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Lee-Metric BCH Codes and their 
Application to Constrained and 

Partial-Response Channels 
Ron M. Roth, Member, ZEEE, and Paul H. Siegel, Senior Member, ZEEE 

Abstract-We show that each code in a certain class of BCH 
codes over GF(p), specified by a code length n s p m  - 1 and a 
runlength r s ( p  - 1)/2 of consecutive roots in GMpm), has 
minimum Lee distance 2 21. For the very high-rate range these 
codes approach the sphere-packing bound on the minimum Lee 
distance. Furthermore, for a given r ,  the length range of these 
codes is twice as large as that attainable by Bedelramp’s ex- 
tended negacyclic codes. We present an ellicient decoding proce- 
dure, based on Euclid’s algorithm, for comeding up to r - 1 
errors and detecting r errors, that is, up to the number of Lee 
e m  guaranteed by the designed Lee distance 2r. 
Boundsonthemini”mLeedist.ncefor r i ( p + l ) / 2 a r e  
provided for the Reed-solomen cqse, i.e., when the BCE code 
roots are in GFQ). We present two applications. First, Lee-met- 
ric BCH codes can be used for protectiag against bitshin errors 
and synchronization errors caused by ineertion and /or dele- 
tion of zeros in (d,k)-constrained channels. Second, the code 
construction with its decoding algoritBm cm be formulated over 
the integer ring, providing an algebraic approach to correcting 
errors in partial-response channels where matched spectral-null 
codes are used. 

Index Tem-BCH codes, constrained channels, decading, 
Lee metric, partial-response channels. 

I. I N T R O D U ~ O N  

HE Lee metric [ll, [2] was developed as an altema- T tive to the Hamming metric for transmission of non- 
binary signals (usually taken from GFIp)) over certain 
noisy channels. The Lee distance d,(x,y) between two 
elements x , y  in GF(p) is the smallest absolute value of 
any integer congruent, modulo p, to the difference x - y .  
Therefore, the Lee metric is “circular” when applied to 
GF(p), and, for this reason, has on occasion been pro- 
posed for use in the context of phase modulation [3, 
Section 8.21. Codes for the Lee metric were described first 
by Lee [ll and Ulrich [21, but perhaps the most important 
and well-known codes for the Lee metric are the nega- 
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cyclic codes introduced by Berlekamp [3, Chap. 91, for 
which there is an efficient decoding procedure. The core 
of the decoding procedure is the application of the 
Berlekamp-Massey algorithm to a polynomial cungruence 
similar to the key equation for BCH codes in the Ham- 
ming metric. Later, Chiang and Wolf [41 devised a family 
of cyclic codes, for odd codeword lengths, with Lee-metric 
properties very similar to those of the negacyclic codes. 
See also [51, [61, [71. 

The definition of the Lee metric can be generalized in a 
straightforward manner also to integer rings. In [81, 
Nakamura obtained a construction of codes for the Lee 
metric over the ring of integers modulo 2h that is capable 
of correcting up to two errors. A nonlinear construction 
over such rings for correcting any prescribed number of 
errors was described recently by Orlitsky 191. His construc- 
tion is based on dividing a codeword of a binary BCH 
code into nonoverlapping h-tuples and regarding the lat- 
ter as the Gray-code representations of the integers be- 
tween 0 and 2h - l. 

The Lee metric extends to symbols drawn from the 
alphabet of rational integers, where the Lee distance 
between symbols corresponds to the absolute value of 
their difference. Jinushi and Sakaniwa [lo] recently re- 
ported a construction method for error-correcting codes 
over the integers that relies upon properties of general- 
ized Hadamard matrices. (They use the term absolute 
summation dktunce to refer to the Lee distance in the 
conted of the integer alphabet.) Karabed and Siegel [ l l ]  
observed that ensembles of integer sequences with 
higher-order nulls in the power spectral density at rational 
submultiples of the symbol frequency have substantial 
Lee-distance properties. The lower bound on the mini- 
mum Lee distance of such sequences generalizes a lower 
bound on the minimum Hamming distance for binary - 
block codes with higher-order spectral density null at zero 
frequency, due to Schouhamer Immink and Beenker [12]. 
As mentioned in [ll], the appearance of Newton’s iden- 

tities in the proof of the lower bounds on the minimum 
Lee distance for integer spectral-null codes suggested the 
existence of efficient, iterative decoding algorithms akin 
to those developed for BCH and Goppa codes in the 
Hamming metric. The details of such a decoding algo- 
rithm for spectral-null codes will be presented in this 
paper, but in the broader context of a class of BCH 
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error-correcting codes for the Lee metric over GF(p), as 
we now describe. 

Motivated by the similarity in form of the moment 
equations characterizing integer block codes with a 
higher-order spectral null and the parity-check equations 
of BCH codes, we define in Section 11, a class of BCH 
'codes over GF(p), with each code specified by a code 
length n I p"' - 1 and a runlength r of consecutive roots 
in GF(p"'). 

In Section 111, we prove that, for those codes in this 
class satisfying the constraint that r 5 ( p  - 1)/2, the 
minimum Lee distance is bounded from below by 2r. The 
performance of these codes is compared with that of the 
negacylic codes and their generalizations. For a given r 
and redundancy, the length range of the Lee-metric BCH 
codes is shown to be twice as large as that achieved by the 
negacyclic code construction. Furthermore, for small val- 
ues of r and for sufficiently large m, Lee-metric BCH 
codes of length n = p m  - 1 approach the sphere-packing 
upper bound on the minimum Lee distance. 

Section IV addresses extensions and improvements of 
the 2r lower bound in the base-field case, which corre- 
sponds to Reed-Solomon codes of lengths n s p  - 1 
over GF(p). In Section 1V.A we first extend the 2r lower 
bound to all values r I n I p - 1. Then, in Section IV.B, 
we provide a refined bound that, for the low-dimension 
(high-redundancy) case, becomes quadratic (rather than 
linear) in r. For r 2 $p, this bound improves upon the 2r 
lower bound. 

Section V addresses the issue of decoding Lee-metric 
BCH codes. We develop a modified "key equation'' and 
present a decoding procedure, based upon Euclid's algo- 
rithm, that can correct all error patterns up to Lee weight 
r - 1 and detect all error patterns of Lee weight r ,  for 
codes with designed minimum Lee distance 2r. The time 
complexity of the decoding algorithm for the proposed 
codes is similar to that of the known Hamming-metric 
decoding algorithms for BCH codes, and the algorithm 
appears to be simpler than Berlekamp's Lee metric de- 
coding algorithm for negacyclic codes [3, Algorithm 9.361. 

Finally, in Section VI, we discuss two applications. First, 
in Section VIA, we discuss the use of Lee-metric BCH 
codes to detect and/or correct synchronization errors, 
caused by insertion and/or deletion of zero symbols, in 
runlength-limited ( d ,  k )  channels, such as those found in 
digital recording. We also show that, with a slight modifi- 
cation of the decoding procedure, some of the Lee-metric 
BCH codes can be used to provide even more efficient 
protection against a special subset of synchronization er- 
rors known as bitshift errors that predominate in mag- 
netic recording systems. The performance of these codes 
is compared to that of the recently published family of 
shift-error-correcting modulation (SECM) codes [ 131 that 
are based upon Hamming-metric BCH codes. 

Then, in Section VI.B, completing the circle, we return 
to the application that prompted this work, and use the 
decoding algorithm of Section V to develop an algebraic 
approach to the demodulation of integer-valued, 

spectral-null codes when used as matched-spectral-null 
codes on noisy partial-response channels where the Lee- 
metric pertains. 

Another application of Lee-metric codes in the area of 
interactive communication is described in 191. 

