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Improved Bit-Stuffing Bounds on Two-Dimensional
Constraints
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Abstract—We derive lower bounds on the capacity of certain
two-dimensional (2-D) constraints by considering bounds on the
entropy of measures induced by bit-stuffing encoders. A more de-
tailed analysis of a previously proposed bit-stuffing encoder for
( )-runlength-limited (RLL) constraints on the square lattice
yields improved lower bounds on the capacity for all 2. This
encoding approach is extended to ( )-RLL constraints on the
hexagonal lattice, and a similar analysis yields lower bounds on the
capacity for 2. For the hexagonal (1 )-RLL constraint, the
exact coding ratio of the bit-stuffing encoder is calculated and is
shown to be within 0.5% of the (known) capacity. Finally, a lower
bound is presented on the coding ratio of a bit-stuffing encoder for
the constraint on the square lattice where each bit is equal to at
least one of its four closest neighbors, thereby providing a lower
bound on the capacity of this constraint.

Index Terms—Bit-stuffing encoder, hexagonal constraint,
runlength-limited (RLL) constraints, two-dimensional (2-D)
constraints.

I. INTRODUCTION

MANY data storage systems, such as those based upon
magnetic and optical recording technology, require the

use of constrained modulation codes. These codes transform, in
a lossless manner, streams of arbitrary binary data into binary
sequences that satisfy certain prescribed constraints. The set of
words from which the code sequences may be drawn is referred
to as a constrained system, or simply a constraint.

Historically, many digital recording applications have re-
quired that the binary recorded sequences belong to a -
runlength-limited (RLL) constraint. The parameters rep-
resent, respectively, the minimum and maximum admissible
number of ’s separating consecutive ’s in any allowable
sequence. With the advent of page-oriented storage tech-
nologies, such as holographic storage, interest in constrained
arrays in two or more dimensions has arisen; see Brady and
Psaltis [5], Heanue, Bashaw, and Hesselink [11], [12], and
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Psaltis and Mok [25]. Among the constraints of theoretical
and possible practical interest are two-dimensional (2-D)

-RLL constraints. When defined over the square lattice,
each such constraint consists of all binary arrays in which the
one-dimensional (1-D) -RLL constraint is satisfied along
each row and column. In both one and two dimensions, the
relevant range of parameters is .

Runlength constraints can be defined also over the hexag-
onal lattice [1]. Using a simple transformation from the hexag-
onal lattice into the square lattice [17], one can define the 2-D

-RLL hexagonal constraint as the set of all binary arrays in
which the 1-D -RLL constraint is satisfied along each row,
each column, and each “northeast-to-southwest” (i.e., upper-
right to lower-left) diagonal.

Another example is the 2-D “no isolated bits” constraint (in
short, the n.i.b. constraint), which consists of all binary arrays
that contain neither the pattern

nor its complement. Observe that the n.i.b. constraint is the nat-
ural generalization to two dimensions of the 1-D constraint that
consists of all binary sequences in which every bit—except pos-
sibly for the first and last bits—is equal to at least one of its
adjacent bits; this constraint, in turn, can be described as a pre-
coding of the 1-D -RLL constraint; see [20, Section 1].

The n.i.b. constraint (and generalizations thereof) may be
found in future optical disks. Attempts to increase the recording
density have been made recently by exploiting the fact that the
recording device is typically a surface: the recorded data is
regarded as 2-D, as opposed to the track-oriented 1-D recording
model. When recording on the disk, “pits” and “lands” on the
recording surface must be large enough so that they can be
detected from the reflection beam [24, Ch. 3]. This, in turn,
dictates that the recorded data belongs to the n.i.b. constraint.
See also Psaltis et al. [26] and Weeks and Blahut [34].

In general, a 2-D constraint over an alphabet is defined
by two state-labeled finite directed graphs, and

, with the same set of states and the same
state labeling . The constraint consists of all finite
rectangular arrays over for which one can associate
arrays over that satisfy the following three
conditions: a) for all and ; b) each row in
is a path in ; and c) each column in is a path in .
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Fig. 1. Parallelogram � .

