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Abstract— This paper proposes a new approach for decoding
LDPC codes over MISO channels. Since in an nT × 1 MISO
system with a modulation of alphabet size 2M, nT transmitted
symbols are combined and produce one received symbol at the
receiver, we propose considering the LDPC-coded MISO system
as an LDPC code over 2MnT -ary alphabet. Consequently, we
propose a modified Tanner graph to introduce belief propagation
for decoding MISO-LDPC systems. As a result, the MISO
symbol detection and binary LDPC decoding steps are merged
into a single message passing decoding. We also propose an
efficient method that significantly reduces the complexity of belief
propagation decoding in MISO-LDPC systems. Furthermore, we
show that our proposed decoder outperforms the conventional
decoder for short length LDPC codes in unknown channel
scenarios.

I. INTRODUCTION

Due to the increasing demand for multimedia data trans-
mission in wireless mobile systems, there is an evident need
for increasing the spectral efficiency of cellular systems. With
their high spectral efficiency, MISO (multiple-input single-
output) systems appear to be a crucial part of future cellular
systems. Moreover, spatial diversity obtained by multiple
transmit antennas is often indispensable for mitigation of the
effects of the fading in wireless channels [1].

LDPC (low-density parity-check) codes are known for their
superb error correction performance [2], [3]. With their near
capacity performance [4], LDPC codes are among the most
promising forward error correction schemes for wireless sys-
tems.

In this research, we propose a new scheme for joint de-
tection and decoding of LDPC-coded MISO systems. Joint
detection and decoding in MIMO-LDPC1 systems, using a
turbo architecture, has been studied in several papers (such
as [5], [6]). They considered the MIMO symbol detector as
the first decoder component of the turbo architecture and the
LDPC decoder as the second decoder component. We consider
this scheme as a reference for our comparisons and refer to it
as the turbo-type receiver.

For the purpose of improving performance, we propose
a new scheme for joint detection and decoding, which is
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1Note that MISO-LDPC is a special case of MIMO-LDPC.

based on considering the MISO-LDPC system as a 2MnT -
ary LDPC code, an LDPC code over 2MnT -ary alphabet. We
treat the received bits as a single symbol, then consider the
whole system as a 2MnT -ary LDPC code. We also introduce
a modified Tanner graph that represents the MISO-LDPC
system. It will be shown that BP (belief propagation) over the
modified graph outperforms the traditional scheme in short
length codes.

Considering the fact that straightforward implementation of
BP (over the modified graph) is computationally intensive, we
also propose a novel edge-based message passing (EBMP)
algorithm that considerably reduces the decoding complexity.

In most practical scenarios, channel state information is
not available at the receiver. Therefore, we also explore the
unknown channel scenario. In particular, we examine the EM
algorithm as a technique to iteratively estimate the channel and
data. It will be shown that, in this case, the proposed scheme
outperforms the existing scheme for short length codes.

The rest of this paper is organized as follows. Section II
outlines the system model. In Section III a three-layer Tanner
graph is introduced to exploit the BP algorithm for decoding
in turbo-type receivers. To eliminate the positive feedback due
to length-4 loops in the three-layer Tanner graphs, Section
IV proposes a novel graph-based representation and a BP
algorithm for decoding MISO-LDPC systems. Section V es-
tablishes a low-complexity implementation of the BP decoding
over the modified graphs. Performance analysis and numerical
comparisons are presented in Sections VI and VII, and Section
VIII concludes the paper.

II. PROBLEM FORMULATION

A. System Model

We consider the standard MISO-LDPC system model, i.e.,

y(k) =

√
Es

nT
C(k)x(k) + n(k), (1)

where nT is the number of transmit antennas and Es represents
the transmitted energy. Here, y(k) is the received symbol, C(k)

is the 1 × nT channel vector at the kth time instant, n(k) is
a sample of Gaussian noise with zero mean and variance Σn,
and x(k) is an nT × 1 vector of transmitted symbols at the
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kth time instant, that contains nT consecutive symbols of the
LDPC codeword, i.e.,

x(k) = [x(k)
1 x

(k)
2 . . . x

(k)
nT ]T . (2)

In (2), x(k)
j (for 1 ≤ j ≤ nT) is a member of the alphabet X,

and corresponds to M consecutive LDPC bits, i.e.,

x
(k)
j = F

(
x(k−1)MnT+( j−1)M+1, . . . , x(k−1)MnT+ jM

)
, (3)

where xl (for 1 ≤ l ≤ N) is the lth bit of an (N, K) LDPC
codeword, and F represents the modulation.