11. DEFINITIONS 
Let C(n, T ,  a; p )  be the (shortened) BCH code of length 

n over GF(p) whose parity-check matrix is 

9 

where a = [ a1 a2 a,] is the locator vector, consisting 
of distinct nonzero elements of the smallest field GF(p") 
of size greater than n. Hence, a word c = [c1 c2 cn]  E 
GF(p)" is in C ( n , r , a ; p )  if and only if it satisfies the 
following r parity-check equations over GF(pm): 

I( 

(1) j =  1 cja; = 0, 1 = 0, l,..., r - 1. 

For 12  1, each parity-check equation in (1) translates 
into m equations over GF(p). This gives the following 
well-known bound on the dimension k, or, rather, an 
upper bound on the redundancy n - k, of C(n, r ,  a; p): 

n - k I 1 + ( r  - 1)m. (2) 

Furthermore, since the entries of c are in GF(p), 
~;= .~c ,a , !  = o implies C;,,cjaf" = 0. Therefore, (2) can 
be improved to 

n - k r l + [ $ ( r - l )  1 m. 
However, as we shall be mainly concentrating on values of 
r which are smaller than p, the bound (2) will be suffi- 
cient for our purposes. 

The codes C ( n , r , a ; p )  for which n = p m  - 1 will be 
called primifiue. In this case, a is unique, up to permuta- 
tion of coordinates, and, therefore, we shall sometimes 
use the shorthand notation C(p" - 1, r; p )  for C(p" - 
1, r ,  a; p). For primitive codes, the bound (2) becomes 

n - k 5 1 + ( r  - 1) log, (n + 1). (3) 

Remark 1: The requirement that the aj be nonzero 
elements of GF(p") is not essential as long as n <p" - 
1. This is due to the fact that, by linear operations on the 
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= 

- - 
1 ... 1 1 

a1 - P a2 - p ..* an - P 
(a, - P I 2  (a* - P ?  * * *  (a, - P I 2  

(a1 - (a2  - . * *  (an - 

... 

- - 

GF(p)", the minimum Lee distance of C(n,  r ,  a; p ) ,  de- 
noted d,(n,r,a;p), is also the minimum Lee weight of 
any nonzero codeword in C(n, r, a; p ) .  

Given a "transmitted" word c E GF(p)" (say, a code- 
word in C(n,  r, a; p ) )  and a "received" word y E GF(p)", 
the error vector is defined by e 2 y - c. The number of 
Lee errors is given by Ilell; that is, the number of Lee 
errors is the smallest number of additions of &-1 to the 
coordinates of the transmitted codeword c which yields 
the received word y. Since the Lee weight satisfies the 
triangle inequality, using a code of minimum Lee distance 
d9 allows one to correct any pattern of up to (d ,  - 1)/2 
Lee errors. 

One of the applications that motivated this work was 
analyzing the correction capability of matched-spectral- 
null trellis codes for partial-response channels E1 11. These 
codes can be modeled as sets of vectors c = [cl c2 cn]  
over the integer ring Z that satisfy the set of constraints 

where 0' 1, for some prescribed order r of the spectral 
null at zero frequency. The constraints in ( 5 )  are equiva- 
lent, in turn, to 

n 

j ' C j  = 0, 1 = 0, l,..., r - 1 
j =  1 

In the following we shall use the symbols 0, 1,2,.-., p - 1 
both for elements of GF(p) and for the first p nonnega- 
tive integers. In those cases where a distinction is neces- 
sary (say, to specify whether operations are taken over 
GF(p) or over the integers), we shall overline the integer 
values. Hence, for an element a E GF(p), we denote by 
a the smallest nonnegative integer such that a = E .  1, 
where 1 stands for the multiplicative unity in GF(p). 

For an element a E GF(p), we define the Lee value 1 a I 

- 

bY 

when 0 I E s ( p  - 1)/2, 
when ( p  + 1)/2 I E p - E ,  p - 1 * 

(a1 A 

The elements 0, 1,.--, ( p  - 1)/2 of GF(p) will be referred 
to as the "positive" elements of the field, for which 
a = I al. The rest of the elements are the "negative" ones. 

cn] over GF(p), we define 
the Lee weight by llcll A Z~=llcJl (summation taken over 
the integers). The Lee distance between two vectors in 
GF(p)" is defined as the Lee weight of their difference. 
The minimum Lee distance of a subset X of GF(p)" is the 
minimum Lee distance between any pair of distinct vec- 
tors in X. Since C(n, r ,  a; p )  is an additive subgroup of 

- 

For a vector c = [c1 c2 

(compare with (4)). Hence, along with the codes 
C(n,  r ,  a; p) ,  we shall be interested also in additive sub- 
groups C(n, r, a) of Z" consisting of words c E Z" that 
satisfy the constraint H ( n ,  r ,  a ) c  = 0, where a = [ al, a2 

an]  is a locator vector of distinct integer entries 0 < al 
< a2 < < a, and H(n,  r, a) A [ a,!];::;,"=1. When 

OL = [12 e - .  n] ,  we shall use the shorter notation C(n, r )  
for C(n,  r, a). 

Defining the Lee value of an integer as its (conven- 
tional) absolute value, the definition of the Lee weight of 
an integer vector, as well as the minimum Lee distance of 
any subset of Z", is extended in a natural way. The 
minimum Lee distance of C ( n , r , a )  will be denoted by 
d,(n, r ,  a). 

111. THE 2r LOWER BOUND 
In [ll], a lower bound d,(n, r )  2 2r on the minimum 

Lee distance of C(n , r )  was derived. The proof was a 
slight generation of an argument, based upon Newton's 
identities, that was used in [12] to bound from below the 
minimum Hamming distance of binary codes with rth- 
order spectral null at zero frequency. In fact, the very 
same proof can be used to show the more general lower 
bound d&,r ,a)  2 21.. Our goal in this section is to 
show that the 2r lower bound, with certain necessary 
restrictions on r, applies also to d,(n, r , a ;  p ) .  More 
specifically, we prove the following. 
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Theorem 1: 

2r, 
p, 

for r I ( p  - 1)/2, 
for ( p  + 1)/2 I r <p.  

d,(n, r ,  a; p )  2 

This bound is, in a way, the analog of the BCH lower 
bound r + 1 on the minimum Hamming distance of 
C(n, r ,  a; p) ,  although the proof of the 2r lower bound is 
slightly more complicated. For r 2 p ,  we can bound 
dJn, r, a; p )  from below by the minimum Hamming dis- 
tance r + 1. 

At this point, it is worthwhile comparing the perfor- 
mance of C ( n , r , a ; p )  in the Lee space with that of 
negacyclic codes [3, Chap. 93. The latter, or, rather, gener- 
alized versions thereof, are defined as codes of length 
n s (p" - 1)/2 Over GF(p) whose parity-check matrix is 
of the form 

1 

4 - 3  . ,.. 4 - 3 1  

( 6 )  

where a = [a1 a2 a,] consists of distinct nonzero ele- 
ments al E GF(p") such that al + a, # 0 for all j and 1. 
For r I ( p  - 1)/2, the known lower bound on the mini- 
mum Lee distance of negacyclic codes is 2r - 1 [3, Chap. 
91, and this bound becomes 2r if we extend the codes by 
adding an all-one row to their parity-check matrix. The 
upper bound on the redundancy of these extended codes 
is equal to the corresponding bound (2) for C(n, r ,  a; p ) .  
However, given m (dictated by specifications on r and 
redundancy constraints), the maximum attainable length 
of extended negacyclic codes is only half the maximum 
length of C(n, r ,  a; p) .  As we shall see in Section V, the 
decoding algorithm of C(n, r ,  a; p )  appears to be simpler 
than Berlekamp's decoding algorithm for the negacyclic 
case. 

We point out that the construction of [91 for length n 
and designed minimum distance 2r - 1 over the ring of 
integers modulo q = 2h has redundancy ( r  - l)[log, (nhll, 
namely, similar to that of negacyclic codes. 

