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Joint Iterative Decoding of LDPC Codes for
Channels with Memory and Erasure Noise

Henry D. Pfister and Paul H. Siegel

Abstract—This paper investigates the joint iterative decoding
of low-density parity-check (LDPC) codes and channels with
memory. Sequences of irregular LDPC codes are presented that
achieve, under joint iterative decoding, the symmetric informa-
tion rate of a class of channels with memory and erasure noise.
This gives proof, for the first time, that joint iterative decoding
can be information rate lossless with respect to maximum-
likelihood decoding. These results build on previous capacity-
achieving code constructions for the binary erasure channel. A
two state intersymbol-interference channel with erasure noise,
known as the dicode erasure channel, is used as a concrete
example throughout the paper.

Index Terms—joint iterative decoding, intersymbol interfer-
ence, low-density parity-check codes, dicode erasure channel,
symmetric information rate, capacity-achieving codes.

I. INTRODUCTION

SEQUENCES of irregular low-density parity-check
(LDPC) codes that achieve the capacity of the binary

erasure channel (BEC), under iterative decoding, were first
constructed by Luby, et al. in [1], [2]. This was followed
by the work of Richardson, Shokrollahi, and Urbanke
[3], which showed that sequences of iteratively decoded
LDPC codes may also approach the channel capacity of
the binary symmetric channel and the binary-input additive
white Gaussian noise (AWGN) channel. Since then, density
evolution (DE) [4] has been used to optimize irregular LDPC
codes for a variety of memoryless channels (e.g., [5]), and the
results suggest, for each channel, that sequences of iteratively
decoded LDPC codes can indeed achieve the channel
capacity. In fact, the discovery of a binary-input memoryless
output-symmetric (BMS) channel whose capacity cannot be
approached by LDPC codes would be more surprising than
a proof that iteratively decoded LDPC codes can achieve the
capacity of BMS channels.

The idea of decoding a code transmitted over a channel
with memory via iteration was first introduced by Douillard,
et al. in the context of turbo codes and is known as turbo
equalization [6]. Turbo equalization is applied to magnetic
recording channels in [7] with a particular emphasis on the
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effect of channel precoding. Turbo equalization can also be ex-
tended to LDPC codes by constructing one large graph which
represents the constraints of both the channel and the code.
This idea is also referred to as joint iterative decoding, and was
investigated for partial-response channels by Kurkoski, Siegel,
and Wolf in [8]. Tüchler, Koetter, and Singer also considered
a variety of channel detectors for turbo equalization in [9].
While this paper focuses mainly on channels with intersymbol
interference (ISI), a number of nice results [10], [11], [12]
have also been obtained for finite-state fading channels such
as the Gilbert-Elliot channel [13].

Until recently, it was difficult to compare the performance of
turbo equalization with channel capacity because the binary-
input capacity of channels with memory could only be loosely
bounded. Recently, new methods were proposed to compute
good estimates of the achievable information rates of finite-
state (FS) channels [14], [15], [16], and a number of authors
have already designed LDPC based coding schemes which
approach the achievable information rates of these channels
[16], [17], [18], [19], [20], [21], [22]. As is the case with DE
for general BMS channels, the evaluation of code thresholds
and the optimization of these thresholds is done numerically.
For FS channels, analysis of joint decoding is particularly
complex because the BCJR algorithm [23] is used to decode
the channel.

Since the capacity of a channel with memory is generally
not achievable via equiprobable signaling, one can instead aim
for the symmetric information rate (SIR) of the channel [24].
The SIR, also known as independent uniform capacity Ci.u.d.,
is defined as the maximum information rate achievable via
random coding with independent equiprobable input symbols.
This rate is a popular benchmark because it is achievable with
random linear codes.

In this paper, we introduce the concept of generalized
erasure channels (GECs). For these channels, we show that
DE can be done analytically for the joint iterative decoding
of irregular LDPC codes and the channel. This allows us to
construct sequences of LDPC degree distributions that achieve
the SIR using joint iterative decoding. This gives proof, for
the first time, that joint iterative decoding of the code and
channel can, for a carefully chosen irregular LDPC code, be
information rate lossless with respect to maximum-likelihood
decoding of the code and channel. The best example of a GEC
is the dicode erasure channel (DEC), which is simply a binary-
input channel with a linear response of 1 − D and erasure
noise. This work was initiated in [25, p. 113][26] but stalled
for some time due to mathematical difficulties. Recently, these
difficulties were overcome using more sophisticated mathe-
matical methods and this paper presents this new approach.
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Fig. 1. Block diagram of the system.

It should be noted that many of the techniques in this paper
are related to those used in the analysis of irregular repeat-
accumulate (IRA) and accumulate-repeat-accumulate (ARA)
codes for the BEC [27], [28]. For example, all three papers
construct degree distributions algebraically and must verify
that a function has a power series expansion with non-negative
coefficients. The main technical achievement in this paper is
the generalization of these techniques and the application of
them to channels with memory (rather than to codes with
accumulators). In particular, Theorem 4 is a generalization of
a technique used in [27, Appendix A] and Lemma 6 can be
used to resolve [27, Conjecture 1] in the affirmative. The use
of Polya’s Criteria to prove the non-negativity of power series
expansions was introduced in [28] and also plays a small role
in this work (e.g., Theorem 5). On the other hand, a number
of results (e.g., Theorem 1) have their roots in [25, p. 113][26]
and were expanded in [27], [28].

In Section II, we introduce the basic components of the
system including GECs, the DEC, the joint iterative decoder,
and irregular LDPC codes. In Section III, we derive a single
parameter recursion for the DE of the joint iterative decoder
which enables us to give necessary and sufficient conditions
for decoder convergence. These conditions are also used
to construct and truncate algebraic degree distributions. In
Section IV, sequences of degree distributions are defined and
shown to achieve the SIR. In Section V, we show that it is
possible to construct a wide variety of GECs. Finally, we offer
some concluding remarks in Section VI.

II. SYSTEM MODEL

A. Description

We note that random variables will be denoted using capital
letters (e.g., U,X, Y ) and sequences will be denoted using
subscript/superscript notation (e.g., Xj

i = Xi, Xi+1, . . . , Xj).
The system we consider is fairly standard for the joint iterative
decoding of an LDPC code and a channel with memory.
Equiprobable information bits, Uk

1 ∈ {0, 1}k, are encoded
into an LDPC codeword, Xn

1 ∈ {0, 1}n, which is observed
through a GEC1 as the output vector, Y n

1 ∈ Yn where Y
is the channel output alphabet. The decoder consists of an a
posteriori probability (APP) detector matched to the channel
and an LDPC decoder. The first half of decoding iteration i
entails running the channel detector on Y n

1 using the a priori
information from the LDPC code. The second half of decoding
iteration i corresponds to executing one LDPC iteration using
internal edge messages from the previous iteration and the
channel detector output. Fig. 1 shows the block diagram of the
system, and Fig. 2 shows the Gallager-Tanner-Wiberg (GTW)
graph of the joint iterative decoder. The standard sum-product

1The channel includes the addition and removal of a random scrambling
vector to guarantee channel symmetry.

algorithm [29], [30] is used to pass messages (e.g., log-
likelihood ratios (LLRs)) around the decoding graph which
describe the decoder’s belief that a bit is 0 or 1. For any edge
in the graph, let the random variable E be the correct value
(given by the encoded value of the bit node attached to that
edge). The LLR passed along that edge is

log
Pr(E = 0)
Pr(E = 1)

.

This decoder uses the turbo equalization schedule (i.e.,
the full channel detector is run each iteration) because this
allows the effect of the channel detector to be characterized
compactly with a single function. Expanding the channel
detector into its own factor graph would also allow the
standard single-edge message-passing schedule to be used
for joint decoding, but the analysis becomes significantly
more complicated. In general, changing the message-passing
schedule does not affect the DE threshold, but optimizing the
schedule can achieve some complexity savings in practice.

Including a random scrambling vector in the channel makes
the performance independent of the transmitted codeword and
allows one to analyze the decoder using the all-zero codeword
assumption.

B. The Generalized Erasure Channel

Density Evolution involves tracking the evolution of mes-
sage distributions as messages are passed around the decoder.
Since the messages passed around the GTW graph of the
joint decoder are LLRs, we find that DE tracks the LLR
distribution of the messages. Let L be a random variable
representing a randomly chosen LLR at the output of the
channel decoder. The complexity of DE depends on the
support of the distribution of L.

Definition 1: A symmetric erasure distribution is a LLR
distribution supported on the set {−∞, 0,∞} which also
satisfies Pr(L = −∞) = Pr(L = ∞). Such distributions are
one dimensional, and are completely defined by the erasure
probability Pr(L = 0).

Definition 2: A generalized erasure channel (GEC) is any
channel which satisfies the following condition for i.i.d.
equiprobable inputs. The LLR distribution at the output of
the optimal2 APP channel detector (e.g., the distribution of
the x3 messages in Fig. 2) is a symmetric erasure distribution
whenever the a priori LLR distribution (e.g., the distribution of
the x2 messages in Fig. 2) is a symmetric erasure distribution.
Our closed form analysis of this system requires that all the
densities involved in DE are symmetric erasure distributions.
This allows DE of the joint iterative decoder to be represented
by a single parameter recursion. Let f(x) be a function

2A suboptimal detector with this property would also be compatible with
the DE portion of the analysis.
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Fig. 2. Gallager-Tanner-Wiberg graph of the joint iterative decoder.

which maps the erasure probability, x, of the a priori LLR
distribution to the erasure probability at the output of the
channel detector. This function completely determines the DE
properties of a GEC. Abusing terminology, we refer to f(x)
as the extrinsic information transfer (EXIT) function of the
channel [31].