We consider a quasi-static Rayleigh flat fading channel
model, where the channel remains constant during each fading
block and changes independently from block to block (the
block length is equal to the coherence time of the channel).
Two different cases are considered for the channel: channel
known at the receiver and channel unknown at the receiver.

1) Channel Known at the Receiver: Data detection when
the channel is known at the receiver is straightforward. Since
the channel is known, we can calculate the apriori probabilities
and initialize the BP algorithm.

2) Channel Unknown at the Receiver: When the channel
is not known at the receiver, it should first be estimated
before data detection can take place. This is the idea behind
pilot symbol assisted modulation. A set of pilot symbols, p,
is transmitted at the beginning of each block, the receiver
estimates the channel based on the known pilot symbols, and
then it decodes the received codeword using the estimated
channel.

To unify the equations in the unknown channel case, (similar
to [7]) we define:

Xl = [p x(lnD+1) . . . x((l+1)nD)]
Yl = [y(l)

p y(lnD+1) . . . y((l+1)nD)]
Nl = [n(l)

p n(lnD+1) . . . n((l+1)nD)],
(4)

where p is an nT × nP matrix containing the pilot symbols and
Xl is the nT × (nP + nD) matrix of transmitted (pilot and data)
symbols at the lth block (each block contains nP + nD MISO
symbols). Yl and Nl are 1 × (nP + nD) vectors of received
symbols and noise samples at the lth block, respectively.
Furthermore, y(l)

p and n(l)
p are 1 × nP vectors containing

the received signals due to the pilot symbols and Gaussian
noise samples at the first nP time instants of the lth block,
respectively. One can easily show that

Yl =

√
Es

nT
ClXl + Nl , (5)

where Cl is the 1 × nT channel vector at the lth block.
It has been shown that a turbo-EM estimator with the

ability to use the soft output of the decoder outperforms the
conventional MMSE-based channel estimator [8], [9]. So, we
will use the EM algorithm for joint estimation and detection
in the unknown channel case.

Functional
Nodes

Variable 
Nodes

Permutation Check
Nodes

Fig. 1. A three-layer Tanner graph

B. EM Algorithm

After some manipulations, the EM update equations can be
written as follows (similar to [5]):

Ci
l = YlU

H
l R−1

l , (6)

where Ci
l is the ith estimation of Cl . Here Rl =

EXl |Ci
l ,Yl

[
XlXH

l

]
and Ul = EXl |Ci

l ,Yl
[Xl ]. Note that Rl and

Ul are computed using the soft output of the LDPC decoder.
The EM algorithm always converges, but not necessarily to

the global maximum. To avoid the possibility of converging
to a local maximum, the initial conditions should be chosen
with care to ensure that the global maximum is reached.
Hence we use the output of the PSAM (Pilot Symbol Assisted
Modulation) estimator to estimate the channel.

III. GRAPH BASED REPRESENTATION OF TURBO-TYPE

RECEIVER

To exploit message passing algorithms for decoding in
“turbo type” receivers, (similar to [10]) we construct a three-
layer Tanner graph (see Fig. 1), where the second and third
layers are, respectively, variable and check nodes of the LDPC
code. The first layer consists of some “generalized nodes”
which we call functional nodes and represent by triangles
in the Tanner graph. Functional nodes represent the MISO
symbol detectors in the turbo-type receiver. Each functional
node is connected to MnT consecutive LDPC variable nodes
from the second layer of the graph.