The -RLL constraints on the square and hexagonal lat-
tices will be denoted by and respectively, while the
n.i.b. constraint will be denoted by .

Let be a finite subset of and let be a finite alphabet.
A -configuration is a mapping . Given a 2-D con-
straint over , we denote by the set of all -configura-
tions for which there exists an array such that

for every

that is, the images of at the elements can be ex-
tended to an array in .

For a -configuration , we denote by the value of at
location . Given two finite subsets of and
a -configuration , we denote by the -configuration

which is the restriction of to ; namely, for
every .

The subsets considered in this work will mainly be
rectangles

or parallelograms

(1)

(see Fig. 1).
The capacity of the 2-D constraint is defined by

i.e., it measures the growth rate of the number of arrays
in . By subadditivity, the limit indeed exists (see [6], [14], [15],
[21], [30]). It is easy to see that we also have

One can readily verify that , where
stands for the capacity of the 1-D -RLL con-

straint [20, p. 1672]. However, the corresponding 1- and 2-D
capacities may be quite different. For example [2], the capacity
of the 1-D (1,2)-RLL constraint satisfies ,
whereas the capacity of the corresponding 2-D constraint is

. This result has been generalized to a com-
plete characterization of the -RLL constraints in two di-
mensions and higher with zero capacity [13], [15]. Specifically,

for every , the capacity of the -dimensional -RLL
constraint is zero if and only if and . Par-
tial characterizations exist also when the horizontal and vertical
runlength constraints are not necessarily the same [16].

The determination of whether for a given 2-D
constraint is known to be an undecidable problem [4], [27].
As for the special case of 2-D -RLL constraints, no ef-
ficient algorithms are known for approximating their capacity.
The case (or equivalently, ) has
arisen in various forms in statistical mechanics and combina-
torics, as well as in the information-theoretic context. Engel [9]
and Calkin and Wilf [7] used an adjacency matrix method to
derive a technique for obtaining close lower and upper bounds
for this constraint. Using this technique, it has been shown that

agrees with up to the first nine dec-
imal places [22], [34].

Kato and Zeger [15] used the bounds on to de-
rive lower bounds on , for , and
for . (They noted that Talyansky [32] and Talyansky, et
al. [33] described a construction that yields a lower bound on

that is stronger than the Kato–Zeger bound for all
.) The lower bounds on were then used to de-

rive lower bounds on for the remaining cases where
. Upper bounds on and were

also derived [15]. Together with the lower bounds, they imply
that, as grows, converges to exactly at the rate

, and they give asymptotic bounds on how fast, as
grows, converges to .

Siegel and Wolf [31] (see also [28]) used a different approach
to derive lower bounds on , for . They com-
puted a simple lower bound on the average coding ratio of a
variable-rate, bit-stuffing encoding algorithm that creates 2-D

-RLL constrained arrays from a 1-D sequence produced
by a possibly biased binary source. These lower bounds were
then optimized with respect to the 1-D binary source proba-
bility. We review the technique of Siegel and Wolf in Section II
and fill in some details of the proof that were missing from [28]
and [31]. The bit-stuffing approach is closely related to one in-
troduced by Lee [18] and Bender and Wolf [3] for 1-D, RLL,
charge-constrained sequences [23]. Roth, Siegel, and
Wolf [29] have recently improved the results of [31] for the con-
straint . The improvement has been obtained by applying
a more generalized model of a bit-stuffing encoder and by a re-
finement of the analysis; the coding ratio thus obtained is ap-
proximately , i.e., only 0.1% below .

In Section III, we present improved lower bounds on the
coding ratio of a bit-stuffing encoder for . Then, in Sec-
tion IV, we adapt the bit-stuffing encoder to the and use
a similar analysis to derive lower bounds on its coding ratio,
for . For , we compute the exact coding ratio of the
bit-stuffing encoder using results in [29] and we show that it
lies within 0.5% of the (known) capacity.

Finally, in Section V, we present a bit-stuffing coding scheme
for . We show that the encoding ratio of this scheme—and
hence the value —is at least ; this value is
fairly close to our empirical estimate on the true
coding ratio of this scheme (yet is believed to be
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bigger; see the discussion at the end of Section V). In compar-
ison, Ashley and Marcus estimated in [2] the value to
be around .