Before getting into the proof of Theorem 1, we show 
that, for ( p  + 1)/2 I r < p, the bound d J n ,  r ,  a; p )  2 p 
cannot be improved for certain choices of n and a, e.g., 
when C(n, r ,  a; p )  is primitive. Let the code length n be 
at least p, thus implying m 2 2. In addition, assume that 
the first p elements of a are given by a, = p + j - 1 for 
some p E GF(pm) - GF(p). Now, the power sums 
ET, , ( j  - l),, and therefore E:, a;, vanish for every 0 I 
1 s p  - 2. Hence, for any r < p ,  there is a codeword in 
C(n, r, a; p)  consisting of p ones followed by n - p ze- 
ros, thus implying the upper bound d,(n,r,a;p) IP. 
Note that this proof does not hold in the base-field case 
n ~p - 1, in which case the set GF(p") - GF(p) is 

empty. And, indeed, in Section 1V.A we show that, in the 
base-field case, the 2r lower bound applies also to the 
range r 2 ( p  + l)/2. 

The following definition will be useful in our subse- 
quent discussions: Given a locator vector a = [a1 a2 
a,] of a code C(n, r ,  a; p )  and a word y = [yl y2 - - -  y,] 
E GF(pY, define the locator polynomial associated with 

y as the polynomial a ( x )  over GF(p") given by 
n 

j =  1 
a ( x )  n (1 - ajx) 'yJ ' .  

The definition of locator polynomial extends easily to the 
integer ring as well. 

Example 1: Let p = 7, m = 1, and ai = j. For y = 
[O 2 5 0 3 61, we have 

u ( x )  = (1 - 2x)'(1 - 3 ~ ) ~ ( 1  - ~ x ) ~ ( I  - 6 x ) .  

Let d x )  be a polynomial over a field F of the form 
Il:= ,(1 - pjx) ,  where pi, j = 1,2,.-.', t, are (not necessar- 
ily distinct) elements of F. For 1 2 1, we define the lth 
power sum, S I ,  associated with a ( x )  by 

t 

S, pi'. 
j = l  

(7) 

The proof of Theorem 1 is based on the following 
lemma. 

Lemma 1 (Newton's identities [14, Chap. 81): Let a ( x )  
= E~=,a,x' be the following polynomial of finite degree 
deg U, 

deg U deg U 

i = l  j =  1 
a ( x )  = 1 + a$ = n (1 - p,x>, 

where pi are elements of a field F. For 1 2  1, let S, 
denote the 1-th power sum as in (7). Then, 

i-1 

C u,s~-, + ia, = 0, for all i 2 I. (8) 
1=0 

In particular, by (8) we have 
i - 1  

a,Si-, = 0, for all i 2 deg U .  
I = O  

The latter equations are the basis for Massey's decoding 
algorithm for BCH codes in the Hamming metric [151. 

Using the notation S ( x )  for the formal power-sum 
series E:= lSIx ' ,  we can rewrite (8) as 

a ( x ) S ( x )  + x a ' ( x )  = 0, 

where ~ ' ( x )  is the formal derivative Ci ,iaixi-' of a ( x ) .  
Remark 2: Given r and the values S, for 1 I 1 I r - 1, 

the coefficients ai, 0 I i I r - 1, are uniquely defined by 
(8) when F has characteristic zero; simply solve iteratively 
for ai starting with a, = 1 and continuing with 

1 i-1 

a.= -- a,si -, . (9) 
i I = O  
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When the characteristic of F is p ,  we can apply (9) over F 
for values i which are smaller than p .  Hence, over such 
fields F, the values of ai are uniquely defined for 0 I i < 
min {r ,  p }  - 1. 

Proof of Theorem 1: The proof is very similar to the 
one presented in [lll. For the sake of completeness, and 
for future reference in this paper, we repeat the proof 
here. 

Assume that c is a codeword of C ( n , r , a ; p )  of Lee 
weight < 2r. We show that either llcll 2 p  or c = 0. Let 

Theorem 2: A code over GF(p)  of length n, size pk, 
and minimum Lee distance 2 2r - 1 for some r I ( p  + 
1)/2 must satisfy the inequality 

( r  - l)(log, ( n  - r + 2) - log, ( r  - 1)) I n - k .  

ho0fi B~ hmma 2 we have 

.y-'  c p n - k *  
(n - r + 2 r 1  

( r  - 1)l-l 
- 

c+= [c: c: c,'] be the word defined by 

c+ = c j ,  if cj E U , 2 , . - , ( p  - 1)/2}, 
' (0, otherwise, 

and let c- c+ - c. That is, C' is equal to c at the latter's 
"positive" entries, and is zero otherwise, whereas the 
entries of c -  take the Lee values of the "negative" 
entries of c, leaving the other locations zero. Let a + ( x )  
and a - ( x )  denote the locator polynomials of c+ and c-,  
respectively, and let S + ( x )  = c = , S ; x '  and S - ( x )  = 
z = l S i x '  be the formal power-sum series over GF(p") 
associated with a + ( x >  and a - ( x ) ,  as defined in (7). From 
H(n, r ,  a;  p )c  = 0, we deduce the following r equations 

H ( n , r , a ; p ) c + =  H ( n , r , a ; p ) c -  (10) 
over GF(p"). The first equation in (10) reads 

Ilc+ll = Ilc-ll (modp), (11) 
whereas the other r - 1 equations can be rewritten as 

S: = S, , 1 = 1,2 , . . - ,  r - 1, 

S + ( x )  = S - ( x )  (mod x ' ) .  (12) 

a + ( x )  = a - ( x )  (modx'). (13) 
Assume first that Ilc'll # Ilc-11. By (11) we must have 

Ilc'll = Ilc-ll 1 * p  for some 1 + 0 and, hence, llcll = llc+ll 
+ Ilc-ll 2 p (note that this may happen only when r 2 ( p  
+ 1)/2). On the other hand, if Ilc+ll = Ilc-ll = illcll, then 

deg a+= llc'll = Ilc-ll = deg 0-1 r - 1, 

in which case (13) implies the equality a + ( x )  = a - ( x ) .  
However, since the supports of c+ and c- are disjoint, 
the polynomials a ' ( x )  and a - ( x )  are relatively prime. 
Therefore, we must have a ' ( x )  = a - ( x )  = 1, yielding 
c = 0. 

We end this section by exhibiting the near-optimality of 
the primitive codes C(p" - 1, r;  p )  for sufficiently small 
values of r. 

Lemma 2 (Sphere-packing bound [51, [141): A code over 
GF(p)  of length n, size p k ,  and minimum Lee distance 
2 2r - 1 for some r I ( p  + 1)/2 must satisfy the in- 
equality 

or, equivalently, 

Therefore, by Remark 2 we obtain 

r -1  

i = O  
(14) 

The theorem now follows by taking the logarithm to base 
0 

Return now to the code C ( p m  - 1 , r ; p )  where, for 
r I ( p  - 1)/2, we have d,(pm - 1, r;  p )  2 2r - 1, thus 
conforming to the definition of r in Theorem 2. It is easy 
to verify that the lower bound of Theorem 2 on the 
redundancy n - k approaches the upper bound on n - k 
given in (3) when log, r is much smaller than m = log, (n 
+ 1). This would be the case when, for instance, we keep 

p ,  and therefore the range of r, fixed and let n = p" - 1 
go to infinity. 

p of both sides of the latter inequality. 

IV. LOWER BOUNDS FOR THE BASE-FIELD CASE 
Among the finite-field codes C(n,  r ,  a;  p i ,  the base-field 

codes are of some special interest in that they allow us to 
obtain bounds on the integer codes C(n,  r, a )  as well. In 
particular, for any code C(n,  r, a) with a = a1 a2 an], 
0 < a1 < cy2 < < a,,, and for every prime p > an 2 
n, we have d,(n, r ,  a )  2 d,(n, r ,  a;  p ) .  This is due to the 
fact that any nonzero codeword c E C(n, r, a) of mini- 
mum Lee weight must have at least one entry which is not 
divisible by p ,  and reducing such a codeword modulo p 
results in a nonzero codeword of C(n, r ,  a ;  p )  whose Lee 
weight is at most Ilcll. Hence, any lower bound on 
dT(n, r ,  a;  p )  implies one for d,(n, r ,  a) .  The converse, 
of course, is not necessarily true. 