It can be shown that decoding with turbo-type receiver, is
formally identical to BP over a three-layer Tanner graph (see
[11], [12] for the proof). Furthermore one can easily see that
appending the functional nodes to the bipartite graph of the
LDPC code (with high probability) introduces a number of
length-4 loops. Thus, BP over the three-layer Tanner graph
(or turbo-type receiver) would suffer from positive feedback.
To address this problem, a modified Tanner graph would be
introduced to represent MISO-LDPC systems. It can be shown
that BP over the modified graph eliminates the length-4 loops
problem [11], [12].
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IV. MODIFIED TANNER GRAPHS

Similar to binary LDPC codes, a modified parity check
matrix and a Tanner graph can be defined for 2MnT -ary
LDPC codes. As in the binary LDPC graph, each column
of the modified parity check matrix represents a modified
variable node. Since variable nodes in a 2MnT -ary LDPC
code correspond to MnT consecutive variable nodes in the
original graph, each column of the modified parity check
matrix represents MnT consecutive columns of the original
parity check matrix. To derive the modified parity check
matrix, we consider each MnT consecutive components in
each row of the original parity check matrix as a binary word
of length MnT , then calculate the equivalent 2MnT -ary value
to determine the corresponding component in the modified
matrix.

The modified parity check matrix can be used to define the
modified Tanner graph. Each Tanner graph has three parts:
variable nodes, check nodes, and the edges connecting the
variable nodes to the check nodes. In order to derive the
modified Tanner graph, we define how each of the three above
mentioned parts are affected.

Variable nodes in the modified Tanner graph correspond to
MnT consecutive variable nodes in the original Tanner graph,
hence the number of variable nodes is 1

MnT
times the number

of the variable nodes in the original graph.
Given that each check node represents one constraint in the

LDPC code, the number of check nodes is not affected by
modifying the graph. However, check nodes in the modified
graph are connected to 2MnT -ary variable nodes instead of
binary variable nodes.

If any of the MnT binary constituent variable nodes of a
2MnT -ary modified variable node are connected to a check
node (in the original graph), there would be an edge connect-
ing the 2MnT -ary variable node to the corresponding modified
check node (in the modified graph).

In the modified Tanner graph, the edges are not all identical.
To differentiate the edges in the modified Tanner graph, we
label them with the corresponding component in the modified
parity check matrix. Example 1 sheds light on the procedure
of deriving the modified parity check matrix and Tanner graph.

Example 1: Deriving the modified parity check matrix and
Tanner graph from the binary parity check matrix when
MnT = 2:

Consider the following binary parity check matrix:

H =




1 0 0 1 1 0 1 0
1 1 0 0 0 1 0 0
0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 0


 . (7)

To derive the modified parity check matrix (when MnT = 2),
we combine every two consecutive columns in the original
parity check matrix and consider them as a column in the
modified parity check matrix. For example, the first two
columns of the first row of the binary parity check matrix
are 10, so there should be a value of 2 in the first row and
first column of the modified parity check matrix.
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Fig. 2. (a) The modified Tanner graph of matrix Ĥ (8), (b) The binary
Tanner graph corresponding to H (7).

Following the same procedure, the rest of the quaternary
parity check matrix can be obtained.

Ĥ =




2 1 2 2
3 0 1 0
0 2 2 1
0 3 1 0


 . (8)

Fig. 2.(a) represents the modified Tanner graph corresponding
to Ĥ. Each quaternary variable node in this graph represents
two consecutive variable nodes in the original Tanner graph.
For example, V̂1 corresponds to v1 and v2 in the original
binary graph (Fig. 2.(b)).

Check nodes in the modified graph represent the same
constraints as in the orginal graph. To determine the constraint
imposed by a check node, we write the corresponding values
for the variable nodes and edges as a binary vector of length
two, then we use the inner product and summation over GF(2)
to determine the constraint. For example, Ĉ1 implies

< 2, x(1) > + < 1, x(2) > + < 2, x(3) > +
< 2, x(4) >= 0 modulo 2,

(9)

where < ., . > represents the inner-product operator over
GF(2). Equation (9) can be rewritten as

[1 0].
[

x1
x2

]
+ [0 1].

[
x3
x4

]
+ [1 0].