Of course, f(x) is closely related to the mutual information
transfer function, T (I), used by the EXIT chart analysis of ten
Brink [32]. This enables the use of a remarkable connection
between the mutual information and the mutual information
transfer function that was introduced by ten Brink in [33]
and extended in [34]. Let the channel input vector Xn

1 be
i.i.d. and the channel output vector Y n

1 be defined by the
length-n vector channel Pr (Y n

1 = yn
1 |Xn

1 = xn
1 ). Let Zn

1 be
Xn

1 observed through a BEC with erasure probability 1 − I
for some I ∈ [0, 1]. The mutual information transfer function
is defined by

Tn(I) � 1
n

n∑
i=1

I(Xi;Y n
1 , Z

n
1 \Zi),

where Zn
1 \Zi denotes the random vector Zn

1 without Zi. Its
relationship to the mutual information is given by

1
n
I(Xn

1 ;Y n
1 ) =

∫ 1

0

Tn(I)dI. (1)

This result follows directly from [34, Thm. 1] if one changes
their notation using {IE → Tn, IA → I, V → X,Z → A}
and replaces the variable of integration with IA → IA

IA,max
.

For GECs, we assume further that each Xi is binary and
equiprobable. Since the mutual information of a BEC with
erasure probability x is 1 − x, this implies that the channel
EXIT function is fn(x) � 1−Tn(1−x). Since any BEC with
erasure probability x′ > x can be viewed as a cascade of two
memoryless erasure channels3 with erasure probabilities x and
1− 1−x′

1−x , one can apply the Data Processing Inequality [35] to
show that Tn(·) and fn(·) are both non-decreasing functions.

Now, we consider the limit as n goes to infinity. If Tn(I)
converges pointwise to T (I), then fn(x) converges pointwise
to f(x) and Lebesgue’s dominated convergence theorem (e.g.,
0 ≤ Tn(I) ≤ 1) shows that both sides of (1) converge to∫ 1

0 T (I)dI . When the input process is binary and equiprob-
able, the LHS of (1) equals the SIR (denoted Is) and this

3The first is a BEC, while the second is a ternary input erasure channel
which forwards the erasures.

gives

Is =
∫ 1

0

T (I)dI = 1 −
∫ 1

0

f(x)dx. (2)

We mentioned previously that f(x) completely characterizes
the DE properties of a GEC, and now we see that it also
determines the SIR of the channel. These two properties
motivate us to treat all GECs with the same EXIT function as
equivalent from a DE and information rate perspective.

C. The Dicode Erasure Channel

The dicode erasure channel (DEC) is a binary-input channel
based on the dicode channel (i.e., a linear system with H(z) =
1−z−1 and Gaussian noise) used in magnetic recording [36].
The output of the linear system with H(z) = 1 − z−1 and
binary inputs (e.g., +1, 0,−1) is erased with probability ε and
transmitted perfectly with probability 1−ε. The precoded DEC
(pDEC) is essentially the same, except that the input bits are
differentially encoded prior to transmission. This modification
simply changes the input labeling of the channel state diagram.
The state diagram of the dicode channel is shown with and
without precoding in Fig. 4.

The simplicity of the DEC allows the BCJR algorithm for
the channel to be analyzed in closed form. The method is
similar to the exact analysis of turbo codes on the BEC [37],
and the result shows that the DEC is indeed a GEC. Leaving
the details to Appendix A, we give EXIT functions for the
DEC with and without precoding. If there is no precoding and
the outputs of the DEC are erased with probability ε, then the
EXIT function of the channel detector is

fDEC(ε)(x) =
4ε2

(2 − x(1 − ε))2
. (3)

Using a precoder changes this function to

fpDEC(ε)(x) =
4ε2x (1 − ε(1 − x))
(1 − ε(1 − 2x))2

. (4)

One can also compute the SIR of the DEC by analyzing
only the forward recursion of the BCJR algorithm [25, p. 144].
This results in

Is(ε) = 1 − 2ε2

1 + ε
,

and it is easy to verify that applying (2) to both (3) and (4)
also gives the same result. Fig. 3 provides a few examples of
these channel EXIT functions.
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D. Irregular LDPC Codes

Irregular LDPC codes are a generalization of Gallager’s
LDPC codes [38] that have been shown to perform remarkably
well under iterative decoding [3]. They are probably best
understood by considering their graphical representation as
a bipartite graph, which is shown in the lower part of Fig.
2. Iterative decoding is performed by passing messages along
the edges of this graph, and the evolution of these messages
can be tracked using DE. In general, when we speak of an
LDPC code we are referring to the ensemble of codes formed
by picking a random bipartite graph with the proper degree
structure. For a more complete description of LDPC codes,
one should consult the book by Richardson and Urbanke [31].

For asymmetric memoryless channels, the standard DE
assumption of channel symmetry clearly does not hold. This
means that DE, without any modifications, can only be applied
to one codeword at a time. In [39], a conceptual device
named the i.i.d. channel adapter is introduced to overcome
this problem. The basic idea is that the channel itself is
modified to automatically add a random scrambling pattern
to the input sequence and then automatically remove it from
the output sequence. Using this, the decoder’s output statistics
become independent of the input sequence and the all-zero
input can be used to assess performance. The concentration
theorem follows as a simple corollary when applied to the
super-channel formed by the channel and adapter.

For channels with memory, one must rely on the more
sophisticated analysis of [19]. This approach chooses a random
coset of the LDPC code (by randomizing the odd/even parity
of each check) and provides a DE analysis and a concentration
theorem for a windowed channel detector4. The same result
holds for an i.i.d. channel adapter with a windowed decoder.
Still, it is not entirely clear that these two methods are
identical. For example, if the channel input sequence is fixed to
the all-zero sequence, then the first method averages over all
possible 2n transmitted sequences while the second method
only averages over 2n−k transmitted sequences. When the

4Windowed channel detectors are discussed more thoroughly in Section
III-A.
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Fig. 4. State diagrams for the noiseless dicode channel with and without
precoding. The edges are labeled by the input/output pair.

channel input sequence is chosen uniformly, however, both
approaches average over all 2n transmitted sequences.

In this paper, we assume that an i.i.d. channel adapter is
always used on the channel. This guarantees that the LLR
distribution, provided by the channel detector, of channel input
bits is symmetric. In contrast, without an i.i.d. channel adapter,
the channel detector for the precoded DEC produces more
reliable information when 1’s are transmitted. The same effect
can probably be achieved with the coset method of [19], but
similar statements seem to require a joint analysis of the code
and channel.

The degree distribution of an irregular LDPC code can be
viewed either from the edge or node perspective, and this
work is simplified by using both perspectives. Let λ(x) be a
polynomial defined by λ(x) =

∑
ν≥1 λνx

ν−1, where λν is the
fraction of edges attached to a bit node of degree ν. Likewise,
let ρ(x) be a polynomial defined by ρ(x) =

∑
ν≥1 ρνx

ν−1,
where ρν is the fraction of edges attached to a check node
of degree ν. We refer to λ(x) and ρ(x) as the bit and check
degree distribution from the edge perspective. Let L(x) be a
polynomial defined by L(x) =

∑
ν≥1 Lνx

ν , where Lν is the
fraction of bit nodes with degree ν. We refer to L(x) as the bit
degree distribution from the node perspective. The coefficients
of all these polynomials represent a fraction of some whole,
and that means that λ(1) = ρ(1) = L(1) = 1. Since L(x) has
no degree zero bits, we also have L(0) = 0. Finally, we note
that the possibility of bit and check nodes with degree 1 was
included intentionally, and we cannot assume that λ(0) = 0
or ρ(0) = 0.

One can transform a degree distribution from the node
perspective to the edge perspective by noting that each node of
degree ν contributes ν edges to the edge perspective. Counting
from the edge perspective and normalizing gives

λ(x) =

∑
ν≥1 Lννx

ν−1∑
ν≥1 Lνν

=
L′(x)
l

, (5)

where l =
∑

ν≥1 Lνν = L′(1) is the average bit degree.
One can also switch from the edge to node perspective by
integrating both sides of (5) from zero to one. This gives the
formula l = 1/

∫ 1

0 λ(t)dt. Since the same rules hold for check
degree distributions, this allows us to define the average check
degree r = 1/

∫ 1

0
ρ(t)dt. Finally, we note that the design rate

of an irregular LDPC code is given by

R = 1 − l

r
. (6)

Iterative decoding of irregular LDPC codes on the BEC,
with erasure probability ε, was introduced by Luby et al. in [1]
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and refined in [40]. The recursion for the erasure probability
out of the bit nodes is given by

xi+1 = ελ (1 − ρ(1 − xi)) . (7)

The recursion is guaranteed to converge to zero as long as
ελ (1 − ρ(1 − x)) < x for all x ∈ (0, 1].

In many cases, we will also deal with the inverse function
ρ−1(x). Since ρ(x) has a power series expansion with positive
coefficients, it is strictly increasing on [0, 1] and ρ−1(x) exists
and maps [ρ(0), 1] to [0, 1]. If ρ(0) > 0, then we will also need
ρ(x) to be nicely behaved for x < 0. Therefore, we require
the following condition in general.

Condition 1: The function ρ(x) has a single-valued inverse
ρ−1(x) for x ∈ (0, 1] and is strictly increasing on that
domain5.

Lemma 1: Under Condition 1, we find that∫ 1

0

(
1 − ρ−1(1 − x)

)
dx =

1
r

+
∫ 0

ρ−1(0)

ρ(x)dx ≥ 1
r
, (8)

with equality iff ρ(0) = 0.
Proof: From a geometric point of view, ρ(x) divides the

unit square into two pieces (denoted A and B in Fig. 5) and
therefore ∫ 1

0

ρ(x)dx +
∫ 1

ρ(0)

ρ−1(x)dx = 1. (9)

To show (8), we write

1 −
∫ 1

0

ρ−1(1 − x)dx = 1 −
∫ 1

0

ρ−1(x)dx

=
∫ 1

0

ρ(x)dx −
∫ ρ(0)

0

ρ−1(x)dx

=
∫ 1

0

ρ(x)dx +
∫ 0

ρ−1(0)

ρ(x)dx,

where − ∫ ρ(0)

0 ρ−1(x)dx =
∫ 0

ρ−1(0) ρ(x)dx because both equal
the area of C in Fig. 5. This completes the proof.

5While this condition is not too restrictive (e.g., it allows check-regular and
check-Poisson ensembles), it does exclude large classes of ρ(x) functions.
For example, ρ−1(0) does not exist for all even ρ(x) functions (i.e., ρ(x) =
ρ(−x)) satisfying ρ(0) > 0.