Example 2: The code C(4,3) consists of all integer 
vectors c E Z4 which satisfy the equality Hc = 0, where 

It thus follows that C(4,3) consists of all integer multiples 
of the vector [l - 33 - 11 and, therefore, d,(4,3,[12341) 
= 8. Taking each entry of every codeword of C(4,3) 
modulo 5, we obtain the base-field code C(4,3; 9, whose 
minimum Lee distance is 6. 

A. Extending the 2r Lower Bound for the Base-Field Case 
As we pointed out in Section 111, the 2r lower bound 

does not hold in general for all values of r for any code 
C(n, r ,  a ;  p);  however, it does hold for all r in the base- 
field case n s p  - 1. We remark that for fairly large 
values of r ,  say, r 2 ( p  + 1)/2, we believe that the true 
value of d , ( n , r , a ; p )  is much greater than 2r. Our 
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conjecture is based on the lower bounds on d,(n, r, a; p) 
given in the next section, where we show that in the 
high-redundancy range, the lower bound on d,(n, r, a; p) 
becomes quadratic, rather than linear, in r. Still, 2r is the 
best lower bound we have for values of r up to around +p. 
Furthermore, although we present a substantial improve- 
ment on the 2r lower bound for the high-redundancy 
range, we have yet to find an efficient way to decode the 
number of correctable errors guaranteed by that bound. 

The 2r lower bound for the base-field case takes the 
following form. 

Theorem 3: For r I n I P  - 1, 

dJn, r ,  a; p )  2 2r. 

Proofi Throughout the proof we assume that r 2 
(p + 1)/2, as the range of smaller r is covered by Theo- 
rem 1. Following the notations and line of proof of 
Theorem 1, by (11) we have Ilc'll = Ilc-ll f 1 -p  for some 
integer 1. The case 1 = 0 yields the desired 2r lower 
bound also when r 2 ( p  + 1)/2, the same way it did in 
the proof of Theorem 1. Also, when Ill 2 2, we have 
llcll = Ilc'll + Ilc-ll 2 2p > 2r and so we are done. Hence, 
it remains to consider the case I = f 1. Thus, we assume 
that I = 1 (or else apply the proof on -c), deg U-= s, 
and deg u + = p  + s with p + 2s < 2r, and we wish to 
show that c = 0. 

Define the locator ratio p ( x )  by 

A similar ratio will play, in the decoding algorithm of 
Section V, the role of the error-locator polynomial used in 
the Hamming-metric BCH decoding algorithm. Since 
u-(O) # 0, we can write p ( x )  also as an inifinite formal 
series p ( x )  = 1 + rz1 pixi. Noting that (121, and there- 
fore (131, still hold, we have, 

u + ( x )  = u - ( x )  + x ' d x ) ,  

. 

w h e r e d e g r = p + s  - r r p + 2 s - r < r . H e n c e ,  

implying that pi = 0 for 1 I i I r - 1, or that 

p ( x )  = 1 (modx'). (16) 
Our next step is to show that pi = 0 also for i = p  - 1 
a n d p + l I i s 2 r - l .  

Newton's identities for S + ( x )  and S - ( x )  take the form 

u + ( x ) S + ( x >  + x ( a + ( x ) Y  = 0 (17) 
and 

Let S ( x )  = Z=,S ,x '  denote the difference S ' ( x )  - 
S-( x )  and let So S,+ - Si. Using this notation, we can 
rewrite (19) as 

p ( x ) S ( x )  + x p ' ( x )  = 0. (20) 
In addition, by (12) we have S ( x )  = O(mod x ' )  which, 
with (16), yields 

p ( x ) S ( x )  = S ( x )  (mod x") ,  

and, therefore, by (201, 

S ( x )  + x p ' ( x )  = 0 (modx"). (21) 
We now make use of the fact that the code is a 

base-field code. In this case we have a/'-' = 1 and, 
therefore, 

n n 

&$p-l = ci'ff;+P-l = cci'ff;=s,., 
j =  1 j =  1 

i.e., the sequences {S t }7 -o  and, therefore, {S,}y=,, have 
period p - 1. In particular, this implies that S, = 0 for 
p - 1 5 1 I p + r - 2, which, with (211, leads to 

ipi = 0, forp - 1 I i I 2r - 1, 
or, 

pi = 0 for i  = p  - 1 and p + 1 I i I 2r - 1, (22) 

Let q ( x )  be the polynomial of degree s r - 1 defined 
as desired. 

bY 

Comparing with (15), we have q ( x )  = Z: f l ;p i+ ,x i  and, 
therefore, by (221, deg q I p - r. We now use this bound 
on deg q to show that a - ( x )  = 1. 
By definition of q(x ) ,  we have 

u - ( x ) q ( x )  = r ( x )  (modx'). (23) 
Now, 

deg U- + deg q I s + ( p - r )  I p + 2s - r < r ,  

and, as pointed out before, the same upper bound applies 
to deg r .  Hence, (23) can be rewritten simply as 

u-(x)q(;u) = d x ) .  (24) 
However, since U+ and (+- are relatively prime, so are r 
and U-. Therefore, by (24) we conclude that U- is 
constant, i.e., u - ( x )  = 1 and q ( x )  = T ( x ) .  

At this point we have established that S - ( x )  = 0; 
therefore, S + ( x )  = S ( x )  and u ' ( x )  = p ( x )  with deg U+ 

= p + s = p. Eq. (21) thus reads 

S + ( x )  + x ( u ' ( x ) Y  E 0 (modx2'). (25) 
Now, if S Y x )  = 0, we are done. Otherwise, let t be the 

Now, (17) by and (18) by and smallest integer 1 such that S: # 0. Hence, by periodicity 
we have =Si+,-, = 0, and (25) be- subtract one from the other to obtain 

+ x [ u - ( x ) ( u + ( x ) Y  - a + ( x > ( u - ( x ) ) ' l  = 0. (19) S + ( x )  + x(a' (x>Y = 0 (mod X P ' ~ - ' ) ,  (26) 

u-(x)S-(x) + x((T-(x)Y = 0. (18) 

= Sp' = 

u + ( x ) u - ( x ) ( S + ( x >  - S - ( x ) )  comes 
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which, with (171, yields 

a + ( x ) S + ( x )  e S + ( x )  (mod x P + ‘ - ’ ) .  

However, we assume that S + ( x )  f 0 (mod x f + l ) ,  thus 
forcing the congruence a + ( x )  = 1 (mod xp-l). Recalling 
that a,+_, = pp-l = 0, this leaves us with a + ( x )  = 1 + 
ap’xp = (1 + a , ‘x )P .  But this is absurd, since the multi- 
plicity of a root in a + ( x )  cannot be greater than ( p  - 
1)/2. Therefore, S + ( x )  cannot have a nonzero coefficient 

0 

B. The Low-Dimension Case 

We turn now to improve the 2r lower bound for base- 
field codes in the low-dimension range. Since each base- 
field code C ( n , r , a ; p )  is a shortened code of C ( p  - 
1, r; p ) ,  it suffices to consider only the primitive base-field 
case, bearing in mind that for n I p - 1, d,(n, r ,  a; p )  
2 d J p  - 1,r;p).  

Theorem 4: , 

S:, implying that S ( x )  = S + ( x )  = S - ( x )  = 0. 