[
x5
x6

]
+

[1 0].
[

x7
x8

]
= 0 modulo 2,

(10)
Or, equivalently,

x1 + x4 + x5 + x7 = 0 modulo 2, (11)

which is the same as the constraint imposed by the first row
of H, (7).
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A. BP over Modified Tanner Graphs

BP over modified Tanner graphs is similar to BP over binary
graphs. The only difference is that in the modified graph nodes
compute the probability of 2MnT possible cases instead of just
one log-likelihood ratio (LLR) value. To be more specific, in a
modified Tanner graph, each node at each iteration computes
2MnT messages regarding the probability of each possible case.

Similar to [13], we define the following parameters which
we will use in BP:

Definition 1: f (k)
s denotes the conditional probability that

the kth modified variable node is s ∈ {0, 1}MnT , given y(k).

Definition 2: q(nm)
s denotes the message sent from the nth

modified variable node to the mth modified check node, and
represents an estimate of the probability that the nth modified
variable node is s.

Definition 3: r(mn)
s denotes the message sent from the mth

modified check node to the nth modified variable node, and
represents an estimate of the probability that the nth modified
variable node is s.

Definition 4: N(m) denotes the subset of the modified
variable nodes participating in the mth check equation.

Definition 5: M(n) denotes the subset of the check nodes
depending on the nth modified variable node.

Definition 6: Sm denotes the mth check-node local-
codewords, where mth check-node local-codewords, in a mod-
ified (� N

MnT
� , � K

MnT
�) LDPC code, are the 2MnT -ary length-

� N
MnT

� vectors that satisfy the mth check equation.

Definition 7: Smn
s denotes the subset of the mth check-node

local-codewords, whose nth element is s.
The derivation of the BP equations over modified Tanner

graphs is similar to the derivation of the BP equations of LDPC
codes over GF(Q) [13], and due to the lack of space is omitted
(see [11], [12] for details).

B. Initialization

Similar to LDPC codes over GF(Q) [13], the probability
of each possible case given the received codeword is used to
initialize the BP algorithm. It can be shown that [11], [12]

f (k)
s =

α(k)
√

2πΣn
e
−

[
(y(k)−C(k)G(s))∗Σ−1

n (y(k)−C(k)G(s))
]
, (12)

where α(k) is chosen to ensure ∑s f (k)
s = 1, ∗ is the complex

conjugate operator, and G(s), an nT × 1 vector, is given by

G(s) = [F (s1, . . . , sM) . . . F (sM(nT−1)+1, . . . , sMnT )]T ,

where sl (for 1 ≤ l ≤ MnT) is the lth element of vector
s ∈ {0, 1}MnT .

C. Variable-to-Check Node Messages

The variable-to-check message, q(nm)
s , for BP can be com-

puted using [11], [12]:

q(nm)
s = β(nm) f (n)

s ∏
j∈M(n)\m

r( jn)
s , (13)

where β(nm) is a normalization factor chosen to ensure that

∑s q(nm)
s = 1.

Tentative decoding for the nth bit can be done as follows:

x̂l = arg max
d

∑
s∈D

(mod(l−1,MnT )+1)
d

f
(� l

MnT
�)

s ∏
j∈M(l)

r
( j,� l

MnT
�)

s ,

(14)
where d ∈ {0, 1}, and D

(i)
d is the set of all length-MnT binary

vectors whose ith bit is d, and mod(l − 1, MnT) represents
the reminder of the division of l − 1 by MnT .

D. Check-to-Variable Node Messages

The check-to-variable message, r(mn)
s , can be calculated as

follows [11], [12]:

r(mn)
s = γ(mn) ∑

X′∈Smn
s

∏
j∈N(m)\n

q( jm)
x′j

, (15)

where x′j is the jth element of X′, and γ(mn) is a constant that

ensures ∑s r(mn)
s = 1.

V. EDGE-BASED MESSAGE PASSING FOR MODIFIED

TANNER GRAPHS

A straightforward implementation of the BP is computa-
tionally extensive. Using the LLR of the edges as messages,
we propose an alternative algorithm for implementation of BP
that considerably reduces the complexity of the decoding.