III. ANALYSIS OF JOINT ITERATIVE DECODING

A. Single Parameter Recursion

Now, we consider a turbo equalization system which per-
forms one channel iteration for each LDPC code iteration. The
EXIT function, f(x), gives the fraction of erasures produced
by the extrinsic output of the channel decoder when the a
priori erasure rate is x. The update equation for this system is
very similar to (7). The difference is that the effective channel
erasure probability (i.e., x3) should now decrease with each
iteration.

We also assume that a small number of pilot bits (a fraction
δ of the blocklength) are randomly interspersed in the data
stream to help the channel decoder. These bits are known
at the receiver and transmitted through the channel, but are
not included in the code. Since this increases the number of
channel uses without affecting the number of information bits,
the effective code rate becomes

R̃ =
k

(1 + δ)n
=

1
1 + δ

R.

The main benefit is that the pilot bits reduce the erasure rate of
messages passed to the channel detector by a factor of 1

1+δ .
This helps the decoder to get started in decoding and also
allows several proofs to be simplified.

The joint decoding graph is shown in Fig. 2 and message-
passing schedule and variables are shown on the left. Let
x

(i)
0 , x

(i)
1 , x

(i)
2 , and x

(i)
3 denote the erasure rate of messages

passed during iteration i. The update equations are given by

x
(i+1)
0 = x

(i)
3 λ

(
x

(i)
1

)
x

(i+1)
1 = 1 − ρ

(
1 − x

(i+1)
0

)
x

(i+1)
2 = L

(
x

(i+1)
1

)
x

(i+1)
3 = f

(
1

1+δx
(i+1)
2

)
.

The first two equations simply describe LDPC decoding
when the channel erasure parameter is x

(i)
3 instead of the

fixed constant ε. The third equation describes the message
passing from the code to the channel detector. It reflects the
fundamental difference between the messages passed from the
bit nodes to the check nodes and the messages passed from
the bit nodes to the channel detector. The difference is due to
the fact that a bit node sends one message for each check edge
towards the check nodes and only 1 message to the channel
detector. Consider a bit node of degree ν whose check edges
carry erasure with probability x. The erasure probability is
weighted by the fraction of nodes with degree ν and is given
by

∑
ν≥1 Lνx

ν = L(x). The fourth equation takes the channel
detector and pilot bits into account and simply maps side
information from the code through the EXIT function f(x).
Tracking these update equations through one full iteration of
the joint decoder gives

x
(i+1)
0 =f

(
1

1+δL
(
1−ρ(1−x(i)

0 )
))

λ
(
1−ρ(1−x(i)

0 )
)
.

(10)
Since DE only analyzes the average behavior of iterative

decoding, the use of DE is typically motivated by the fact that
the actual behavior concentrates around the average with high
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probability [4][19]. One must be a careful, however, making
this statement for the decoder in this paper because the implied
decoding graph is not tree-like due to long-range effects in
the channel detector. This technical problem can be avoided
by analyzing a windowed channel detector (see [19] and [31,
Sec. 6.4]) which returns the LLR

�
(w)
i = log

Pr
(
Xi = 0|Y i+w

i−w ,W
i+w
i−w

)
Pr

(
Xi = 1|Y i+w

i−w ,W
i+w
i−w

) ,
where Y i+w

i−w is the windowed channel output vector and
W i+w

i−w is the windowed a priori information (e.g., the edges
represented by x2 in Fig. 2). Edge effects are handled by
truncating the window to those Yj and Wj with 1 ≤ j ≤ n.
Let f (w)(x) be the channel EXIT function (i.e., erasure
probability) for a channel detector restricted to window size
w. Since a decoder with larger w has more information, it
follows that w > w′ implies the LLR distribution of �(w

′)
i

is degraded with respect to that of �(w)
i . This implies that

f (w)(x) is non-increasing in w and and that, for any ζ > 0,
there is a w < ∞ such that f (w)(x) ≤ f(x) + ζ. Therefore,
applying the concentration theorem for joint decoding with a
finite window-size channel detector [19] has negligible loss
with respect to the DE analysis for f(x).

B. Conditions for Convergence

Using the recursion (10), we can derive a necessary and
sufficient condition for the erasure probability to converge to
zero. This condition is typically written as a basic condition
which must hold for x ∈ (0, 1] and a stability condition which
simplifies the analysis at x = 0. The basic condition implies
there are no fixed points in the iteration for x ∈ (0, 1] and is
given by

f
(

1
1+δL (1 − ρ(1 − x))

)
λ (1 − ρ(1 − x)) < x. (11)

Verifying this condition for small x is simplified by requiring
that x = 0 is a stable fixed point of the recursion. This is
equivalent to evaluating the derivative of (11) at x = 0, which
gives the stability condition6(

1
1+δ l λ

2(0)f ′(0) + λ′(0)f(0)
)
ρ′(1) < 1. (12)

In the remainder of the paper, we will assume that the channel
EXIT function f(x) either satisfies f(0) > 0 or its one-sided
derivative at 0 satisfies f ′(0+) > 0.

Lemma 2 (Rate Gap): The DE iteration converges to zero
if and only if

f(x) <
1 − ρ−1

(
1 − L−1 ((1 + δ)x)

)
λ (L−1 ((1 + δ)x))

(13)

for x ∈ (0, x∗] where x∗ = 1
1+δL (1 − ρ(0)). For any channel

and code satisfying (13), let the non-negative slack be

s(x) �
1 − ρ−1

(
1 − L−1 ((1 + δ)x)

)
λ (L−1 ((1 + δ)x))

− f(x). (14)

6One may derive (12) from (11) using the facts that ρ(1) = 1, L(0) = 0,
and L′(x) = l λ(x).

In this case, the rate gap between the channel SIR and the
effective code rate R̃ = 1

1+δR is given by ∆ � Is − R̃ ≥∫ x∗

0
s(x)dx, with equality if x∗ = 1.
Proof: Using the fact that L(x), ρ(x) are generating

functions of non-negative integer random variables, it follows
that g(x) = 1

1+δL (1 − ρ(1 − x)) is increasing for x ∈ [0, 1].
This implies that g−1(x) exists and maps [0, x∗] to [0, 1].
Using this, we derive (13) from (11) by dividing both sides
by λ(1 − ρ(1 − x)) and substituting x → g−1(x). Since this
derivation is reversible, we find that the conditions (13) and
(11) are actually equivalent.

Now, we can integrate (14) by treating the two terms
separately. Using (2) and the fact that f(x) ≤ 1 on [0, 1],
it is easy to verify that the second term satisfies∫ x∗

0

f(x)dx ≥
∫ 1

0

f(x)dx− (1 − x∗) = x∗ − Is, (15)

with equality if x∗ = 1. The first term requires the variable
change x = 1

1+δL(y) so that y∗ = 1 − ρ(0), and gives∫ y∗

0

1 − ρ−1(1−y)
(1+δ)λ(y)

L′(y)dy = l

∫ y∗

0

1−ρ−1(1−y)
1+δ

dy

= l

∫ 1

ρ(0)

1−ρ−1(t)
1+δ

dt

=
l

1+δ

(
1
r
− ρ(0)

)
, (16)

where the last step uses (9). Using the convexity of L(x), we
find that L (1 − ρ(0)) ≥ 1 − L′(1)ρ(0) and this implies that
x∗ ≥ 1−l ρ(0)

1+δ . Putting the two terms, (15) and (16), together
and using this bound gives∫ x∗

0

s(x)dx ≤
(

1
1 + δ

l

r
− l ρ(0)

1 + δ

)
−(x∗ − Is)

≤
(

1
1 + δ

l

r
− l ρ(0)

1 + δ

)
−
(

1 − l ρ(0)
1 + δ

−Is
)

≤ Is − 1
1 + δ

(
1 − l

r

)
,

with equality if x∗ = 1. Using (6) and the fact that the effective
code rate is 1

1+δR completes the proof.
Example 1: Applying Lemma 2 to the (3,6)-regular LDPC

code (i.e., λ(x) = x2, ρ(x) = x5, and δ = 0) gives

f(x) < x−2/3

(
1 −

(
1 − x1/3

)1/5
)
.

This function, shown in Fig. 6, is not monotonically increasing
and therefore cannot be the EXIT function of any real channel.
Still any channel function which lies strictly below this curve
will satisfy (11) with δ = 0. We can also test this formula
with the (2,4)-regular LDPC code (i.e., λ(x) = x, ρ(x) = x3,
and δ = 0) and this gives

f(x) < x−1/2

(
1 −

(
1 − x1/2

)1/3
)
. (17)

This function, shown in Fig. 6, is monotonically increasing
and therefore could be the EXIT function of a real channel.
In fact, the (2,4)-regular LDPC code is capacity-achieving for
any channel (if it exists) whose EXIT function satisfies (17)
with equality.
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Fig. 6. Upper bounds on f(x) given by Lemma 2.

Lemma 3 (Stability Conditions): The general stability con-
dition (12) has two special cases: (i) If the channel EXIT
function satisfies f(0) > 0, then the code cannot have degree
1 bits and the stability condition is given by

λ2f(0)ρ′(1) < 1. (18)

(ii) If the channel EXIT function is differentiable at zero and
satisfies f(0) = 0, then the stability condition depends on the
fraction of degree 1 bits and is given by

1
1+δ l λ

2
1f

′(0)ρ′(1) < 1.

Proof: (i) If the code has degree 1 bits, then λ(0) >
0. In this case, f(0)λ(0) > 0 and (11) cannot hold in the
neighborhood of x = 0. Assuming λ(0) = 0 allows (12)
to simplified to the given form. (ii) If f(0) = 0, then (12)
simplifies to the given form.

C. Solving for L(x)

In this section, we solve explicitly for an L(x), for some
f(x) and ρ(x), which satisfies (11) with equality for7 δ = 0.
The main idea is that λ(x) = L′(x)/l transforms

f (L (1 − ρ(1 − x)))λ (1 − ρ(1 − x)) = x (19)

into a differential equation. The following definitions will be
used throughout the remainder of the paper.