Prm$ The proof is based on the fact that, up to 
permutation of coordinates, each nonzero codeword c E 
C ( p  - 1,p  - 1 - k ; p )  has the form 

c = [ul u2 u,]G(p  - 1, p - 1 - k ;  p )  

= [ u ( l ) u ( 2 )  ..* U(;, - 113 

for some nonzero polynomial u(x )  = u l x  + u2x2 
+ +U& over GF(p). Now, since u ( x )  is of degree 
I k ,  the function x c, u(x), dehed  over GF(p), may 
take the same value of G R p )  at most k times. Hence, an 
element of GF(p) may appear with multiplicity at most k 
in c; furthermore, since u(0) = 0, the zero element may 
appear in c with multiplicity not greater than k - 1. Let 
M A [ ( p  - k ) / (2k ) ]  and N 2 p - k - 2kM, that is, N is 
the remainder of dividing p - k by 2k. We now construct 
a “worst-case” word a E GF(P)~-’  with llcll 2 llall in the 
following manner. The zero element appears in a with 
multiplicity k - 1; each one of the 2M elements f 1 ,  f 
2,.-., f M appears with multiplicity k; and the remaining 
N coordinates, if any, are filled with f ( M  + 1). Clearly, 
the Lee weight of a underestimates the Lee weight of any 
nonzero c E C ( p  - 1, p - 1 - k ;  p).  Now, 

= kM(M + 1) + N ( M  + 1) = (kM + N ) ( M  + 1). 

Let p 
- y and 

( p  - k ) / ( 2 k )  and y 2 N/(2k) .  Then, M = p 

where the last inequality follows from y being smaller 
than 1. Substituting p = ( p  - k) / (2k) ,  we obtain 

d J p  - 1 , p  - 1 - k ; p )  
p - k  p + k  P 2 - k 2  

2 I J u / ~  2 k .  - * - = - 2k 2k 4k ’ 
as claimed. 0 

Note that the lower bound of Theorem 4 is tight for 
k = 1: the entries of any nonzero codeword in C ( p  - 1, p 
- 2 ; p )  exhaust all nonzero elements of GF(p) and, 
therefore, the minimum Lee distance of C ( p  - 1,p - 
2; p )  is 

Substituting k = p - 1 - r in Theorem 4, we obtain 
the following bound which holds for the nonprimitive 
base-field case as well. 

Corollary 1: For n I p - 1 

It is easy to check that the bound of Corollary 1 
supercedes the 2r lower bound for r 2 $p. Furthermore, 
when r = p - O W ,  the lower bound of Corollary 1 be- 
comes quadratic in r. 

The following theorem, due to Mazur [17], improves on 
Corollary 1 for the very-low-dimension case. 

Theorem 5 ([171): 

In particular, Theorem 5 yields a quadratic lower bound 
for r = p - ~(fi). The proof of Theorem 5 makes use of 
Weil’s Theorem for character sums. While in the proof of 
Theorem 4 we underestimated d,(p - 1, p - 1 - k ;  p )  
by the Lee weight of some worst-case word, Weil’s Theo- 
rem is used to show that, in fact, C ( p  - 1 ,p  - 1 - k ; p )  
cannot have such worst-case codewords. For sufficiently 
small k ,  elements of GF(p)  with small Lee values cannot 
appear with too-large multiplicity in any nonzero code- 
word of C ( p  - 1,p  - 1 - k ; p ) .  

v. DECODING ALGORITHM 

In this section, we present a decoding procedure for 
C(n, r, a; p) ,  based upon Euclid‘s algorithm, that will 
correct all errors up to Lee weight r - 1 and detect all 
errors of Lee weight r whenever the 2r lower bound 
applies (that is, when r I ( p  - 1)/2 or when r I n I p 
- 1). It is straightforward to adapt this algorithm to the 
integer codes C(n, r, a). 

We first establish some notation. Let c = [c1 c2 c,] 
denote the “transmitted” codeword and y = [ y l  y ,  y,] 
denote the “received” word, with the error vector given by 
e = [el e2 e,] 4 y - c. The corresponding “positive” 
error vector e+ = [e: e l  e - -  e,’] is defined by setting e; 

7- 
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= el if el E (O,l;.-,(p - 11/21 and e,! = 0 otherwise. 
Similarly, we define the “negative” error vector e-=  
[e ;  e; e;], with e; = [ell if el E { ( p  + 1)/2,(p + 
3)/2,--- ,p - 1) and e; = 0 otherwise. The error vector 
can then be decomposed as e = e+ - e-. 

Given a locator vector a = [ a, a, - - -  a,], over GF(p”), 
we define the syndrome values S, of an error vector 
e = [ e ,  e, e,] in the standard way, 

S, = Eel@,’ ,  
n 

o I I < m. 
J = 1  

The formal syndrome series S ( x )  is then defined.as 
W 

S ( x )  = C S , x ’ .  
I =  1 

(Note that the constant term corresponding to So is 
excluded from S(x).)  

When the transmitted word c belongs to C(n, r ,  a;  p ) ,  
the first r syndrome values SI can be determined from the 
received vector y .  Specifically, 

n n 
s,= C e l a , ’ =  Cy,a,’, O I I < r .  

Therefore, when c E C(n, r ,  ut; p) ,  the formal syndrome 
series S ( x )  is in effect known modulo x‘. 

It will be convenient to define the positive syndrome 
values S: and the negative syndrome values S; of the 
error vector e by 

J = 1  J = 1  

n n 
ST = c e : a , ’  and S; = c e ; a , ! ,  011 <m, 

J = 1  J = 1  

with the associated formal syndrome series 
m m 

S + ( x )  = c S : x ’  and S - ( x )  = c S ; x ’ .  

Similarly, we define the positive and negative error-loca- 
tor polynomials a + ( x )  and a - ( x )  by 

I =  1 I =  1 

n 
a ’ ( x )  = n ( 1  - ajx)e: and 

j =  1 
n 

a - ( x )  = n (1 - ffix)“J- 
j =  1 

Note that, by definition, S + ( x )  and S - ( x )  are the formal 
power-sum series associated with a ’ ( x )  and a - ( x ) ,  re- 
spectively. 

Finally, as in Section IV.A, we introduce the error-loca- 
tor ratio, 

Recalling that the formal syndrome series S ( x )  is equal to 
S + ( x )  - S- (x ) ,  we can apply Newton’s identities to S + ( x )  
and S - ( x ) ,  as in (17)-(20), to obtain the following rela- 
tion between the error-locator ratio p ( x )  and the formal 

syndrome series S(x) :  

p ( x ) S ( x )  + x p ’ ( x )  = 0. (27) 

Let 4 ( x )  be the polynomial over GF(pm) defined by 
4 ( x )  = 1 + Er:: p i x i ;  that is, 4 ( x )  is the unique polyno- 
mial of degree less than r satisfying 

+ ( x )  = p ( x )  (modx‘). 

From (27) we obtain 

4 ( x ) S ( x )  + x # ( x )  = 0 (modx‘), (28) 

which, in turn, can be rewritten explicitly as 
i- 1 

Si + p,Sz-, + i p i  = 0, 1 s i < r .  (29) 

Knowing the syndrome values SI, S2,--., S,- , from the 
received word y ,  and noting that, for r I p, the index i in 
(29) ranges over invertible integers modulo p, we can 
apply (29) iteratively to solve (uniquely) for the values pi 
for i = 1,2,..-,  r - 1. Furthermore, the mapping [S, S, 
S,- - [ p1 p2 - - -  p r P l ] ,  induced by (291, is one-to-one. 
Hence, when the 2r lower bound applies, distinct error 
vectors e of Lee weight smaller than r correspond to 
distinct syndrome vectors [ S o  S, S, .-- S,-,] and, there- 
fore, to distinct pairs ( S o ,  4(x ) ) .  

The following theorem summarizes a few properties of 
the error-locator polynomials a + ( x )  and a - ( x ) .  Recall 
that % stands for the smallest nonnegative integer such 
that So = 

Theorem 6: Given a code C ( n , r , a ; p )  and an error 
vector e of Lee weight smaller than r ,  let a ’ ( x )  and 
a - ( x )  be the positive and negative error-locator polyno- 
mials, respectively, associated with e and let 4 ( x )  be the 
polynomial defined by (28) for the syndrome vector [ S o  S, 

I =  1 

* 1 over GF(p). 