Consider the following definitions of parameters that we
will use in the EBMP algorithm:

Definition 8: Zs denotes the subset of 2MnT -ary symbols
u ∈ {0, 1}MnT , such that < s, u >= 0, i.e.,

Zs � {u| < s, u >= 0}. (16)
Definition 9: Os denotes the subset of 2MnT -ary symbols

u ∈ {0, 1}MnT , such that < s, u >= 1, i.e.,

Os � {u| < s, u >= 1}. (17)
Definition 10: l(e) denotes the LLR of edge e, and is given

by

l(e) � ln
∑s∈Zλ

P(V̂n = s)

∑s∈Oλ
P(V̂n = s)

, (18)

where V̂n is the modified variable node connected to e, and λ

is the label of e in the modified Tanner graph.
With some algebraic manipulations, one can show that:
Theorem 1: The LLRs of the edges are sufficient for calcu-

lation of the variable-to-check messages in the BP algorithm
Theorem 2: The LLRs of the edges are sufficient for calcu-

lation of the check-to-variable messages in the BP algorithm
(see [11], [12] for the proof).
From Theorems 1 and 2, we deduce that the LLRs of

the edges are sufficient for implementation of the update
equations. Therefore we make the following definitions:

Definition 11: q(nm) denotes the message sent from the nth

modified variable node to the mth modified check node, and
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represents an estimate of the LLR of the edge connecting these
nodes. i.e.,

q(nm) � ln
∑s∈ZĤmn

q(nm)
s

∑s∈OĤmn
q(nm)

s

. (19)

Definition 12: r(mn) denotes the message sent from the mth

modified check node to the nth modified variable node, and
represents an estimate of the LLR of the edge connecting V̂n
to Ĉm. i.e.,

r(mn) � ln
∑s∈ZĤmn

r(mn)
s

∑s∈OĤmn
r(mn)

s

. (20)

Since r(mn)
s is the same for all s ∈ ZĤmn

and also for all

s ∈ OĤmn
, r(mn) can be reformulated as

r(mn) = ln
r(mn)

s1

r(mn)
s2

, for s1 ∈ ZĤmn
and s2 ∈ OĤmn

.

(21)
According to Theorems 1 and 2, check and variable nodes

can compute check-to-variable messages (r(mn)
s ) and variable-

to-check messages (q(nm)
s ) with LLR messages(r(mn) and

q(nm)) of the edges connected to them. Consequently, we
introduce the EBMP algorithm where each node just passes the
LLR messages. As a result the nodes just send one message for
each edge, as opposed to the 2MnT messages passed in the BP
algorithm. The EBMP update equations can be formulated as
follows. Due to the limited space, the derivations are omitted
(see [11], [12] for details).

q(nm) = ln
∑s∈ZĤmn

f (n)
s exp


∑{

j
∣∣ j∈M(n)\m,<Ĥ jn ,s>=0

} r( jn)




∑s∈OĤmn
f (n)
s exp


∑{

j
∣∣ j∈M(n)\m,<Ĥ jn ,s>=0

} r( jn)




r(mn) = ln
1+∏ j∈N(m)\n tanh

[
q( jm)

2

]

1−∏ j∈N(m)\n tanh
[

q( jm)
2

] .

(22)
And the initialization can be done using

q(nm) = ln
∑s∈ZĤmn

PX|Y
(

x(n) = s|y(n)
)

∑s∈OĤmn
PX|Y

(
x(n) = s|y(n)

) . (23)

VI. PERFORMANCE ANALYSIS

When the modified LDPC graph is acyclic, the EBMP is
equivalent to MAP [11], [12], and performs the same as or
better than any other decoding scheme, such as the turbo-type
decoder. To compare the performance of receivers over graphs
with cycles (e.g. finite length LDPC codes), we consider two
different scenarios:
S1: Any pair of variable nodes that are connected to a SISO-

MISO (Soft-in Soft-out MISO) symbol detector, are not
connected to the same check node.