Definition 3: The integral of the channel EXIT function is
denoted

F (x) �
∫ x

0

f(t)dt.

On [0, 1], this integral is well-defined because f(x) is non-
decreasing and the result F (x) is strictly increasing because
either f(0) > 0 or f ′(0) > 0. For a check degree distribu-
tion ρ(x), the matching bit degree distribution [41] (in the
memoryless case) is denoted

q(x) � 1 − ρ−1(1 − x),

7The main purpose of δ is to simplify the truncation of the degree
distribution in Theorem 2.

and its integral is denoted

Q(x) �
∫ x

0

q(t)dt.

Under Condition 1, this integral is also well-defined on [0, 1]
because q(x) is non-decreasing.

Theorem 1: Using Condition 1 and the terms defined in
Definition 3, we find that

L(x) = F−1

(
F (1)

Q(x)
Q(1)

)
(20)

is a solution of (19) on [0, 1] which satisfies L(0) = 0 and
L(1) = 1. This solution also satisfies

l =
F (1)
Q(1)

(21)

L′(1) =
F (1)q(1)
f(1)Q(1)

. (22)

Finally, the L(x) solution is unique if f(x) and ρ(x) are
Lipschitz continuous on [0, 1].

Proof: Under Condition 1, we find that q(x) is a one-
to-one mapping of [0, 1] to [0, a] for some a ≥ 0. So, we
start with (19), change variables x → q(x), and substitute
λ(x) = L′(x)/l to get

f (L(x))
L′(x)
l

= q(x).

Since f(x) and q(x) are both non-decreasing, they are both
integrable. Therefore, multiplying both sides by l and integrat-
ing gives

F (L(x)) = l Q(x) + C. (23)

Requiring that L(0) = 0 and L(1) = 1 shows that C = 0 and
l = F (1)/Q(1).

Since F (x) is a strictly-increasing mapping from [0, 1] to
[0, F (1)], we apply the unique inverse to both sides of (23)
to get (20). If f(x) and ρ(x) are Lipschitz continuous, then
Picard’s Theorem [42, p. 734] shows that L(x) is the unique
solution to the 1st order differential equation defined by (19),
L(0) = 0, and L(1) = 1.

D. Truncating the Degree Distribution

In this section, we use Theorem 1 to construct codes whose
rates are close to the SIR of the channel. Since the alge-
braic construction of SIR-achieving codes generally requires
truncating the power series expansion of a function, it is
important that the truncated power series represent the original
function well. Therefore, rigorous treatment is naturally based
on complex analysis and the theory of analytic functions (i.e.,
functions well represented by power series expansions). The
following definitions will be needed for the remainder of this
paper.

Definition 4 (Functions and Power Series): Let A be the
set of functions analytic on the open unit disc D =
{x ∈ C| |x| < 1}. Each function a ∈ A has a well-defined
power series expansion about zero which converges every-
where in D. Henceforth, we will refer to this expansion as
the power series of a. Let A ⊂ A be defined as the a ∈ A
such that the power series also converges on the boundary ∂D
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(i.e., converges on the entire closed disc D). Let P ⊂ A be
a ∈ A such that the power series coefficients are non-negative.
For finite sums, we define the truncated power series of a ∈ A
for m ∈ R+ to be

a(x;m) �
�m�∑
i=0

aix
i + (m− �m�)a�m�x�m�. (24)

This notation is also used for the derivative a′ and it follows
that

∂

∂x
a(x;m) = a′(x;m− 1).

Since the goal is to use the series expansion of L(x) from
(20) as a bit degree distribution, we require at a minimum that
L ∈ P . Even under this condition, there is still some work
to be done. The main problem is that the design rate of the
code does not equal the SIR Is = 1 − F (1). For example, if
ρ(0) = 0, then (6), (8), and (22) show that

R = 1 − L′(1)
r

= 1 − F (1)q(1)
r f(1)Q(1)

= 1 − F (1)
f(1)

(25)

because q(1) = 1 and Q(1) = 1
r . If f(1) < 1, then the code

rate can be increased to Is by truncating and scaling L(x).
Theorem 2: Let f(x) and ρ(x) satisfy the conditions of

Theorem 1 and assume (20) produces an L ∈ P . A degree dis-
tribution L̃, which achieves an effective rate of R̃ ≥ Is − δ

1+δ
and satisfies (11), is given by

L̃(x) =
L(x;M)
L(1;M)

where M is the largest positive root of L′(1;M − 1) = F (1)
Q(1)

and the pilot fraction δ is chosen such that 1
1+δ = L(1;M). In

addition, if f(1) = 1 and ρ(0) = 0, then M = ∞, L(1;M) =
1, and any δ > 0 leads to successful decoding.

Proof: First, we note that if f(1) = 1 and ρ(0) = 0, then
(25) shows the design rate is Is = 1−F (1) and no truncation
is required. Decoding will be successful for any pilot fraction
δ > 0 because any non-decreasing f ∈ A with f(1) = 1 is
either constant (e.g., f(x) = 1 is degenerate with Is = 0) or
strictly increasing. Therefore, any δ > 0 is sufficient to satisfy
(11).

Next, we assume that f(1) < 1. In this case, L′(1;m−1) is
a continuous and non-decreasing map (in m) with L′(1; 0) = 0
where (22) shows that8 limm→∞ L′(1;m − 1) ≥ F (1)q(1)

Q(1)f(1) .
Since q(1) = 1 − ρ−1(0) ≥ 1, we find that M exists and
is finite. Furthermore, L ∈ P and limm→∞ L′(1;m − 1) >
F (1)/Q(1) implies that the truncation of L(x) to 	M
 terms
must remove positive terms. This allows us to write

f

(
1

1 + δ
L̃(x)

)
= f

(
L(1;M)L̃(x)

)
= f (L(x;M))
< f (L(x))

8Equality occurs unless the power series of L′(x) diverges at x = 1.

and

λ̃(x) =
L̃′(x)

L̃′(1)

=
L′(x;M − 1)
L′(1;M − 1)

=
L′(x;M − 1)
F (1)/Q(1)

<
L′(x)

F (1)/Q(1)
= λ(x)

for x ∈ (0, 1], where the strict inequalities follow from the
truncation of positive terms. Combining these two expressions
shows that

f

(
1

1 + δ
L̃(x)

)
λ̃(x) < f (L(x)) λ(x)

= 1 − ρ−1(1 − x),

and proves (11) for the truncated distribution L̃(x). Finally,
we compute the effective code rate with

R̃ =
1

1 + δ

(
1 − L̃′(1)

r

)

=
1

1 + δ

(
1 − (1 + δ)F (1)

r Q(1)

)
= 1 − δ

1 + δ
− F (1)

1
rQ(1)

.

Using (8), we see that Q(1) ≥ 1
r and R̃ ≥ Is − δ

1+δ .
Remark 1: We note that, by itself, Theorem 2 provides no

guarantee that the achievable rate is close to Is (i.e., that δ is
small). In the next section, we will design sequences of codes
which achieve this goal.

IV. ACHIEVING THE SYMMETRIC INFORMATION RATE

A. Sequences of Codes

Now, we consider sequences of irregular LDPC code en-
sembles which can be used to communicate reliably at rates
arbitrarily close to the SIR. The basic idea is to start with a
sequence of check degree distributions and apply Theorems 1
and 2. This process is significantly simplified by choosing the
check-Poisson LDPC ensemble (i.e., ρ(x) = eα(x−1)) because
the entire sequence can be described in terms of a single bit
degree distribution L(x).

Theorem 3: Consider the check-Poisson LDPC codes im-
plied by ρ(x) = eα(x−1). In this case, Theorem 1 gives

L(x) = F−1 (F (1) (x+ (1 − x) log(1 − x))) , (26)

which is independent of α. If L ∈ P , then we let R̃α be the
effective rate achieved by the construction of Theorem 2. In
this case, we can achieve the SIR by increasing α because

lim
α→∞ R̃α = Is.

Proof: From ρ(x), we find that Q(x) =
1
α (x+ (1 − x) log(1 − x)). Applying Theorem 1, we see that
α cancels out of L(x). For any α, we can apply Theorem 2 to
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construct a code which satisfies (11). Since Li ≤ 1, we see that
Lii ≤ i and L′(1;M −1) ≤ ∑�M�

i=1 i ≤M2. This implies that
M , which is defined by L′(1;M−1) = F (1)/Q(1) = αF (1),
must satisfy M ≥ √

αF (1) so that M → ∞ as α→ ∞. The
fact that L ∈ P also implies that L(1;M) → L(1) = 1 as
M → ∞. Since δ is defined by 1

1+δ = L(1;M), we see that
L(1;M) → 1 implies δ → 0. Therefore, the gap to the SIR

δ
1+δ vanishes as α→ ∞.
The following definition sets the stage for a number of results
that will be combined to prove the non-negativity, for a
particular channel and check degree distribution, of the power
series expansion of the degree distribution L(x).

Definition 5: The G-function of an channel EXIT function
is defined to be

G(x) � F−1 (F (1)x) .

Computing the G-function of a channel is the first step towards
constructing a SIR-achieving degree sequence for that channel.
This function represents the transformation of the degree
distribution, relative to a memoryless channel, required to
achieve the SIR. For simplicity, we also define

Q̃(x) � Q(x)
Q(1)

(27)

so that L = G◦Q̃ is the functional composition of Q̃ followed
by G.
Applying Theorem 3 requires that L ∈ P , and the following
describes two methods of proving L ∈ P . The first is proved
in Theorem 4 and is based on combining the power series of
G and Q̃ analytically. The second is proved in Theorem 5 and
requires numerical verification of the convexity of a particular
function to show that L ∈ P .

The following Lemma gives a sufficient condition for G ◦
Q̃ ∈ A which depends on G and Q̃ separately.

Lemma 4: If G ∈ A and Q̃ ∈ P , then G ◦ Q̃ ∈ A.
Proof: We start by writing L = G◦ Q̃ as the composition

of two infinite sums

(G ◦ Q̃)(x) =
∞∑

j=0

Gj

( ∞∑
i=0

Q̃ix
i

)j

.

