisible by 2 k .  Hence, using Lemma 5.5 we may 
construct a word y ,  ~ S 7 " ( k  - 1) of length 

1 (26) i 2k! 

such that mk(wk)  = -m,(ynk). The output of the encoder 
8 ( k )  then consists of a word y = (yn,(_wk) E 9 ( k ) .  

Let i5' denote the kth-order spectral-null code at the 
output of @k), which is the set of all words obtained by 
applying 8 ( k )  to Q". Then clearly 

( m  + r ) k + l .  2 ( 1 / 2 ) k 2 + 0 ( k )  

/(E,> = 0 

p(i5') =/(E,) f n k / ( _ w k - , )  + nknk-l/(wk-,) + "' 

k k - 1 -  1 

= x / ( F l )  n nk-1. 
i =  1 j =  0 

The rate of 527 is given by 

n 

and we have 

Note that, in view of (261, the value of /(E,) depends on 
n,, n,;.., n,- but not on n,. Hence by taking n, suffi- 
ciently large for all i = 1,2;.., k we can make each of the 
k terms in (27) as close to zero as desired. Therefore, 
lim supn,, nz;: "i ~ Ai??) = 1, as claimed. 

APPENDIX 

This Appendix establishes the fact that (19) does not have 
nontrivial integer solutions, which was employed in Section I11 
to show that the number of sign-changes in a word x E 9 ( n ,  3) 
is at least 5 .  

Lemma A.l:  The equation 

p4 + 8q(q  - p > ,  = r 2  

does not have integer solutions in the range 0 < p < q. 
Proof By clearing common factors, we may assume without 

loss of generality that gcd(p, q )  = 1, for if a prime b divides 
both p and q then b2 must divide r .  We now verify that p must 
be odd. Indeed, if p were even then q would have to be odd and 
r would be divisible by 4. Reducing (19) modulo 16, we would 
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then find that the left-hand side is congruent to 8 whereas the 
right-hand side is congruent to 0, which is a contradiction. 
Hence, we conclude that p is odd, and therefore so is r .  This 
makes it possible to rewrite (19) as 

2q(q - P I 3  = 5.77 
where 

r + p 2  r - p 2  
and 77 = - 5 =  - 

2 2 

and both 5 and 77 are positive integers. We thus have 

Writing p = q - U for a positive integer a, we can transform 
(28) into the following quadratic equation in q: 

542 - 2a( 5 - a2)q  - 5( 5 - a2> = 0. (29) 

The discriminant A of (29) is given by 

A = 4a2(5 - a2I2  + 4 t 2 ( 5  - a 2 )  

= 4(5 - a 2 ) ( t 2  + U 4  - a 4 )  

=4( t3 -22a45+U6)  

The solution q for (29) is an integer. Therefore, 5 and a must 
be such that A = 4x2 for some integer x, namely, 

( 5 -  a ( 5 2  +.%- a 4 )  = 5 3  - 2a45+ = x 2 .  (30) 

To verify whether such integers 5 and a exist, we can assume 
without loss of generality that gcd(a, 5 )  = 1. Otherwise, if a 
prime b divides both 5 and a then b3 divides x 2  in view of (30). 
Thus, x is divisible by b2,  which implies by (30) that b4 divides 
t3. Hence, 5 is divisible by b2 and so x 2  is divisible by b6. We 
can therefore substitute 5’ = 5/b2, a’ = a / b ,  and x‘ = x/b3 
into (30) and then clear the common factor b’. 

Next we claim that 5 - a2 is positive. Otherwise, we could 
multiply both sides of 

a 2 ( 5  - a 2 )  I t 2  + u s  - a4 

by the nonpositive value 4( 5 - a’) to obtain 

(2a( 5 - a2)I2 = 4a2( 5 - a2I2  

2 4( 5 - a2)(  t 2  + - a4> = A .  

This, in turn, would imply 12a( 5 - a2)1 2 6. Solving (29) for q, 
we would thus have 

which is a contradiction. 
I t  is easy to see that gcd ( a ,  5 )  = 1 also implies 

gcd(5 - a 2 ,  5 + a 2  - a4)  = 1. Combining this with (30) and 
with the fact that 5 - a2 is positive, we conclude that there must 

be an integer factorization x = y . z such that 

5 - a2  = y 2  and l2 + a 2  - a4 = z 2 .  (31) 

Eliminating 5 from (31), we obtain the equation 

a4 + 3a2y2 + y4 = z2 (32) 

where both a and y must be nonzero to avoid the trivial 
solutions p = q or q = 0. It is known that (32) has no integer 
solutions for nonzero a and y .  See [23, pp. 19-22] for the 
mention of this result and [25, p. 1151 for its proof. This com- 
pletes the proof that (19) has no integer solutions in the range 
0 < p < q .  0 
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