... s r -  , ] - - ~ ( n ,  r, a; p)e .  Then, 

(i) a - ( x ) 4 ( x )  = a + ( x )  (mod x r h  
(ii) deg a++ deg a-< r;  
(iii) gcd (a+, U- ) = 1; and 
(iv) deg a’ - deg U- = % (mod p ) .  

Properties (i)-(iv) will serve as the “key equations” for 
our decoding algorithm. We now aim at stating a result 
which is somewhat of a converse to Theorem 6 and which 
will allow us to use these key equations to compute the 
error-locator polynomiais a ’ ( x )  and a - ( x )  in an efficient 
way by application of Euclid’s algorithm. Euclid’s algo- 
rithm has also been used to decode BCH codes and 
Goppa codes in the Hamming metric, as described in [14, 
Chap. 121 [18, Chap. 81. For the sake of completeness, we 
now review certain properties of Euclid’s algorithm that 
are also relevant to our decoding problem. 

Let 4 x 1  and B ( x )  be nonzero polynomials over a field 
F. Define the polynomials R J x )  and Q , ( x )  as the inter- 
mediate remainders and quotients while executing Euclid’s 
algorithm to determine the greatest common divisor of 
A b )  and B(x) .  That is, R - , ( x )  A 4 x 1 ,  Ro(x) A B(x) ,  
and, for i 2 1, Q I ( x )  and R i ( x )  are the quotient and 
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remainder, respectively, when Ri-  , (x )  is divided by 
Ri-  Jx). Note that for i ;1 0, deg Ri strictly decreases with 
i, until we reach the largest index i,,, for which Ri(x )  # 
0. At that point, Rim,, ( x )  = gcd(A(x), B(x)).  

We shall also need the auxiliary polynomials T ( x )  
which are defined as follows: T- , (x )  i& 0, To(x) 4k 1, and, 
for 1 I i I i,,,, 

T , ( x )  T , - 2 ( x )  - Q , ( X ) T , - l ( X > .  

The next two lemmas summarize properties of Euclid's 
algorithm that we shall need in the following. 

Lemma 3 [18, p. 1771: Suppose that T ( x )  and R ( x )  are 
nonzero polynomials satisfying the following three condi- 
tions: 

(i) T(x)B(x) = R ( x )  (mod Ah)); 
(ii) deg T + deg R < deg A; 
(iii) gcd(T, R )  - 1. 

Then there exist a unique index s, 0 I s I i,,,, and a 
constant c # 0 such that T(x) = c T,(x) and R ( x )  = 

c - R,(x). 
Lemma 4 [18, p. 176, Table 8.21: For 0 I i s i,,,, 

degT, + deg R I - ,  = deg A ,  

and, therefore, for that range, of i, deg R ,  - deg Ti strictly 
decreases with i. 

The following converse to Theorem 6 provides the 
foundation for the decoding algorithm for the case r I 

Theorem 7: Given a code C(n, r, a; p )  with r I (p - 
1)/2 and with a over GHp") ,  let e be an error vector of 
Lee weight smaller than r and let So and +(x) be as in 
Theorem 6. 

(a) There is a unique (up to scalar normalization) pair 
of polynomials a ' ( x )  and a - ( x )  over GF(p") 
which satisfy properties (9-(iv) of Theorem 6. 

(b) With the proper scaling, the polynomials in (a) are 
the positive and negative error-locator polynomi- 
als, respectively, associated with e. 

(c) The polynomials a ' ( x )  and u - ( x )  are given by 

u + ( x )  = c . R , ( x )  and a - ( x )  = c T,(x), 

where R,(x)  and T , ( x )  are obtained from the 
application of Euclid's algorithm to the polynomi- 
als 4 x 1  = x r  and B ( x )  = +(XI, and s is the 
unique index i for which 

( p  - 0/2. 

deg R, - deg T, 

Proofi Let u Y x )  and u - ( x )  be a pair of polynomials 
over GF(p") that satisfy properties (i)-(iv) of Theorem 6. 
If we set 4 x 1  = x', B ( x )  = +(XI, R ( x )  = a + ( x ) ,  and 
T ( x )  = u - ( x ) ,  then the three properties (i)-(iii) of Theo- 
rem 6 coincide with the three conditions (i)-(iii) of Lemma 
3. Therefore, there exist a unique index i and a constant 

c # 0 such that u + ( x )  = c * R i ( x )  and a - ( x )  = c T, (x ) .  
Now, since r I ( p  - 1)/2, properties (ii) and (iv) of The- 
orem 6 imply the equality 

deg U+ - deg U- = deg RI - deg T, 

if0 I S, < r ,  
= i". - p ,  if p - r < S, I p - I ,  

which, with Lemma 4, leaves only one possible value for i. 
This proves parts (a) and (c) of the theorem. Part (b) is 

0 
Note that when I I ( p  - 1)/2,there is a nonempty 

range of values of So, namely, r 5 So I p - r, which cor- 
responds to detectable but uncorrectable error patterns. 
Uncorrectable errors are detected also when the unique 
polynomials u + ( x )  and u - ( x ) ,  if any, obtained by Theo- 
rem 7(c), violate the degree property (ii) of Theorem 6, or 
when these polynomials do not factor into linear terms 
1 - a l x  for elements aJ in the locator vector OL. Uncor- 
rectable errors will always be detected when the Lee 
weight of the error vector is exactly r. 

It is worth pointing out that when r is much smaller 
than ( p  - 1)/2, and p - r < So I p - 1, there is an algo- 
rithmic shortcut to Theorem 7(c): recompute the polyno- 
mial +(XI associated with the negated syndrome values 
-SI, -S2,--*, - S r - , ,  then apply the stopping rule 

deg R ,  - deg T, = lSol, 

now a consequence of Theorem 6. 

in lieu of (30), and, finally, set the error-locator polynomi- 
als to 

u + ( x )  = c T,(x)  and a - ( x )  = c . R , ( x ) .  

This corresponds to applying Theorem 7 on -e, that is, 
on a negated copy of the received word y. 

Having determined the error-locator polynomials U+( x) 
and a - ( x  by Theorem 7(c), we can now solve for the 
error vector e = [el e2 . - e  e,] using the following modified 
Chien search (compare with [3, Algorithm 9.36.1). For 
j = 1,2,.-.,n, we set eJ = a (respectively, ej = -a, where 
Z is the smallest integer i 2 0 for which the'ith-order 
formal derivative 

( u + ( x ) ) ( * )  = I ( I  - 1) ... ( I  - i + l ) u ~ x ' - ~  
l > i  

of a ' ( x )  (respectively, of d x ) )  does not vanish at 
x = al:'. (Since we expect to have multiplicities not greater 
than ( p  - 1)/2 in the correct error-locator polynomials, 
the above test, using formal derivatives, does indeed pro- 
vide the correct multiplicity. See [19, pp. 303-3051.) 

We now turn to the base-field case and the range 
r 2 ( p  + 1)/2. The complication in this case arises from 
the fact that the stopping rule (30) might become ambigu- 
ous. In fact, part (a) of Theorem 7 no longer holds. 

We illustrate this in the following example. 
h m p l e  3: Consider the code C ( p  - 1, r; p )  with p = 

7, r = 5, and a1 = 1 and assume e = [400000]. Then 
S, = 4 for I = 0, 1, 2, 3,4, and + ( x )  = 1 + 3 x  + 6x2 + 
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3x3  + x4. Now stopping rule (30) in Theorem 7(c) is 
satisfied at s = 0, yielding 

a : ( x )  = R 0 ( x )  = 1 + 3x  + 6 x 2  + 3 x 3  + x4 = ( 1  - x ) ~  

and 
a < ( x )  = T , ( x )  = 1 ,  

and also at s = 4, yielding 

 ai(^) = 4 . R 4 ( x )  = 1 

and 
3 

CT; (X)  = 4 * T ~ ( x )  = 1 + 4x + 3 2  + 6 x 3  = ( 1  - X )  . 