The composed sum converges uniformly on D because the in-
ner sum converges uniformly on D to a value with magnitude
at most one and the outer sum converges uniformly on D as
well. Therefore, the terms of the composed sum can be sorted
by the degree of x without changing the answer. Sorting by
degree exposes the power series of L and shows that it must
also converge uniformly on D.
The approach taken to prove L ∈ P is based on the approach
taken in [27] for bit-regular IRA codes. If the G ∈ A has
an alternating power series which decays fast enough and Q
satisfies a certain condition, then we can show L ∈ P by
combining positive and negative terms.

Theorem 4: Let G ∈ A have a power series which satisfies
(i) the first non-zero term is positive with degree n0 ≥ 1, (ii)
Gn0+k has alternating sign for k ∈ N, and (iii) ∃ γ > 0 such
that Gn0+2k+1 ≥ −γ Gn0+2k for k ∈ N. Let Q̃ ∈ P satisfy
(iv) Q̃ − zQ̃2 ∈ P for z ∈ [0, γ]. In this case, we find that
G ◦ Q̃ ∈ P .

Proof: Using Lemma 4, we see that G ◦ Q̃ ∈ A. To
show G ◦ Q̃ ∈ P , we must simply show that the power series
of G ◦ Q̃ has non-negative coefficients. We start by noting
that if a, b ∈ A have non-negative power series, then both
a + b and a · b have non-negative power series. Expanding
G
(
Q̃(x)

)
=
∑∞

i=n0
GiQ̃(x)i gives

∞∑
k=0

Q̃(x)2k+n0−1
[
Gn0+2kQ̃(x) +Gn0+2k+1Q̃(x)2

]
.

Using (i) and (ii), we see that Gn0+2k ≥ 0 while Gn0+2k+1 ≤
0. Using (iii) and (iv), we see that the bracketed term has a
non-negative power series. Since Q̃(x)n has a non-negative
power series for integer n ≥ 0, we see that the entire
expression is the sum of products of functions with non-
negative power series.

Theorem 5 (Polya’s Criteria): Let the function a ∈ A be
well-defined and continuous on D, and real on the subset D∩
R. If h(x) � Re

[
2a

(
eix

)]
is convex on [0, π] and a(0) ≥ 0,

then a ∈ P . Furthermore, if limx→0 xa(1 − x) = 0, then the
same holds even if a has a singularity at x = 1.

Proof: See [28, Appendix III].

B. Check Degree Distributions

There are two families of check-degree distributions which
are of primary interest. The first is the check-Poisson distri-
bution defined by ρ(x) = eα(x−1) and the associated Q̃P is
given by

Q̃P (x) = x+ (1 − x) log(1 − x). (28)

The second is the check-regular distribution defined by ρ(x) =
xd−1 and its associated Q̃R is given by

Q̃R(x) = x− (d− 1)(1 − x)
(
1 − (1 − x)1/(d−1)

)
. (29)

It turns out that these two families are actually asymptotically
equivalent because Q̃R converges to Q̃P as d→ ∞. The fol-
lowing lemmas establish some properties of these Q̃ functions
which can be used to show L ∈ P for various channels.

Lemma 5: For Q̃P , we have (i) Q̃P − zQ̃2
P ∈ P for z ∈[

0, 3
10

]
and (ii)

√
Q̃P ∈ P .

Proof: For (i), see Appendix B-B. For (ii), we have a
computer assisted proof based on applying Theorem 5 to the
function

a(x) =

√
x+ (1 − x) log(1 − x)

x2
.

Lemma 6: For Q̃R, we have (i) Q̃R − zQ̃2
R ∈ P for z ∈

[0, γd] with

γd =

{
2d2−3d+1
6d2+6d if 2 ≤ d ≤ 7

6d2−5d+1
20d2+20d if 7 ≤ d <∞ . (30)

Proof: See Appendix B-C.
Remark 2: Since γd ↗ 3

10 , we expect that most code
constructions will work equally well with the check-Poisson
degree distribution (as α→ ∞) and the check-regular distribu-
tion (as d→ ∞). This is not guaranteed, however, because it
is easy to construct function sequences where limd→∞ ad ∈ P
does not imply that there exists any d <∞ such that ad ∈ P .
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C. Channel G-functions

The purpose of the following three sections is to present and
discuss properties of channel G-functions for three different
channel EXIT functions. The discussion focuses mainly on
the conditions required by Theorem 4 to prove the non-
negativity of L for that channel and a particular check degree
distribution. In each case, the main result is the range of
channel parameters for which we can prove L ∈ P . There is
also some discussion of channel parameters where numerical
results can show conversely that L /∈ P .

1) The Dicode Erasure Channel: For the DEC, the G-
function GDEC(ε)(x) is computed in Appendix C-A and is
given by

GDEC(ε)(x) =
2x

(1 + ε) + (1 − ε)x

= − 2
1 − ε

∞∑
n=1

(
−1 − ε

1 + ε
x

)n

. (31)

Applying Theorem 4, we see that if Q̃ − 1−ε
1+ε Q̃

2 ∈ P then
L ∈ P . Using Lemma 5 for the check-Poisson ensemble, we
see that this requires 1−ε

1+ε < 3
10 or ε > 7/13. In fact, this

condition is tight and ε < 7/13 implies that L has a negative
power series coefficient.

2) The Precoded Dicode Erasure Channel: For the pre-
coded DEC, the G-function GpDEC(ε)(x) is computed in
Appendix C-B and is given by

GpDEC(ε)(x)=
εx

1 + ε
+

√
1 − ε

1 + ε
x

√
1 +

ε2x

1 − ε2
(32)

=
εx

1 + ε
+

√
1 − ε

1 + ε
x

∞∑
n=0

(1
2

n

)(
ε2x

1 − ε2

)n

.

Since
(

1/2
n+1

) ≥ −(1/2
n

)
for odd n, we can apply Theorem 4

to G(x) = −1+
√

1 + ε2x
1−ε2 . Therefore, if

√
Q̃ ∈ P and Q̃−

ε2

1−ε2 Q̃
2 ∈ P then L ∈ P . For the check-Poisson ensemble,

this requires ε <
√

3
13 so that ε2

1−ε2 < 3
10 . This condition,

however, is not tight. Using Theorem 5, we have a computer

assisted proof that L ∈ P for ε ≤
√

1
2 . Numerical results also

prove that ε ≥ 0.83 implies L /∈ P and suggest that ε < 0.82
implies L ∈ P .

3) The Simple Linear Channel: Since we can use the sim-
ple linear function f(x) = ax+b as a first order approximation
of any other channel EXIT function, we also consider this
channel. The G-function Glin(x) is computed in Appendix
C-C and is given by

Glin(x) =
b

a

(√
1 +

2a
b2

(a
2

+ b
)
x− 1

)

=
b

a

∞∑
n=1

(1
2

n

)(
2a
b2

(a
2

+ b
)
x

)n

.

Since
(

1/2
n+1

) ≥ −(1/2
n

)
for odd n, we can apply Theorem

4. This shows that, if Q̃ ∈ P and Q̃ − 2a
b2

(
a
2 + b

)
Q̃2 ∈ P ,

then L ∈ P . For the check-Poisson ensemble, this means that

a <
(√

13
10 − 1

)
b implies 2a

b2

(
a
2 + b

)
< 3

10 and L ∈ P .

Numerical results also prove that a ≥ 0.49 b implies L /∈ P
and suggest that a ≤ 0.48 b implies L ∈ P . We also note
that, if b = 0, then Glin(x) =

√
x and L ∈ P if and only if√

Q̃ ∈ P .

D. General Code Sequences

For general code sequences, it is necessary to show that each
element in the sequence is in P and that the rate tends to the
SIR. The basic idea is to start with a sequence of check degree
distributions and apply Theorems 1 and 2. For a sequence of
functions

{
a(k)(x)

}
, we define the sequence of power series

expansions by a(k)(x) =
∑∞

i=0 a
(k)
i xi. The following lemma

gives a condition sufficient to show the rate approaches the
SIR.

Let
{
ρ(k)(x)

}
be a sequence of check degree distributions

with ρ(k)(0) = 0 and average degree rk = 1/
∫ 1

0
ρ(k)(x)dx.

Let
{
L(k)(x)

}
be the associated sequence of bit degree

distributions defined by Theorem 1. If L(k) ∈ P for all k ≥ k0,
then we can apply Theorem 2 to get the implied sequences
{Mk} and {δk}. If δk → 0, then the sequence of codes
achieves the SIR. The following Lemma provides a sufficient
condition for a sequence of codes to achieve the SIR.

Lemma 7: If the sequence of derivatives
{
L(k) ′(x)

}
satis-

fies L(k) ′ ∈ P for all k ≥ k0, then L(k) (1;Mk) ≥ 1 − rk

Mk

and rk

Mk
→ 0 implies that δk = O

(
rk

Mk

)
→ 0.

Proof: If L(k) ′ ∈ P , then we can use (8) and (22) to
write

L(k) ′(1) =
∞∑

i=1

L
(k)
i i

=
rkF (1)
f(1)

≤ rk,

where the last step follows from F (1) ≤ f(1). Therefore, we
have

1 − L(k) (1;Mk) ≤
∞∑

i=�Mk�
L

(k)
i

≤ 1
Mk

∞∑
i=�Mk�

L
(k)
i i

≤ rk
Mk

.

Since δk = 1−L(k)(1;Mk)
L(k)(1;Mk)

, we find that rk

Mk
→ 0 implies δk =

O
(

rk

Mk

)
→ 0.

Lemma 8: The truncation point M in Theorem 2 can be
lower bounded by solving for M in the inequality

Q′
(

M

M+1

)
≥
{
e−1f(0) if f(0)>0

e−1f
(
F−1

(
F (1)Q( 1

2 )

Q(1)

))
if L1<

F (1)
Q(1)

.

Proof: Using the fact that L ∈ P , we have the upper
bound (for x ∈ (0, 1])
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TABLE I
CHECK-POISSON RESULTS FOR THE DEC WITH ε = 2

3
.

