
An Improvement to the Bit Stuffing Algorithm

Sharon Aviran, Paul H. Siegel, and Jack K. Wolf 1

Department of Electrical and Computer Engineering
University of California, San Diego, USA

{saviran, psiegel, jwolf}@ucsd.edu

Abstract — The bit stuffing algorithm is a technique
for coding constrained sequences by the insertion of
bits into an arbitrary data sequence. This approach
was previously introduced and applied to (d, k) con-
strained codes. Results show that the maximum av-
erage rate of the bit stuffing code achieves capacity
when k = d + 1 or k = ∞, while it is suboptimal for all
other (d, k) pairs. We propose a modification to the
bit stuffing algorithm. We show analytically that the
proposed algorithm achieves improved average rates
over bit stuffing for most (d, k) constraints.

I. Introduction

A binary sequence satisfies a runlength (d, k) constraint if the
number of consecutive zeros is at most k and any two suc-
cessive ones are separated by at least d zeros. Such sequences
are called (d, k)-sequences and are commonly used in magnetic
and optical recording. The capacity of a (d, k) constraint is
defined as C(d, k) = limn→∞ 1

n
log2 Nd,k(n), where Nd,k(n)

is the number of distinct (d, k)-sequences of length n. The
capacity is known for all values of d and k.

The bit stuffing algorithm encodes (d, k)-sequences by in-
serting extra bits into an uncoded data stream [1]. The algo-
rithm first converts the input sequence into a sequence having
different statistical properties. It then inserts (stuffs) addi-
tional bits in a manner that guarantees that the resulting se-
quences satisfy the (d, k) constraint. It was shown in [1] that
the maximum average bit stuffing rate equals capacity for all
(d, d+1) and (d,∞) constraints. It was further shown that the
maximum rate is strictly less than capacity for all other cases.
This leaves room for improvement whenever d + 2 ≤ k < ∞.

In this paper we modify the bit stuffing algorithm by flip-
ping certain bits from the converted input sequence while the
logic of insertion of extra bits remains unchanged. The in-
crease in complexity is minor. We name the proposed modifi-
cation the bit flipping algorithm. We analyze the performance
of both algorithms to obtain the following result:

Theorem 1 Let d ≥ 1 and d + 2 ≤ k < ∞. Then the bit
flipping algorithm achieves a greater maximum average rate
than the bit stuffing algorithm.

II. The bit stuffing algorithm

The bit stuffing encoder consists of two components: a dis-
tribution transformer and a constrained encoder. The dis-
tribution transformer converts an unbiased independent and
identically distributed binary input sequence into a biased se-
quence of independent random bits, whose probability of a 0
is some p ∈ (0, 1). This conversion can be implemented in a

1This research was supported in part by NSF Grant CCR-
0219582, part of the Information Technology Research Program and
by the Center for Magnetic Recording Research at UCSD.

one-to-one manner. Hence we can apply the reverse transfor-
mation to recover the unbiased data. The constrained encoder
writes the biased sequence while keeping track of the number
of consecutive zeros in the sequence, called the run length.
Once the run length equals k, the encoder inserts (stuffs) a
1 followed by d 0’s. Whenever encountering a biased 1, the
encoder inserts d 0’s. To decode, one keeps track of the run
length in the constrained sequence, identifying the stuffed bits
and discarding them. The resulting sequence is then fed into
the inverse distribution transformer, so as to obtain the orig-
inal unbiased data.

Finally, we optimize p to find the maximum average rate
for a given (d, k) constraint.

III. Improving bit stuffing by bit flipping

Consider the case where k is finite and k ≥ d + 2 and let
l be an integer such that d + 1 ≤ l ≤ k − 1. Suppose we
run the bit stuffing algorithm while modifying the logic of the
constrained encoder in the following manner:

• If the current run length is smaller than l then write the
next biased bit

• If the current run length is greater or equal to l then
flip the next biased bit before writing.

In other words, flip the biased bit starting from a run length
of l. This is called the bit flipping algorithm.

Two questions arise. What is the optimal run length to
start flipping? When can we improve the bit stuffing rate by
flipping? Theorem 1, whose proof we now describe, answers
these two questions.

We first derive an analytical expression for the average bit
flipping rate. For d ≥ 1 and p > 0.5, we show that k−1 is the
optimal run length to start flipping. Moreover, the resulting
bit flipping rate is strictly greater than the corresponding bit
stuffing rate.

We next show that for all runlength constraints considered
in Theorem 1, except for the case (d, k) = (1, 3), the optimal
bit stuffing bias is indeed greater than 0.5. Thus, for these
(d, k) pairs, bit flipping yields a higher rate than bit stuffing.
In fact, by considering specific examples, we have seen that
it may be possible to further improve the bit flipping rate by
optimizing the bit flipping bias.

For the (1, 3) case, bit flipping is inferior to bit stuffing
when the optimal bit stuffing bias is used. However, by nu-
merically optimizing the bit flipping bias, we show that the
maximum bit flipping rate exceeds the maximum bit stuffing
rate, completing the proof of Theorem 1.

References

[1] P.E. Bender, J.K. Wolf, “A universal algorithm for generat-
ing optimal and nearly optimal run-length-limited, charge con-
strained binary sequences,” Proc. 1993 IEEE Int. Symp. In-
form. Theory, San Antonio, Texas (1993), p. 6.

ISIT 2004, Chicago, USA, June 27 – July 2, 2004


	footer1: 