Both pairs of polynomials, (a: , a; ) and (a,+, a; 1, satisfy 
all four properties of Theorem 6. However, the multiplic- 
ity 4 of 1 - x in the decomposition of a : ( x )  is not a valid 
Lee value. Disregarding this inconsistency, both pairs of 
error-locator polynomials correspond to the same true 
error vector. 

Theorem 7 for the base-field case takes the following 
form. 

Theorem 8: Give a base-field code C(n,  r ,  a;  p ) ,  let e 
be an error vector of Lee weight smaller than r and let 
4(x) be as in Theorem 6. 

There is a unique (up to scalar normalization) pair 
of polynomials a ’ ( x )  and a - ( x )  over GF(p)  which 
satisfy the following three conditions: 
both polynomials factor into linear terms over 
W p ) ;  
the multiplicity of each linear term in a ’ ( x )  and 
a - ( x )  is at most ( p  - l ) / 2 ;  
the polynomials satisfy properties (i)-(iv) of Theo- 
rem 6. 
With the proper scaling, the polynomials in (a) are 
the positive and negative error-locator polynomi- 
als, respectively, associated with e. 
The polynomials a Y x )  and a - ( x )  are obtained as 
in Theorem 7(c), except that the stopping rule (30) 
changes to 

-- 
deg R ,  - deg T’ E { ~ , , S O  - P ] ,  

and the proper choice of s is determined by crite- 
ria 1 and 2 in (a). 

If we determine the value of s in Theorem 8(c) accord- 
ing to criterion 1 only, we might get the ambiguity which 
was illustrated in Example 3, where both pairs of polyno- 
mials were associated, in principle, to the same true error 
vector. 
hf of Theorem 8: Let a ’ ( x )  and a - ( x )  be polyno- 

mials which satisfy the three conditions in (a). Then 
a ’ ( x )  and a - ( x )  serve as the positive and negative 
error-locator polynomials of some error vector ê  whose 
Lee weight is smaller than r. (Indeed, it can be verified 
that by properties (i) and (iii) of Theorem 6, the term x 
cannot be one of the linear terms referred to in criterion 
1 in (a).) By property (iv) of Theorem 6, both e and ê  

share the same f i p  syndrome value So. Furthermore, the 
equation a-Jx)c$(x) = a ’ ( x )  (mod x r )  defines a unique 
polynomial c$(x) of degree smaller than r. Hence, e and ê  
sbare the same polynomial c$(x). Since the mapping 
[So S, S,  ..- S, - , ]  c* (So, + ( x ) )  is one-to-one, we thus 
conclude that e and ê  have the same syndrome vector 
and, as such, these two error vectors must be equal. This 
proves parts (a) and (b). Part (c) follows from Theorem 6 
and Lemma 3. 0 

The following is an outline of the decoding algorithm 
for C(n,  r ,  a;  p )  with a = [ a1 a, a,] .  The input to the 
algorithm is the received word [ y l  y 2  y,], and the algo- 
rithm produces the error vector [e l  e, e,], or returns 
an “uncorrectable error” flag. 

Compute the syndrome values S, + Cy, I y j  a,!, 0 I 
1 < r. 
Compute the polynomial c$(x) = 1 + E i i t p i x i  us- 
ing the recurrence 

Apply Euclid‘s algorithms to the polynomials A(x)  
= x r  and B(x)  = c$(x) to obtain pairs of polynomi- 
als ( R i ,  Ti), i = 0, 1,2,..-, until deg Ri - deg Ti I 
- P- 
For integers s for which deg R ,  - deg T, E IS,, So 
- p }  and deg R ,  + deg T, < r, do: 
(a) let a ’ ( x )  + R,(x) and a - ( x )  + T,(x); 
(b) using formal derivatives find, for j = 1,2,..-,n, 
the multiplicity e+ of a,:’ in a ’ ( x )  and the multi- 
plicity e; of a;’ in a - ( x ) ;  
(c) if Cy, le[ = deg a+ and E;, lel: = deg U-, set 
el + e; - el . 
If no such integers s exist, or if the values ej were 
not set in step 4c, return an “uncorrectable error” 
flag. 

-- 

The decoding method we have just described for codes 
over GF(p)  is easily adapted for the integer codes 
C(n,  r ,  a). In this case all operations will be carried out in 
the rational field, and we will have the stopping rule 
deg Ri  - deg 

VI. APPLICATIONS 
In this section, we describe two applications involving 

the class of Lee-metric BCH codes. The first application 
uses the codes to efficiently protect against synchroniza- 
tion and so-called bitshift errors in runlength-limited 
(RLL) ( d ,  k)-constrained channels. The second applica- 
tion is to the algebraic decoding of spectral-null codes 
over the integer alphabet, including matched-spectral-null 
codes for partial-response channels with exponentially 
distributed noise. 

A. Synchronization and Bitshifr Error Correction 
In this section, we propose a new application of codes 

for the Lee metric: detection and/or correction of certain 
types of errors in ( d ,  k)-constrained channels commonly 
used in digital data recording [20]-[22]. Among known 

= So in Theorem 7(c). 
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Lee-metric codes, Lee-metric BCH codes are particularly 
attractive for this application in light of the improved 
attainable codeword length and simple algebraic decoding 
algorithm. The codes of [91 will have similar advantages 
when the application calls for use of Lee-metric codes 
over integer rings of size zh. 

Digital magnetic and optical data recorders often make 
use of runlengtk-limited codes. These binary codes are 
characterized by two parameters (d ,k ) ,  where d and k 
represent, respectively, the minimum and maximum num- 
ber of contiguous 0's between consecutive 1's. For our 
purposes, it will be convenient to view a (d ,  k)-constrained 
sequence as a sequence of "runs," &re a run is a symbol 
1 along with the following contiguous symbols 0 prior to 
the next consecutive symb~l 1. Assoeiated to a run is a 
positive integer called the runlength, the number of sym- 
bols in the run. For example, the (1,7) sequence 
10100000001000100(1) corresponds to the sequence of 
runs having runlengths 2, 8, 4, 3. 

There are four predominant types of errors that may be 
encounted in a recording system. The first two types, 
sometimes referred to as drop-ins and drop-outs, involve 
the incorrect detection of a recorded 0 as a 1, or vice 
versa. The third *,of error is called a bitshift error, 
where a pair of recorded symbols 01 is detected as 10 (a 
left shift) or a pair 10 is detected as 01 (right shift). 
Finally, a less " n o n  error, but one with potentially 
catastrophic consequences in most recording systems, is a 
synchronization error, where a syrnbol 0 is inserted or 
deleted from a run. 

Drop-in, drop-out, and bitshift errors in most digital 
recorders are propagated by the (d ,  k) decoder into burst 
errors (of length bounded from above by a k e d  number 
depending on the particular modulation code and its 
design). The detection and correction of these bursts are 
typically addressed by the use of an outer algebraic error- 
correcting code, such as a Fire code or Reed-Solomon 
code. Recently, several authors have proposed schemes 
that combine the ( d ,  k) constraints and limited error-cor- 
recting capability into a single code. In particular, Hilden, 
Howe, and Weldon [131 have proposed a class of shift- 
error-correcting modulation (SECM) codes that efficiently 
correct bitshift errors. Kuznetsov and Vinck [231, [24] also 
have constructed a class of codes suitable for correction 
of a single error which is either of the bitshift or synchro- 
nization type. To the best of our knowledge, all of the 
combined modulation/error-correction schemes so far 
have relied upon error-control techniques using the Ham- 
ming metric. Also, none have addressed the problem of 
correcting multiple bitshift and synchronization errors oc- 
curring simultaneously. We will now show that codes for 
the Lee metric are well suited for handling such combina- 
tions of bitshift and synchronization errors. Crucial to the 
application of Lee-metric codes is the examination of the 
effect of these errors on runlengths in ( d ,  k) sequences. 