As was the case in [29], the bit-stuffing encoders that we con-
sider induce probability measures on the corresponding
constraints. A lower bound on the coding ratio is then obtained
by computing a lower bound on the (measure-theoretic) entropy
of

(2)

in the limit when both and go to infinity. Recall, how-
ever, that the analysis of the encoder in [29] was based on the
very strong Markovian stationary properties of the measure in-
duced by the encoder upon . Unfortunately, such properties
do not seem to hold in general; in particular, they do not hold
for the measures induced by the encoders discussed here.
Nevertheless, we can still derive lower bounds on the coding
ratio based upon much weaker global properties of . (These
properties support the “stationarity” assumption underlying the
analysis in [31].) Specifically, we obtain lower bounds as a func-
tion of expected values of the number of occurrences of certain
events in the generated outputs for the constraints considered.
By further establishing relations between those expected values,
we have ended up with numerical lower bounds.

As an alternative approach, one can guarantee a “quasi-sta-
tionary” induced measure by a proper initialization of the
boundary values in the generated output. We discuss this in
Section VI.

II. BIT-STUFFING LOWER BOUNDS ON

We describe next a bit-stuffing encoder that maps uncon-
strained data into , where is the parallelo-
gram defined in (1) and shown in Fig. 1.

We will use the following terms. Row in consists of all
locations such that . Diagonal consists
of all locations such that . The first rows
and diagonals in form its boundary of width and will
be denoted by ; that is,

or

The bit-stuffing encoder first applies a distribution trans-
former that bijectively converts the binary data sequence into
a sequence of statistically independent bits which is -biased
for some real : the probability of a equals and the
probability of a equals . This conversion occurs at a rate
penalty of , where
is the binary entropy function. The purpose of creating a -bi-
ased sequence will be to write more ’s than ’s. The optimal
value of will be chosen later. We now write the -biased
sequence (without further coding) down successive diagonals,
skipping all positions that contain “stuffed” ’s, which arise
in a manner which will now be explained. Whenever a in
the -biased source sequence is written, ’s are inserted—or
“stuffed”—in the positions to the right of it and in the
positions below it. It will sometimes occur that a has already

been stuffed in some of the positions to the right of the or
(when ) below it, in which case it is not necessary to stuff
another . In writing the -biased sequence down diagonals,
any position already filled by a previously stuffed is skipped.

To define the encoding process also for the boundary of
of width , we assume identically-zero entries at all locations

such that or .
(We mention that the coding can alternatively be done into

elements of , where entries are generated row by
row or column by column.)

Decoding the array is accomplished by reading down diag-
onals in a similar manner. The bits of the -biased sequence
are read successively from the array, with certain bits being
ignored. Specifically, whenever a is read from the array, the
stuffed ’s to the right of it and below it are normally deleted. It
may occur that stuffed ’s to the right of the or below it have
already been deleted, in which case only the remaining stuffed

’s to the right and the stuffed ’s below it are deleted. This pro-
cedure reproduces the encoded -biased sequence. The original
binary data is then obtained from the -biased stream by the in-
verse of the mapping used to create the -biased stream of bits.

The bit-stuffing encoder induces a probability measure on
. We denote this measure by and

we have

(3)

where the function is defined by

if
otherwise

and

and is assumed to be zero whenever or .
Given a random element that is generated

by the bit-stuffing encoder (according to the probability measure
), denote by the event “ ” (this event never

occurs when or ) and let the event be
defined for by

namely, stands for the event, “location in is a stuffed
as a result of one of the locations above being equal to
.” Similarly, define

and

where the overbar stands for complementation; that is, is the
event that location in is filled by a bit of the -biased
sequence. We denote by (respectively, and ) the random
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variable that stands for the number of indexes
where the event (respectively, and ) occurs. Clearly

and

The following lemma easily follows from (2) and (3).

Lemma 2.1:

Lemma 2.2:

Proof: For every

and

and

Therefore, for every

and

Summing over all we have

The inequality is obtained in a similar
manner.