S2: There exists at least one pair of variable nodes that are
connected to a given SISO-MISO detector and a given
check node.

It can be shown that both systems perform the same in the
first scenario [11], [12]. However, it is a hard task to make a
rigorous comparison between performance of algorithms in
the second scenario. It is not hard to see that the pair of
variable nodes, the check node, and the SISO-MISO detector
connected to both variable nodes form a length-4 loop in the
turbo-type decoder. However this loop does not appear in the
modified graph. To be more specific, the length-4 loop would
be transformed to an edge in the modified graph. Furthermore,
one can easily see that each loop in the modified graph
corresponds to a loop in the turbo-type architecture. Therefore
conversion from a three-layer graph to the modified graph not
only does not generate any new loops, but also eliminates
the length-4 loops generated due to the turbo-type decoder.
Therefore, due to the positive feedback, we expect the EBMP
to outperform the turbo type scheme. We further expect the
performance difference to depend on the ratio of the number
of length-4 loops to the total number of loops in the turbo-type
decoder.

VII. NUMERICAL RESULTS

We simulated our proposed algorithm for joint detection
and decoding in a 2 × 1 MISO-LDPC system for both known
and unknown channel cases. We analyzed a random (3,4)-
regular LDPC code (with 4-cycles removed) of length N =
252. In all cases, we plot the bit error rate in terms of the Eb

N0
.

Each plot compares the performance of the proposed (EBMP)
algorithm with the turbo-type receiver. The comparisons all
correspond to quasi-static Rayleigh fading channels. Unless
explicitly mentioned, Tc = 8T (Tc is the coherence time of
the channel and T represents the symbol time), the modulation
is 8-ary QAM with Gray labeling, i.e. M = 3, also the pilot
symbols power is assumed to be 4 times the data symbols
power.

Figure 3 illustrates the performance of receivers for both
known and unknown channels. One can easily see that the
proposed scheme outperforms the traditional scheme, turbo
type receiver, in both scenarios. Moreover the performance
difference in the unknown channel case is larger than the
difference in the known channel scenario. The reason for
this observation is that in the unknown channels, the MISO-
SISO detectors are “weaker”, i.e. get less information from
the received symbols, and consequently generate more positive
feedback, as opposed to the known channel scenario.

Figure 4 represents the effect of the coherence time of the
channel on the performance of both systems over unknown
channels. One can see that increasing the coherence time
increases the performance difference of the systems. This
might be due to the fact that channel estimation errors can be
a more significant contributor to erroneous detection in fast
fading channels.

Figure 5 investigates the effects of the pilot symbols power
on the performance of the systems in the unknown channel
cases. By increasing the pilot symbols power, the performance
difference becomes closer to the known channel case.
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Fig. 3. BER vs. Eb/N0 for known and unknown channel scenarios
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Fig. 4. BER vs. Eb/N0 for various channel coherent times

Finally, Figure 6 demonstrates the effects of the modulation
size on the performance of systems over unknown slow fading
channels. One can see that increasing the modulation size
increases the performance gap between both systems. This
is due to the fact that by increasing the modulation size, the
number of length-4 loops in the turbo-type structure increases.

Additional simulation results (not shown here) indicate that
more significant performance gains can be obtained with
irregular LDPC codes, which is due to the fact that the three-
layer graphs of (finite length) irregular LDPC codes contain
more length-4 loops than those of regular LDPC codes.

VIII. CONCLUDING REMARKS

In this paper, we introduced a new graph-based repre-
sentation of MISO-LDPC systems which can be used for
joint MISO-symbol detection and decoding using message
passing algorithms. We presented a novel edge-based message
passing algorithm for implementation of BP that considerably
decreases the computational complexity of the BP algorithm.
To characterize the performance of the turbo-type receiver,
we introduced a three-layer Tanner graph. We noted that
on acyclic modified graphs, our algorithm is equivalent to
MAP decoding. Moreover, in graphs with cycles, we iden-
tified scenarios where both algorithms perform the same. Our
simulation results show that for short length LDPC codes
the proposed algorithm outperforms the traditional one in the
unknown channel scenarios.
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