Mk αk rk δk

10 4.73 4.77 0.0815
20 5.73 5.75 0.0408
40 6.76 6.77 0.0205
80 7.81 7.81 0.0103

160 8.87 8.87 0.0052

L′(1;M − 1) ≤
�M�∑
i=1

Lii

≤ x−�M�+1

�M�∑
i=1

Liix
i−1

≤ x−ML′(x).

Since
(
1 − 1

M+1

)−M

≤ e (for M ≥ 1) and L′(1;M − 1) =
F (1)/Q(1), we can choose x = 1 − 1

M+1 to get

F (1)
Q(1)

≤ e L′
(

1 − 1
M + 1

)

=
e F (1)
Q(1)

Q′
(
1 − 1

M+1

)
f
(
F−1

(
F (1)Q

(
1 − 1

M+1

)
/Q(1)

)) .
To get the final result, we start by solving for Q′

(
1 − 1

M+1

)
.

If f(0) > 0, then the expression is simplified by using
f(x) ≥ f(0). If L1 < F (1)/Q(1), then the expression is
simplified by noting that truncation point satisfies M ≥ 1 so
that Q

(
1 − 1

M+1

)
≥ Q

(
1
2

)
.

Remark 3: For check-Poisson and check-regular codes, ap-
plying Lemma 8 shows the truncation point Mk grows ex-
ponentially with the average right degree rk for channels
with f(0) > 0. For the check-Poisson sequence, we have
Q(k) ′(x) = − 1

αk
ln(1 − x) where the average right degree

satisfies αk ≤ rk ≤ 2αk for αk ≥ 1. Applying Lemma 8 for
αk ≥ 1 gives

Mk ≥ eαke−1f(0) − 1 ≥ erke−1f(0)/2. (33)

For the check-regular sequence, we have Q(k) ′(x) = 1− (1−
x)1/(rk−1) and this gives

Mk ≥
(

1
1 − e−1f(0)

)rk−1

.

Therefore, check-regular sequences, which satisfy the condi-
tions of Lemma 7, have rates approaching the SIR exponen-
tially fast in the average right degree.

Example 2: A closed-form expression for L(x) is obtained
for check-Poisson codes on the DEC by combining (28) and
(31) to get

L(x)=
2 (x+ (1 − x) log(1 − x))

(1 + ε) + (1 − ε) (x+ (1 − x) log(1 − x))
.

Using the methods of [43], one can show that LM =
O
(
M−2

)
so that 1 − L(1;M) = O(M). Combining this

TABLE II
CHECK-REGULAR RESULTS FOR THE PRECODED DEC WITH ε = 2

3
.

rk Mk δk

3 4 0.0338
4 10 0.1100
5 27 0.0113
6 78 0.0039
7 223 0.0014
8 632 0.0005

with (33) implies the gap to capacity decays exponentially
with the average check degree. A sequence of codes is easily
constructed, for each k, by choosing an integer truncation
point Mk and then calculating αk and δk from L′(1;M−1) =
αkF (1) and 1

1+δk
= L(1;Mk). Table I gives numerical results

for the sequence of codes (i.e., Mk, αk, rk, δk) when ε = 2
3 .

Example 3: For the check-regular sequence ρ(k)(x) =
xk−1 and the precoded DEC, we can write the expression for
the sequence L(k)(x) by combining (29) and (32). Using the

fact that L(k)
1 = L(k) ′(0) =

√
k

10k−10 < kF (1) for k ≥ 2,
one can combine Lemmas 7 and 8 to show that the gap to
capacity decays exponentially with the check degree. Table II
gives numerical results for k = 3, . . . , 8 (i.e., rk,Mk, δk) and
ε = 2

3 .

V. RESULTS FOR ARBITRARY GECS

A. The Existence of Arbitrary GECs

From what we have discussed so far, it is not clear that the
set of GECs contains anything more than the DEC with and
without precoding. Nothing in our analysis, however, prevents
us from considering the much larger family of GECs implied
by any non-decreasing f(x) which maps the interval [0, 1] into
itself. Moreover, we believe that it is possible to construct,
albeit somewhat artificially, a binary-input GEC for any such
f(x). This would mean that, in some sense, there is a GEC
for every well-defined EXIT function.

The EXIT function of a GEC is defined as mapping from
the a priori erasure probability of the channel decoder to
the erasure probability of the extrinsic output. If the a priori
messages from the code to the channel decoder are divided
randomly into two groups of equal size, then the erasure
probability in the two groups will be the same. Now, suppose
that these groups of bits are sent through different GECs.
In this case, the extrinsic messages from the first channel
will have erasure probability f1(x) and the extrinsic messages
from the second channel will have erasure probability f2(x).
Since the two groups were chosen at random, the average
erasure probability of all the extrinsic messages passed back
to the code will be (f1(x) + f2(x)) /2. This idea of linearly
combining channels was first introduced in the context of
EXIT charts and doping [44]. It also extends naturally to an
arbitrary weighted combinations of GECs.

Now, consider the performance of a length-2k rate- 1
2 binary

linear code where each entry in the generator matrix is chosen
uniformly from {0, 1}. It is well-known that this code will
decode (with high probability) if the erasure rate is less than
1
2 and fail to decode (with high probability as k → ∞) if
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the erasure rate is greater than 1
2 . We would also like to to

characterize the threshold of a code whose systematic bits
are erased with probability x and the non-systematic bits are
erased with probability y. To do this, we recall that a uniform
random c × d binary matrix is full rank with probability
ψc,d =

∏c−1
j=0

(
1 − 2j−d

)
for c ≤ d (e.g., [31, Prob. 3.20]).

This implies that a submatrix consisting of any set of k+log2 k
columns will be full rank with probability ψk,k+log2 k → 1 as
k → ∞. Therefore, a maximum likelihood decoder should
be able to recover (by inverting the matrix associated with
erased bits) all of the systematic bits as long as the average
bit erasure rate, x+y

2 , is less than 1
2 . If the average erasure rate

is larger than 1
2 , then there will be, with probability 1, some

systematic bits which cannot be recovered. Applying the area
theorem shows that the limiting extrinsic erasure rate, at the
output of an APP decoder for this code, must be given by
function

U(x+ y − 1) =
{

0 if x+ y < 1
1 if x+ y > 1 ,

where U(x) is the unit step function and U ′(x) is the Dirac
delta function. In this case, the value U(0) is probably best
defined as 1

2 because the variation in the number of erasures
is O(

√
k) while the transition width for decoding is O(log k).

Therefore, with x+ y = 1 decoding will succeed exactly half
the time as k → ∞.

This ensemble of codes can be treated as a GEC whose
inputs are the systematic bits and whose outputs are the parity
bits. In this case, the EXIT function of the GEC with parameter
y and a priori erasure rate x is given by U(x+ y− 1). If we
choose the pdf of the channel erasure rate y to be

w(y) = f(0)U ′(1 − y) + f ′(1 − y) + (1 − f(1))U ′(y),

then
∫ 1+

0− w(y)dy = 1 and the average EXIT function is given

by
∫ 1+

0− w(y)U(x+y−1)dy. Using the substitution z = 1−y
and integrating by parts shows that∫ 1+

0−
w(y)U(x+ y − 1)dy = f(x) + (1 − f(1))U(x− 1),

which equals f(x) for9 x ∈ [0, 1). This means that any differ-
entiable f(x) can be approximated arbitrarily well by a linear
combination of long systematic rate- 1

2 codes. Furthermore, this
construction of an arbitrary channel EXIT function allows the
results of Sections III and IV to be applied (in a somewhat
meaningful way) to any suitably analytic non-decreasing f(x).

B. General Channels

In this section, we discuss some implications of this work
on the joint iterative decoding of LDPC codes for general
channels with memory. Of course, the design of capacity-
achieving codes for general memoryless channels still remains
an open problem. On one hand, this would appear to make
the same problem for general channels with memory more
difficult. On the other hand, allowing memory enlarges the
space of possible channels and therefore it may be possible to
solve the problem for a particularly “nice” channel.

9The problematic point x=1 is defined via f(1)�limx→1−f(x).

We can also gain some insight into the stability condition
for general channels with memory. Consider a general channel
with memory which remains noisy even in the presence of
perfect a priori information. This is analogous to a GEC with
f(0) > 0. In this case, the stability condition is determined by
the LLR density returned by the channel given perfect a priori
information. For a GEC, this follows from the fact that (18)
is the stability condition for an erasure channel with erasure
probability f(0). Let P0(x) be the LLR density at the extrinsic
output of the channel decoder, for a general channel, when
perfect a priori information is passed to the decoder. As long
as P0(x) does not have perfect information itself (i.e., it is not
equal to a delta function at infinity), then the stability condition
is given by applying the memoryless channel condition from
[3] to P0(x). This makes sense because, when the joint
decoder is near convergence, the LLRs passed as a priori
information to the channel decoder are nearly error free. A
more rigorous analysis of this phenomenon is given in [25, p.
183].

VI. CONCLUDING REMARKS

In this paper, we considered the joint iterative decoding
of irregular LDPC codes and channels with memory. We
introduce a new class of erasure channels with memory,
which we call generalized erasure channels (GECs). For these
channels, we derive a single parameter recursion for density
evolution of the joint iterative decoder. This allows us to state
necessary and sufficient conditions for decoder convergence
and to algebraically construct sequences of LDPC degree
distributions which approach the symmetric information rate
of the channel. This proves that the SIR is actually achievable
via iterative decoding. This leaves two even bigger questions:

• Is it possible to construct degree distribution sequences
which achieve the SIR for any GEC?

