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Abstract | Bit-stu�ng constructions of binary 2-

dimensional constrained arrays satisfying (d;1) or

(0; k) runlength constraints in both horizontal and ver-

tical dimensions are described. Lower bounds on the

capacity of these constrained arrays are derived.

I. Introduction

With the advent of page-oriented storage technologies, such as
holographic storage, interest in constrained arrays in two or
more dimensions has arisen. We consider binary arrays satis-
fying 2-dimensional (d; k) constraints, where the parameters d
and k represent, respectively, the minimum and maximum ad-
missible number of 0's separating consecutive 1's in any row
and any column. The capacity C2(d; k) of a 2-dimensional
(d; k) constraint measures the growth rate of the number
N(m;n) of m � n (d; k) arrays. The capacity C1(d; k) of
1-dimensional (d; k) constrained sequences is exactly known.
The only nontrivial result in two dimensions is that, for d � 1,
C2(d; k) = 0 if and only if k = d + 1 [3]. General upper and
lower bounds on C2(d; k) are also derived in [3]. Here we
present di�erent lower bounds on C2(d;1) and C2(0; k) by
analyzing a bit-stu�ng encoder.

II. Bit Stuffing Bounds on Capacity

We �rst describe a mapping of 1-dimensional (2d;1) con-
strained sequences to 2-dimensional (d;1) constrained arrays.
We represent the 2-dimensional constrained array as the lower
right quadrant of a rectangular grid. Starting at the origin,
we write the sequence digits into open positions along suc-
cessive 45 degree diagonals, from upper right to lower left.
However, the 2d 0's following each 1 are written into the d

positions immediately to the right and immediately below the
position of the 1. Any one of these 2d 0's that would overwrite
a position already containing a 0 is discarded. This mapping
is clearly invertible. It follows that C2(d;1) � C1(2d;1):
Table 1 shows the lower bounds, for 1 � d � 5. (It is easy
to extend this construction to include runlength constraints
along diagonals, as well.)

Another approach to deriving a lower bound on C2(d;1)
is by analyzing a bit-stu�ng encoder that operates as follows.
A binary data sequence is �rst converted to a sequence of
statistically independent binary digits with the probability of
a 1 equal to p and the probability of a 0 equal to (1�p). This
conversion occurs at a rate penalty of H2(p); where H2(p) is
the binary entropy function.

We successively write these digits into open positions along
diagonals as before, subject to the rule that whenever a 1
is written, additional 0's are inserted (or \stu�ed") into any

1This work was supported in part by NSF Grants NCR-9612802

and NCR-9405008.

Table 1: Bit-stu�ng lower bounds C2(d;1) and C2(0; k)

d C1(2d;1) k rk(p
0)

1 0.5515 1 0.5515

2 0.4057 2 0.7769

3 0.3282 3 0.8788

4 0.2788 4 0.9320

5 0.2440 5 0.9616

of the d positions immediately to the right of it or immedi-
ately below it that are empty. To decode the array, one reads
down diagonals, sensing and discarding the 0's that have been
stu�ed.

If we assume that the fraction of stu�ed digits on diag-
onals approaches a constant value as the length of the di-
agonal grows, a simple analysis leads to the lower bound
C2(d;1) � Rd(p) = H2(p)=(1+2dp): The value p� that maxi-
mizes this lower bound is the largest real solution of the equa-
tion p = (1� p)2d+1: The corresponding lower bound Rd(p�)
turns out to be precisely C1(2d;1).

For the (1;1) constraint, the lower bound can be im-
proved by a more careful accounting. Speci�cally, the ex-
act rate Rmax of the bit-stu�ng encoder can be computed,
and satis�es Rmax � 0:5831. The best known bounds [2] are
0:5879 � C2(1;1) � 0:5883. Thus, bit-stu�ng achieves a rate
that is only 1% below capacity. We remark that the optimal-
ity of bit-stu�ng for certain 1-dimensional (d; k) constraints
was shown in [1].

One can generate (0; k)-constrained arrays by stu�ng 1's
to enforce the k constraint. A similar analysis leads to the
lower bound C2(0; k) � rk(p) = H2(p)(p); where (p) is the
largest real solution of 2k(1� p)k +  � 1 = 0: The value p0

that maximizes the lower bound was found numerically. The
results are shown in Table 1. Simulation results are consistent
with these lower bounds.
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