Lemma 2.3: For and any

Proof: Taking expectations of both sides of the inequality

we obtain by Lemma 2.2

TABLE I
LOWER BOUNDS ON THE RATE OF A BIT-STUFFING ENCODER FOR

and so

The proof now follows from Lemma 2.1.

It was shown in [28], [31] that when ranging over ,
the maximum value of equals the capacity of
the 1-D constraint . Thus, we obtain the following lower
bound.

Proposition 2.4: For

Table I shows the lower bound of Proposition 2.4 for small
values of . Also shown are lower bounds computed numeri-
cally using [15, Theorems 5 and 6].

III. IMPROVED BOUNDS FOR

Our improvement on the results of Section II will be ob-
tained by accounting for some of the patterns that give rise to
an “overlap” of stuffed ’s in the encoded output.

Let denote the probability measure induced on
by the bit-stuffing encoder of Section II. Also, for

a random element , we let the notations ,
, , , and be as in Section II.

Lemma 3.1: For a random element and
an index , let denote an event that is a function
of the random variables , where or . Then

Proof: Define the sets

and and

and

or

In Fig. 2, the set corresponds to the lattice points marked
with dots (filled or unfilled), while corresponds to the
subset of marked with filled dots. The following two facts
follow from the particular encoding process applied by the
bit-stuffing algorithm.

1. The -configuration (which is the restriction
of to ) completely determines whether the event

occurs; so, we can regard as the set of all
-configurations that imply .

2. Given the configuration , the entries in
(corresponding to the locations marked with un-

filled dots in Fig. 2) are statistically independent of the
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Fig. 2. Subsets U and V in � .

event (regardless of whether any of those values is
encoded prior to location ).

Therefore,

where the first equality follows from Fact 1 and the second
equality from Fact 2.

Let and be subsets of defined by

(4)

and

and

respectively, and let for denote the event

Fig. 3(a) depicts the event for . In the figure, the
entries indexed by are marked by ’s and the entries
indexed by are marked by thick dots.

Lemma 3.2: For

Proof: We need to show that

(5)

The event in the left-hand side of (5) is shown in
Fig. 3(b) for ; the event in the right-hand side of (5) states

Fig. 3. (a) Event S and (b) event B \ S for d = 3.

Fig. 4. Patterns for the proof of Lemma 3.2 for d = 3.

that location contains a -biased bit, while all locations
are stuffed with ’s.

It is easy to see that is a subset of the event in the
right-hand side of (5). Next we show the inclusion in the other
direction.

Let be an array that belongs to the event in the right-hand
side of (5). In particular, contains ’s in all locations that are
indexed by the rectangle

and

as shown in Fig. 4(a) for the case (the thick dots, which
represent the entries that are indexed by , are all ). The
entry can be stuffed only if . This, in
turn, implies that for all , thereby
reaching the pattern shown in Fig. 4(b) for the case .

Next we turn to location . Since
for all and , the entry

can be stuffed only if ; this brings us
to the pattern in Fig. 4(c).

We conclude that for all locations within the
rectangle . The proof now reiterates

for this shifted rectangle.

In the sequel, we assume some fixed linear ordering on the
elements of that satisfies the following condition: if
precedes (denoted ), then or .
For example, the standard lexicographic ordering

or and

satisfies this condition.
Hereafter, the notation stands for a real expression

such that

and stands for an expression such that
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Fig. 5. Neighborhood of an entry set to 1 for the case d = 3.

Proposition 3.3:

Proof: Consider a portion of in the neighborhood of an
index where , as shown in Fig. 5
for the case . Clearly, the value requires that the
entries indexed by be stuffed with ’s (and so be
the entries indexed by ). Now, entries indexed by

may be stuffed with ’s also because of some other
entries in that are set to ; yet, the latter entries are limited to
the locations indexed by . Our improvement of the lower
bound on will be obtained by taking into account such
a “double-stuffing.”