• Can this approach be extended to general channels using
GEXIT functions?
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APPENDIX A
ANALYSIS OF THE BCJR DECODER FOR THE DEC

A. The Dicode Erasure Channel without Precoding

In this section, we compute the extrinsic erasure rate of a
BCJR detector, for a DEC without precoding, as an explicit
function of the channel erasure rate ε and the a priori erasure
rate x. This is done by analyzing the forward recursion, the
backward recursion, and the output stage separately. We note
that expanding the decoder to consider a priori information is
very similar to expanding the alphabet of our channel. Let Wt

and Yt be the a priori symbol and channel output received
at time t, respectively. In this case, the decoder sees both
the channel output Yt ∈ {−, 0,+, e} and an a priori symbol
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Wt ∈ {0, 1, e} (i.e., an observation of the channel input Xt

through a BEC with erasure probability x).
Since the channel has only two states, the forward state

probability vector α(t) =
[
α

(t)
0 α

(t)
1

]
has only one degree of

freedom and it suffices to consider the quantity α(t) � α
(t)
0 =

1 − α
(t)
1 = Pr(St = 0|W t−1

1 , Y t−1
1 ). The real simplification,

however, comes from the fact that the distribution of α(t) has
finite support when X is chosen uniformly from {0, 1}. Using

this, we define the matrix
[
A

t

]
ij

= Pr(St+1 = j,Wt, Yt|St =

i) and write the forward recursion as

α(t+1) =
α(t)A

t∥∥∥α(t)A
t

∥∥∥
1

.

It is easy to verify that this recursion is identical to the simpler
recursion,

α(t+1) =

8><
>:

1
2

if Yt = e and Wt = e

α(t) if Yt = 0 and Wt = e
0 if Yt = + or Wt = 1
1 if Yt = − or Wt = 0

.

Using the simple recursion, we see that, for all t ≥
min {i ≥ 1|Yi �= 0 or Wi �= e}, α(t) will be confined to the
finite set

{
0, 1

2 , 1
}

.
The symmetry of the input process actually allows us

to consider even a smaller support set. The real difference
between the three α values in the support set is whether
the state is known perfectly or not. Accordingly, we define
the known state set K � {0, 1} and the unknown state
set U �

{
1
2

}
. When α(t) ∈ K, the state is known with

absolute confidence, while α(t) = U corresponds to no prior
knowledge. The symmetry of the input process implies that

Pr(α(t) =0|α(t)∈K) = Pr(α(t) =1|α(t)∈K) =
1
2
.

Therefore, the steady state probability of α(t) can be computed
using a reduced Markov chain with states K and U . The
reduced Markov chain transitions from state K to state U only
if W = e and Y = e, and this implies

Pr(α(t+1)∈U|α(t)∈K) =1 − Pr(α(t+1)∈K|α(t)∈K)
=εx.

The reduced Markov chain transitions from state U to state U
only if W = e and Y ∈ {e, 0}, and this implies

Pr(α(t+1)∈U|α(t)∈U) =1 − Pr(α(t+1)∈K|α(t)∈U)

=x
(
ε+

1 − ε

2

)
.

Therefore, the steady state probability pα(·) is the unique
normalized non-negative solution of

»
pα(K)
pα(U)

–T »
1 − εx εx

1 − x(1+ε)
2

x(1+ε)
2

–
=

»
pα(K)
pα(U)

–T

,

given by pα(U) = 1 − pα(K) = 2εx
2−x(1+ε)+2εx .

The backward recursion is analyzed in an almost identical
manner. Let the backward state probability vector be β(t) =[
β

(t)
0 β

(t)
1

]
. In this case, it suffices to consider the quantity

β(t) � β
(t)
0 = 1 − β

(t)
1 = Pr(St = 0|Wn

t , Y
n
t ). If we let

[
B

t

]
ij

= Pr(St = j,Wt, Yt|St+1 = i), then we can write the

backward recursion as

β(t−1) =
β(t)B

t∥∥∥β(t)B
t

∥∥∥
1

.

Again, the recursion can be simplified and we have

β(t−1) =

8><
>:

1
2

if Yt = e

β(t) if Yt = 0 and Wt = e
1 if Yt = + or (Yt = 0 and Wt = 0)
0 if Yt = − or (Yt = 0 and Wt = 1)

.

Using the simpler recursion, we see that, for all t ≥
min {i ≥ 1|Yi �= 0}, β(t) will be confined to the finite set{
0, 1

2 , 1
}

.
Again, we use symmetry to reduce the Markov chain. The

reduced Markov chain transitions from state K to the state U
if Y = e, and this implies that

Pr(β(t+1)∈U|β(t)∈K) =1 − Pr(β(t+1)∈K|β(t)∈K)
=ε.

The reduced Markov chain transitions from state U to state U
if: (i) Y = e or (ii) W = e and Y = 0. This means that

Pr(β(t+1)∈U|β(t)∈U) =1 − Pr(β(t+1)∈K|β(t)∈U)

=ε+ x
1 − ε

2
.

Therefore, the steady state probability pβ(·) is the unique
normalized non-negative solution of

»
pβ(K)
pβ(U)

–T »
1 − ε ε

1 − 2ε+x(1−ε)
2

2ε+x(1−ε)
2

–
=

»
pβ(K)
pβ(U)

–T

,

given by pβ(U) = 1 − pβ(K) = 2ε
(1−ε)(2−x)+2ε .

Now, we consider the output stage of the BCJR algorithm
for the DEC without precoding. At any point in the trellis,
there are now four distinct possibilities for forward/backward
state knowledge: (K/K), (K/U), (U/K), and (U/U). At the
extrinsic output of the decoder, the respective erasure proba-
bility conditioned on each possibility is: 0, ε, 0, and (1+ε)/2.
Therefore, the erasure probability of the extrinsic output of the
BCJR is

Pe = pβ(U)
(
ε pα(K) +

1 + ε

2
pα(U)

)
=

4ε2

(2 − x(1 − ε))2
.

Decoding without a priori information is equivalent to choos-
ing x = 1, and the corresponding expression simplifies to
4ε2/(1 + ε)2.

B. The Dicode Erasure Channel with Precoding

In this section, we compute the extrinsic erasure rate of
the BCJR decoder, for the DEC using a 1/(1 ⊕D) precoder,
as an explicit function of the channel erasure rate, ε, and
the a priori erasure rate, x. This is done by analyzing the
forward recursion, the backward recursion, and the output
stage separately.
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Our approach is the same as that of Section A-A, and
this allows us to skip some details and give immediately the
simplified forward recursion

α(t+1) =

8>>><
>>>:

1
2

if Yt = e and Wt = e

α(t) if Yt = 0 or Wt = 0

1 − α(t) if Yt = e and Wt = 1
0 if Yt = +
1 if Yt = −

.

Using this, we see that, for all t ≥ min {i ≥ 1|Yi �= 0}, α(t)

will be confined to the finite set
{
0, 1

2 , 1
}

.
Again, the steady state probability of α(t) can be computed

using a reduced Markov chain with states K and U . The
reduced Markov chain transitions from state K to state U only
if W = e and Y = e, and this implies

Pr(α(t+1)∈U|α(t)∈K) =1 − Pr(α(t+1)∈K|α(t)∈K)
=εx.

The reduced Markov chain transitions from state U to state K
only if Y ∈ {+,−}, and this implies

Pr(α(t+1)∈K|α(t)∈U) =1 − Pr(α(t+1)∈U|α(t)∈U)

=
1 − ε

2
.

Therefore, the steady state probability pα(·) is the unique
normalized non-negative solution of»

pα(K)
pα(U)

–T »
1 − εx εx

1−ε
2

1+ε
2

–
=

»
pα(K)
pα(U)

–T

,

given by pα(K) = 1 − pα(U) = 1−ε
1−ε+2εx .

The precoded case is also simplified by the fact that the state
diagram of the precoded channel is such that time reversal is
equivalent to negating the sign of the output. Therefore, the
statistics of the forward and backward recursions are identical
and pβ(K) = 1 − pβ(U) = pα(K).

Now, we consider the output stage of the BCJR algorithm
for the precoded DEC. At any point in the trellis, there
are now four distinct possibilities for forward/backward state
knowledge: (K/K), (K/U), (U/K), and (U/U). At the ex-
trinsic output of the decoder, the respective erasure probability
conditioned on each possibility is: 0, ε, ε, and ε. Therefore,
the erasure probability of the extrinsic output of the BCJR is

Pe = ε (1 − pα(K)pβ(K))

= ε

(
1 − (1 − ε)2

(1 − ε+ 2εx)2

)
=

4ε2x(1 − ε(1 − x))
(1 − ε(1 − 2x))2

.

Again, decoding without a priori information is equivalent to
choosing x = 1, and the corresponding expression simplifies
to 4ε2/(1 + ε)2.

APPENDIX B
PROPERTIES OF Q̃

A. General

In this section, we consider a property of the function
Q̃ ∈ P , defined in (27), for the check-Poisson and check-
regular degree distribution. This property is crucial to proving

that our algebraic construction of L is indeed a degree distribu-
tion (i.e., L ∈ P). To simplify some expressions, we will use[
xk
]

as an operator which returns the coefficient of xk in the
power series expansion of a function (e.g.,

[
xk
]
L(x) = Lk).

In particular, we are interested in computing the largest γ
such that

[
xk
] (
Q̃(x) − γQ̃(x)2

)
≥ 0 for k ≥ 0. Solving for

γ implies the bound

gk �

[
xi
] (
Q̃(x)2

)
[xi] Q̃(x)

≤ 1
γ

and, using the fact that
[
xi
] (
Q̃(x)2

)
= 0 for i < 4, allows

us to write

γ = inf
i≥4

(
g−1

i

)
=
(

sup
i≥4

gi

)−1

.

B. The Poisson Check Distribution

In this section, we prove that γ = 3
10 for Q̃(x) = x+ (1−

x) log(1 − x). We start by computing the power series of Q̃
and Q̃2. First, we compute the power series of Q̃ with

Q̃(x) =
∫ x

0

Q̃′(t)dt

= −
∫ x

0

log(1 − t)dt

=
∞∑

i=1

∫ x

0

1
i
tidt

=
∞∑

i=1

1
i(i+ 1)

xi+1dt

=
∞∑

i=2

1
i(i− 1)

xi. (37)

Next, we consider the quantity Q̃2 and write

Q̃(x)2 = x2 + 2x(1 − x) log(1 − x) + (1 − x)2 log2(1 − x).

The power series of log2(1 − x) can be computed with

log2(1 − x) =
∫ x

0

(
d

dt
log2(1 − t)

)
dt

=
∫ x

0

−2 log(1 − t)
1 − t

dt

= 2
∫ x

0

( ∞∑
i=0

ti

)⎛⎝ ∞∑
j=1

1
j
tj

⎞⎠ dt

= 2
∫ x

0

∞∑
i=0

∞∑
j=1

1
j
ti+jdt

= 2
∞∑

i=1

Hi

∫ x

0

tidt

=
∞∑

i=2

2Hi−1

i
xi, (38)

where Hj =
∑j

i=1(1/i) is the harmonic sum. Now, we can
substitute the power series (37) and (38) into the formula for
Q̃2. This gives (34), and we note that terms of degree less
than 4 are dropped as needed.
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Using (37) and (34), we can write

gi =

[
xi
] (
Q̃(x)2

)
[xi] Q̃(x)

=
(

4Hi−3 + 2i− 6
i(i− 1)(i− 2)

)(
1

i(i− 1)

)−1

=
4Hi−3 + 2i− 6

i− 2
.

The forward difference of this sequence is given by

gi+1 − gi =
4Hi−2 + 2i− 4

i− 1
− 4Hi−3 + 2i− 6

i− 2

=
6 − 4Hi−3

(i− 1)(i− 2)
.

We see that gi+1−gi ≤ 0 for i ≥ 5 because (i−1)(i−2) > 0
and 6 − 4Hi−3 ≤ 0 in this range. Since gi is non-increasing
for i ≥ 5, this means that we can reduce the range of the
supremum and write

γ =
(

sup
4≤i≤5

gi

)−1

.

Therefore, evaluating g4 = 3 and g5 = 10/3 shows that γ =
3/10.

C. The Regular Check Distribution

In this section, we prove that γd is given by (30) for Q̃(x) =
x− (d− 1)(1−x)

(
1 − (1 − x)1/(d−1)

)
. We start by defining

α = 1
d−1 and computing the power series of Q̃ and Q̃2. First,

we compute the power series of Q̃ using the binomial theorem
to get [

xk
]
Q̃(x) =

{
1
α

(
α+1

k

)
(−1)k if k ≥ 2

0 otherwise
.

Likewise, we can compute the power of Q̃2 by first squaring
and then applying the binomial theorem. First, we square Q̃
to get (35).

Next, we apply the binomial theorem (dropping all terms
of degree less than 4) to get (36) for k ≥ 4. This allows us to
write the ratio sequence as

gk(α) =
[xk]

(
Q̃(x)2

)
[xk]Q̃(x)

=
2
α

(
kα+ α+ 2
k − α− 2

)
+

1
α

(
2α+2

k

)(
α+1

k

)
=

2(k + 1)
k − α− 2

+

(
4

α(k−α−2)
+

1
α

(
2α+2

k

)(
α+1

k

) )

� 2(k + 1)
k − α− 2

+ hk(α).

The main difficulty with this expression lies in the ratio of
binomial coefficients in hk(α). To deal with this, we write(

2α+2
k

)(
α+1

k

) =
k−1∏
i=0

2α+ 2 − i

α+ 1 − i

=

(
4∏

i=0

2α+ 2 − i

α+ 1 − i

)(
k−1∏
i=5

i− 2α− 2
i− α− 1

)

= − 8 − 32α2

α2 − 5α+ 6
Γ(4 − α)
Γ(3 − 2α)

Γ(k − 2α− 2)
Γ(k − α− 1)

.

Using the main result of [45], we find that

Γ(k − 2α− 2)
Γ(k − α− 1)

≥
(
k − 3

2
α− 2

)−1−α

≥ (k − α− 2)−1−α

Q̃(x)2 = x2 + 2x

(
−x+

∞∑
i=2

1
i(i− 1)

xi

)
+ (1 − x)2

∞∑
i=2

2Hi−1

i
xi

=
∞∑

i=4

2
(i− 1)(i− 2)

xi +
∞∑

i=4

2Hi−1

i
xi − 2x

∞∑
i=3

2Hi−1

i
xi + x2

∞∑
i=2

2Hi−1

i
xi

=
∞∑

i=4

2
(i− 1)(i− 2)

xi +
∞∑

i=4

2Hi−1

i
xi −

∞∑
i=4

4Hi−2

i− 1
xi +

∞∑
i=4

2Hi−3

i− 2
xi

=
∞∑

i=4

(
2

(i− 1)(i− 2)
+

2Hi−1

i
− 4Hi−2

i− 1
+

2Hi−3

i− 2

)
xi

=
∞∑

i=4

4Hi−3 + 2i− 6
i(i− 1)(i− 2)

xi. (34)

Q̃(x)2 =
(
α+ 1
α

)2

x2 − 2(α+ 1)
α2

x
(
1 − (1 − x)α+1

)
+

1
α2

(
1 − (1 − x)α+1

)2
=
(
α+ 1
α

)2

x2 − 2(α+ 1)
α2

x
(
1 − (1 − x)α+1

)
+

1
α2

− 2
α2

(1 − x)α+1 +
1
α2

(1 − x)2α+2

=
(
α+ 1
α

)2

x2 −
(

2(α+ 1)x− 2
α2

)(
1 − (1 − x)α+1

)
+

1
α2

(
1 + (1 − x)2α+2

)
. (35)
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for α ∈ [
0, 1

2

]
and k ≥ 4. This allows us to define gk(α) �

2(k+1)
k−α−2 + hk(α) and

hk(α)� 4
α(k−α−2)

[
1−

(
2−8α2

)
Γ(4−α) (k−α−2)−α

(α2−5α+6)Γ(3−2α)

]

so that hk(α) ≤ hk(α) and gk(α) ≤ gk(α). Taking the
derivative of hz+α+2(α) with respect to z shows that, for
α ∈ [

0, 1
2

]
, hk(α) is strictly decreasing in k if

k ≥ 2 + α+

(
(1 + α)

(
2 − 8α2

)
α2 − 5α+ 6

Γ(4 − α)
Γ(3 − 2α)

)1/α

.

Taking the maximum of this expression over α ∈ [
0, 1

2

]
shows

that hk(α) is strictly decreasing in k for k ≥ 14. Taking the
maximum of h14(α), for α ∈ [

0, 1
2

]
, shows that hk(α) ≤

h14

(
1
2

)
= 16

23 for k ≥ 14. This implies that

sup
k≥14,α∈[0, 1

2 ]
gk(α) ≤ sup

k≥14,α∈[0, 1
2 ]
gk(α)

≤ 16
23

+ sup
k≥14,α∈[0, 1

2 ]

2(k + 1)
k − α− 2

=
76
23
.

Analyzing max4≤k≤14 gk(α), for α ∈ [
0, 1

2

]
, by computer

shows that the maximum is always greater than 76
23 and

determined by either g4(α) or g5(α). A bit of algebra (via
Mathematica) allows us to write

sup
k≥4

gk(α) =

{
20(α+1)

α2−5α+6 if 0 ≤ α ≤ 1
7

6(α+1)
α2−3α+2 if 1

7 ≤ α ≤ 1
2

.

The conclusion of Lemma 6 is obtained by simplifying the
expression for

γd =
[
sup
k≥4

gk

(
1

d− 1

)]−1

.

APPENDIX C
THE DERIVATION OF CHANNEL G-FUNCTIONS

A. The DEC

Starting with (3), the definition of F gives

FDEC(ε)(x) =
∫ x

0

4ε2

(2 − t(1 − ε))2
dt

=
2xε2

2 − (1 − ε)x
.

Solving for the inverse shows that

F−1
DEC(ε)(x) =

2x
2ε2 + (1 − ε)x

.

Finally, computing the G-function results in

GDEC(ε)(x) = F−1
DEC(ε)

(
FDEC(ε)(1)x

)
=

4ε2

1+εx

2ε2 + (1 − ε) 2ε2

1+εx

=
2x

(1 + ε) + (1 − ε)x

= − 2
1 − ε

∞∑
n=1

(
−1 − ε

1 + ε

)n

xn.

B. The Precoded Dicode Erasure Channel

Starting with (4), the definition of F gives

FpDEC(ε)(x) =
∫ x

0

4ε2t (1 − ε(1 − t))
(1 − ε(1 − 2t))2

dt

=
2ε2x2

1 − ε(1 − 2x)
.

Solving for the inverse shows that

F−1
pDEC(ε)(x) =

x+
√

2(1 − ε)x+ x2

2ε

=
x+

√
2(1 − ε)x

√
1 + x

2(1−ε)

2ε
.

Computing the G-function gives

GpDEC(ε)(x) = F−1
pDEC(ε)

(
FpDEC(ε)(1)x

)
=

εx

1 + ε
+

√
(1 − ε)x

1 + ε

√
1 +

ε2x

(1 − ε2)
,

which can be rewritten as

GpDEC(ε)(x)=

√
1 − ε

1 + ε
x

∞∑
n=0

(1
2

n

)(
ε2x

(1 − ε2)

)n

+
εx

1 + ε
.

C. The Linear Channel f(x) = ax+ b

The definition of F shows that

Flin(x) =
ax2

2
+ bx

[
xk
] (
Q̃(x)2

)
=

2(α+ 1)
α2

(
α+ 1
k − 1

)
(−1)k−1 − 2

α2

(
α+ 1
k

)
(−1)k +

1
α2

(
2α+ 2
k

)
(−1)k

=
2(α+ 1)
α2

(
α+ 1
k

)
k

k − α− 2
(−1)k − 2

α2

(
α+ 1
k

)
(−1)k +

1
α2

(
2α+ 2
k

)
(−1)k

=
2
α2

(
(α+ 1)k

(k − α− 2)
− 1

)(
α+ 1
k

)
(−1)k +

1
α2

(
2α+ 2
k

)
(−1)k. (36)
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Using the quadratic formula, we see that the inverse is

F−1
lin (x) =

−b+
√
b2 + 2ax
a

=
b

a

(√
1 +

2ax
b2

− 1

)

=
b

a

∞∑
n=1

( 1
2

n

)(
2ax
b2

)n

.

Computing the G-function gives

Glin(x) = F−1
lin (F (1)x)

=
b

a

∞∑
n=1

(1
2

n

)(
2a
b2

(a
2

+ b
)
x

)n

.
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