As a first step, we bound from below the probability of the
event . Denote by the smallest
element (with respect to the ordering ) in the set de-
fined by (4). The probability of the event can be written as
a product of terms

The first term in the right-hand side of the preceding equation
is given by

and for any other term therein we have

where the last step follows from Lemma 3.1. Hence,

(6)

and so

(7)

We now turn to bounding from below the probability of the
“double-stuffing” event

namely, the event of having at location and at one or
more of the locations that are indexed by . Since

it follows that

(8)

where the inequality follows from (7).
As our next step, we show that

(9)

By Lemma 3.2 and de Morgan laws [19, Sec. 1.2] we have

So, we can partition the event into disjoint events
that are defined inductively for successive in-

dexes (according to the ordering ) as follows:

To prove (9), it suffices to show that

And, indeed, for every we have

where the penultimate equality follows from Lemma 3.1. This
proves (9).

Combining (8) and (9) we thus obtain

Summing the latter inequality over all
yields

(10)

with standing for the number of locations
where the event occurs.

We now recall that

Taking expectations, by Lemma 2.2 and (10) we obtain
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Hence,

and the result follows from Lemma 2.1.

The probability that maximizes the coding ratio can be
found numerically. Table I presents the improved bit-stuffing
lower bounds for .

For small ’s, we can further improve the bound by an even
more precise enumeration of patterns that cause an “overlap.”
The numerical results are in the right column of Table I, and the
detailed derivation can be found in the Appendix.

IV. BIT-STUFFING BOUNDS FOR

The constraint consists of all binary arrays in which all
rows, columns, and (northeast-to-southwest) diagonals belong
to the 1-D -RLL constraint; see [1], [17].

A bit-stuffing encoder that maps unconstrained data into
(or into ) operates similarly to that

used for . When a -biased bit is written into (or
), we should stuff ’s into the positions to the right, the

positions below, and the positions along the diagonal below
the bit .

We note that the bit-stuffing encoder for is a special
case of the encoder analyzed in [29]. We can apply the result in
[29] directly to compute the maximum coding ratio of .
Baxter [1] has derived the exact value of , which,
to nine decimal places, is . The maximum coding
ratio of the bit-stuffing encoder is only 0.5% below the capacity.

For , we can obtain a simple lower bound on the rate
of a bit-stuffing encoder for following a similar proce-
dure as in Section II. Specifically, denote by
the probability measure induced by the bit-stuffing encoder on

; the next lemma is then a counterpart of Lemma
2.3 for the constraint .

Lemma 4.1: For and any

We can further improve the lower bound by accounting for
the “double-stuffing” event. Let the notations , , ,
be as in Section II. Similarly, define

and

That is, is the event that location is filled by a bit
of the -biased sequence on a hexagonal lattice. We also define

Fig. 6. Event B and the region � (i; j) for d = 3.

the region at the bottom of the page. Fig. 6 depicts the
event for , and the entries indexed by are
marked in the figure by thick dots.

The following lemma plays the role of Lemma 3.2 for the
constraint .

Lemma 4.2: For

Proof: We will prove the following equivalent relation-
ship:

Let be an array that belongs to the left-hand side of the above
equation. Region in should be all stuffed ’s. Let
us consider entry . It can be stuffed either due to the
event or the event .

If is stuffed due to , then
can only be stuffed due to , as shown in Fig. 7(a).
However, cannot be stuffed in this pattern. On the
other hand, if is stuffed due to , then

cannot be stuffed, as shown in Fig. 7(b). Therefore,
we conclude that

Proposition 4.3:

Proof: Define the “double-stuffing” event

It is clear by definition that and so

(compare with (8)). Applying Lemma 4.2 and proceeding as in
the proof of Proposition 3.3, we can obtain the following coun-
terpart of (9):

and
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Fig. 7. Patterns for the proof of Lemma 4.2 for d = 3.

Hence,

and by summing the latter inequality over all
we obtain

with (respectively, ) standing for the number of loca-
tions where the event (respectively, )
occurs (compare with (10)). The result is finally deduced by fol-
lowing along the remaining lines of the proof of Proposition 3.3.

The probability that maximizes the coding ratio is found
numerically and the resulting lower bounds on the capacity are
summarized in Table II for . Also shown in the
table are the numerically computed values of the lower bounds
presented in [17].

As in the case of the constraint , we can tighten the lower
bound by enumerating certain patterns that cause an overlap of
stuffed bits. The numerical result for is shown in Table II,
and details of the derivation are presented in the Appendix.

V. BIT-STUFFING BOUNDS FOR

The description of our bit-stuffing encoder for makes use
of the following definitions.

Let be a random element in . For ,
denote by the event and by the event

. We hereafter assume that whenever
or ; hence, for (respectively, ),

the event (respectively, ) holds for each element
.

Also define

and

The events and correspond to the patterns in Fig. 8(a)
and (b), respectively, where and stands for the
complement of . The event stands for any of the two pat-
terns in Fig. 9.

The bit-stuffing encoder is fed by two streams of indepen-
dent Bernoulli random variables: the first stream consists of un-
biased bits (fair coins), while in the second stream, the prob-

TABLE II
LOWER BOUNDS ON THE RATE OF A BIT-STUFFING ENCODER FOR

Fig. 8. (a) Event F and (b) event N .

Fig. 9. Event L .

ability of having is (the latter stream is generated by ap-
plying a respective distribution transformer on bits of the user
data sequence). The bit-stuffing encoder generates an output

, diagonal by diagonal (or row by row), by
assuming that whenever or and ap-
plying the following rule to every location .

NIB-1: If occurs then is set to with
probability ; i.e., the event will occur depending on
the biased stream.

NIB-2: If occurs then is set to the value of
; i.e., the event is forced.

NIB-3: Otherwise, is set to with probability ; i.e.,
the event (alternatively, ) will occur depending on
the unbiased stream.

Denote by the probability measure on
that is induced by the bit-stuffing encoder. Simi-

larly to what we had in Section II, the measure takes
for every the form

(11)
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where is given by

if and either or
if
otherwise

and . Furthermore, similarly to
the encoders of Sections II–IV, the coding rule of the encoder
here (yet not necessarily the measure !) is shift-invariant
in the sense that it does not depend on the particular location

.
The rest of this section is devoted to proving the following

lower bound on .

Proposition 5.1:

Let (respectively, ) be the number of locations
in which the event (respectively, ) occurs within

a random element . Proposition 5.1 will be
proved by first showing a lower bound on in terms of

and . The proof will then continue with obtaining
upper bounds on and , using simple properties of
the probability measure .

We mention that the technique presented here can be refined
to obtain the stronger bound

(12)

yet the proof of this inequality is rather long and hence omitted;
the full proof can be found in [10].

For a nonnegative integer , let

The random -configuration (namely, the restric-
tion of to ) completely determines whether the event

occurs; hence, we can regard the latter event as the set of
all -configurations that imply .

The following sequence of lemmas presents several proper-
ties of the probability measure ; these properties will lead
to the proof of Proposition 5.1.

Lemma 5.2: The following holds for every location
:

a) ;

b) ;

c) ;

d) ;

e) .

Proof: We start with part a) and fix a diagonal . We prove
by induction on that for
every -configuration . The proof distinguishes be-
tween two cases, where the first case serves also as the induction
basis; hereafter stands for .

Case 1. . In this case, belongs to
; so, by Step NIB-1 of the encoding process

we obtain .

Case 2. . Write

By the induction hypothesis we have

Observing that implies
, we obtain by Step NIB-2 of the encoding process

that

and by Step NIB-3 that

It follows from the last four equations that

thus completing the proof of part a).
Now, from part a) and Step NIB-3 we have

and from Step NIB-2

The last two equations yield parts b), d), and e). Finally, part c)
follows immediately from Step NIB-3.

Lemma 5.3: For every location and
-configuration

Proof: Given that for some fixed ,
the value is determined by one of the steps, NIB-1 or
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Fig. 10. Two events in Lemma 5.4.

NIB-3, of the encoding process. In either case, the value of
is statistically independent of .

Lemma 5.4: For every

Proof: We first observe that is a union of
two events

and

(see Fig. 10). Yet, by Lemma 5.2, part e), the second event has
probability . Therefore,

Now, by Lemma 5.2, part d) we have

and from the inclusion
and Lemma 5.2, part c) we get

The last three equations imply the result.

Proposition 5.5:

Proof: By the expression for in (11) we have

where ranges in the summations over the elements of
. Now, from Lemma 5.2, part a) we get

Fig. 11. Event Q .

Hence,

thereby yielding the result.

We next turn to obtaining an upper bound on ; such a
bound, combined with the inequality and with Proposi-
tion 5.5, will lead to a lower bound on .

For let the event be defined by

(see Fig. 11)

Lemma 5.6: For

Proof: Let be a particular -configuration in .
By Lemma 5.2, parts a) and b), we have

Noting that and , it follows by
Lemma 5.3 that

In addition, implies that

hence, by applying Lemma 5.2, part c) to , we get

The result follows from the last two equations and by recalling
that the event is identical to

Lemma 5.7: For

Proof: Let be a particular -configuration in
. We distinguish between three cases.
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Fig. 12. Event (F [Q ) \ F \ F .

Case 1. . By Lemma 5.2 part c) we get

and by Lemma 5.3 we obtain

Case 2. . Here

and we get the same result as in Case 1.
Case 3. . By Lemma 5.2, parts a)

and b)

On the other hand, implies
(see Fig. 12); we thus obtain from Lemma 5.3 that

thus completing the proof.

Lemma 5.8: For

Proof: Recall that equals
and write

where the first inequality follows from Lemma 5.7 and ranges
over all -configurations in such that

. By Lemma 5.2, parts a)–c) we have for every such

thereby implying the result.

We are now ready to prove an upper bound on .

Proposition 5.9:

Proof: Noting that , for every
we have

where the first inequality follows from Lemmas 5.4, 5.6, and
5.8, and the second inequality follows from the inclusion

. Summing over we obtain

The result follows.

Proof of Proposition 5.1: Combine Propositions 5.5 and
5.9 with the inequality .

The stronger bound (12) is obtained in [10] through Propo-
sition 5.5, using an improved version of Proposition 5.9 and
showing that is bounded from above by .

By looking at the growth rate of for fixed while
increases, one can easily obtain an upper bound on the ca-

pacity of a 2-D constraint; see Weeks and Blahut [34]. Applying
this method to with yields an upper bound of

. Similarly, one can obtain lower bounds on
by considering the growth rate (with ) of the number of el-
ements in that can be freely concatenated vertically
while satisfying the constraint [2]. Thus, we can obtain a se-
quence of upper bounds and a sequence of lower bounds on the
capacity of the constraint, as a function of . By computing
those sequences for up to and applying a first-order
Richardson extrapolation to each sequence [34], we have dis-
covered that the extrapolated values agree in their first ten dec-
imal places with , and we conjecture that so
does the value .

VI. QUASI-STATIONARY MEASURES

The probability measure induced by the bit-stuffing
encoders in Sections II–V does not seem to possess any sta-
tionary (shift-invariant) properties. Still, since the coding rule is
shift-invariant, one can guarantee a “quasi-stationary”-induced
measure by a proper initialization of the boundary entries in the
generated output array. We show this next.

Given any subset , denote by the shifted
subset

and by the inverted subset
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For a -configuration we let denote the shifted
-configuration , where for every

.
Let be a 2-D constraint and be a (2-D) se-

quence of probability measures, where each measure is
defined on (the use of parallelograms here is arbitrary;
we could use rectangles instead). We say that the sequence

is nested if for every , , and

One can verify that the probability measures that are induced
by the bit-stuffing encoders in this paper form nested sequences
(see (3) and (11)).

Let denote the set .
Also, denote by the union , taken over all finite sub-
sets . The nesting property allows to associate with

a function , which is defined for
every and by

where is such that ; indeed, the nesting prop-
erty guarantees that the value is independent of the choice
of or , as long as . In addition, defines a proba-
bility measure on for every finite subset . We will
hereafter represent the sequence by the function

and call the latter a nested probability function on .
Given a nested probability function on and a positive

number , define the function by

It can be easily seen that also defines a nested probability
function on . The next result establishes the “quasi-sta-
tionary” property of .

Proposition 6.1: For fixed nonnegative integers , , ,
and , and every

Proof: By definition

Similarly

Fig. 13. Set �� which containsW .

Therefore,

The two sums in the right-hand side include terms, yet all
but at most terms cancel out. The result
follows.

Let be a nested probability function on . We say that
is local if there exist a finite subset and a conditional
probability function such that the following
three conditions hold.

L-1: and . Hereafter, we let the
integer be such that and define

(see Fig. 13).

L-2: For every

L-3: For every and , the value
takes the form

Observe that L-2 implies that every element
can be extended to at least one element such that

.
A local probability function is also causal [8]: it can be sim-

ulated (e.g., during encoding) by first setting the entries at the
boundary , and then scanning diagonal by diag-
onal (or row by row, or alternating between diagonal and row
scans) and setting the entries according to the output of biased
sequences. The measure (3) is local with , and the mea-
sure (11) is local with . While we do make here assump-
tions about the shape of , we point out that these assumptions
can be relaxed by, say, using parallelograms whose diagonals
have slopes other than .

Proposition 6.2: Let be a local probability function on
with a respective set and conditional probability function .
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Fig. 14. Sets C , D, and E.

Given a positive integer , define the nested probability func-
tion by

Then is local with the same set and function .
Proof: Let be such that . We need

to show that for every and

(13)

Fix and and define the sets

and

(see Fig. 14). As satisfies L-3, it follows that for every

(14)
Now

where

Hence,

(15)

and one can verify that

namely, depends neither on the particular element nor
on .

Assume first that . Let belong to the set

and suppose further that . Let be a -con-
figuration such that and .
The right-hand side of (14), being equal to , is strictly
positive; hence, is necessarily in . It follows that
every element with can be extended to an ele-
ment . Therefore,

and so, from (15), we get

(16)

furthermore, (15) implies that (16) holds also when . The
equality (13) is finally obtained by averaging both sides of (16)
over .

Given a local probability function on , it follows from
Propositions 6.1 and 6.2 that the function is both quasi-sta-
tionary and local, and it shares with the same set and con-
ditional probability function ; that is, differs from only
due to the measure on the boundary . Note that in (3)
or (11), the conditional probability function is determined by
the coding rule; this means that once we set the entries at the
boundary, the probability function can be simulated by the
very same coding rule which induces .

The proofs in Sections III–V were based on global properties
of , such as bounds on the expected values of the number of
occurrences of a given event throughout . The quasi-sta-
tionary property allows to obtain local properties as well. For
example, by using instead of , we can strengthen Lem-
ma 2.2 to

and

both inequalities holding for every .

APPENDIX

IMPROVED LOWER BOUNDS FOR SMALL

We can further improve the bounds in Sections III and
IV by bounding the “double-stuffing” probability

more carefully. The following derivation is based
on the square lattice, and we use the same notations as in
Section III; similar results can be obtained for the hexagonal
lattice.

For , denote by the event that occurs
and there are (exactly) locations which are
not stuffed from the locations outside of . Since

, it follows that

Given the event , there will be no “double-stuffing” from
only when all the locations there are set to ; this, in

turn, occurs with probability . Thus,
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Fig. 15. Events Z ; entries indexed by �(i; j) that are stuffed are marked by “�.”

and

where the inequality comes from the fact that

for

Now, by Lemma 3.2 and (7) we have

(see the definition of in Section III). Therefore, we con-
clude that

(17)

We next derive an upper bound on by identifying

the patterns that result in the event . In what follows, we
confine ourselves to the special case and define the fol-
lowing four events:

(see Fig. 15).
The next lemma can be easily verified.

Lemma A.1: The following holds when for all
:

a) ;

b)
;

c) ;
d) .

It follows from Lemma A.1 that . By a
procedure similar to the one that develops inequality (6), we get
for that

for some . Therefore,

Plugging this bound into (17) and setting , we obtain

Summing over all yields

which leads to the improved lower bound for

Similarly, we can derive improved lower bounds for
and on the square lattice
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and

The procedure is also applicable to the hexagonal lattice. For
, it yields the following improved lower bound:
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