Let s be a (d ,  khnstrained sequence with N runs and 
associated runlength sequence 1 = l , ,  1 2 , * - * ,  I , .  We as- 
sume that one or more bitshift errors may occur at a 

. 

boundary of runs: e left bitshift errors at the boundary 
between runs j and j + 1 would induce a change in the 
runlength sequence to I* = l,,..., 1, - e, l j+ , + e,-., 1,. 
Similarly, e right bitshift errors lead to the runlength 
sequence I* = ll,-.., l j  + e, l j+  - e,..., 1,. By an e-bitshifi 
error we refer to a pattern of e bitshift errors occurring at 
the same boundary of runs (without loss of generality we 
can also assume that all e errors are in the same direction 
-left or right). 

In an- analogous manner, we assume that one or more 
synchronization errors may occur within one run: inser- 
tion of e zeros in the jth run generates the runlength 
sequence 1* = ll,--., ll + e, l j + l , - - - ,  I, ,  and the deletion of 
e zeros from run j produces I* = lI ,- .- ,  lI - e, 11+ I,. 
(Of course, e must not exceed l j . )  An e-synchronizution 
error refers to a pattern of e synchronization errors occur- 
ring at the same run. Clearly, a bitshift error can be 
interpreted as a pair of synchronization errors: an inser- 
tion error and a deletion error in consecutive runs. 

The potential advantage of the Lee-metric perspective 
over the more traditional Hamming-metric perspective is 
that, roughly speaking, codes for the Hamming metric 
require two check symbols per (Hamming) error cor- 
rected, while Lee-metric codes require only one check 
symbol per (Lee) error corrected. In the presence of 
e-bitshift errors and e-synchronization errors with varying 
values of e, but with smaller values prevailing, the Lee- 
metric codes would be expected to show some advantage. 

Given constraints ( d ,  k), we choose p I k - d + 1, and 
proceed as follows. We regard every run'of length 1 in the 
( d ,  k)-constrained informatian sequence as an element 
( 1  - d - 1) modp of GF(p),  and use a systematic en- 
coder for C(n,r ,cu;p)  to compute the corresponding 
check symbols in GF(p). Each check symbol U ,  in turn, is 
associated with a run of length ii + d + 1. The code 
C ( n , r , a ; p ) ,  with r 4 ( p  - 1)/2 and n s p "  - 1, can 
simultaneously correct b bitshift errors and s nonbitshift 
synchronization errors whenever 2b + s < r. (Observe 
that, when counting errors, an e-bitshift error is counted 
as e bitshift errors; this applies respectively also to syn- 
chronization errors. Also, bitshift or synchronization er- 
rors may create runlengths that violate the (d,k) con- 
straint. In such a case we can mark the illegal runlength 
as an erasure rather than an error.) The redundancy 
required will be no more than 1 + ( r  - 1)m symbols from 
the alphabet GF(p). Recall that Theorem 2 proves the 
near-optimality of the Lee-metric primitive BCH codes 
C(p" - 1, r; p ) ,  for values r e p" - 1. 

Example 4: Two typical choices for parameters ( d , k )  
are (1,7) and (2,8), both satisfying k - d + 1 = 7. Setting 
p = 7 and r = 3, we obtain a family of codes for these 
constraints, based upon C(n, 3, a; 71, that can correct any 
error pattern of Lee weight 2 (and detect error patterns of 
Lee weight 3). In particular, the codes will correct one 
single-bitshift (1-bitshift) error or any other combination 
of two insertions/deletions of symbols 0. For n I p" - 1, 
the required redundancy is no more than 1 + 2m sym- 
bols. 
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The class of SECM codes in [13] is directed toward the 
situation when only bitshift-type errors occur. We can 
modify the Lee-metric BCH codes to improve their effi- 
ciency in this type of error environment by means of a 
precoding operation, as follows. 

c,] be a codeword, and construct the 
differentially precoded word d = [ d ,  d ,  .-- d,] where d ,  
= c,, and dJ = cJ - cJ- ,  for 2 s j  I n, with all opera- 
tions taken modulo p. If d is recorded, and no bitshift 
errors occur, the original word c is reconstructed by an 
“integration” operation: 

Let c = [c, c, 

i 
c, = d,.  

If, however, an e-bitshift error occurs at the boundary 
between runs j and j + 1 of d, the integration operation 
converts the error into an e-synchronization error in run j 
of c. In other words, the original bitshift error pattern of 
Lee weight 2e is converted into a synchronization error 
pattern of Lee weight e. 

This result is predicated upon the correctness of the 
first run d, .  In order to handle the event in which an 
uncorrectable bitshift error pattern has occurred at the 
boundary between the last run of the preceding word and 
the first run of the current word, it suff~ces to require that 
the code contain the all-one word [ l  1 11 and all of its 
multiples. To see this, observe that any error in d ,  propa- 
gates into a constant offset in the components of c upon 
integration. This bias corresponds to a translation by a 
valid codeword, so the syndrome computation and subse- 
quently the decoding of the integrated word are not 
affected. 

We can guarantee that the all-one word and its multi- 
ples belong to the code C ( n , r , a ; p )  by imposing an 
additional constraint upon a; for example, the all-one 
word will be a codeword in C ( n , r , a ; p )  if the locator 
vector a contains elements p E GF(pm) along with all of 
their translates p + t by elements t E GHp). 

This construction provides the capability to correct up 
to r - 1 bitshift errors and detect up to r bitshift errors, 
when 2r < p I k - d + 1. The construction extends to 
the base-field case as well, where an extra column 
[ l o  ... 0IT needs to be added to the parity-check matrix, 
and r must be restricted to the range r I ( p  - 1)/2 in 
order for the 2r lower bound to apply. (See Remark 1; 
according to our convention of having only nonzero values 
in the locator vector a, the resulting code will not, in 
effect, be a base-field code, but rather a code C ( p ,  r, a; p )  
whose parity-check matrix is over GHp’).) 

Example 5: Let p = 7 and r = 3 as in the previous 
example. The construction above will generate codes with 
length n a multiple of 7. For n = 7, the redundancy is 
1 + ( r  - 1) = 3 runs; for n = 14,21,...,49, the redun- 
dancy is 1 + 2(r - 1) = 5 runs; for n = 56,63,..-, 343, the 
redundancy is 1 + 3(r - 1) = 7 runs. All of these codes 
will correct up to two single-bitshift errors or one double- 
bitshift (2-bitshift) error. By way of comparison, in [13] 

1= 1 

Hilden, Howe, and Weldon describe SECM codes of 
lengths 26, 80, and 242 for correcting two single-bitshift 
errors, requiring redundancy of 7, 9, and 11 rum, respec- 
tively. These SECM codes do not handle double-bitshift 
errors. 

Example 6: As p increases, so does the discrepancy in 
the number of check symbols (runs) compared to the 
SECM codes in [13]. For p = 11, suitable for representing 
( d ,  k) = (1,11), for example, and r = 5, the Lee-metric 
BCH code with n = 11 requires 5 check symbols; for 
n = 22,33,..., 121, the redundancy is 9 symbols; for n = 
132,143,..., 1331, the redundancy will be 13 symbols. These 
codes will correct up to four single-bitshift errors; two 
single-bitshift and one double-bitshift errors; or two dou- 
ble-bitshift errors. The codes presented in [13] for correct- 
ing up to four single-bitshift errors have lengths 26, 80, 
and 242 and require redundancy of 16,21, and 26, respec- 
tively. 

So far we have exhibited the improvement on [ 131 in the 
number of check symbols per codeword for several exam- 
ples of (d ,  k)-constrained channels and minimum-distance 
requirements. However, assuming a uniform distribution 
on each check symbol over GF(p), the improvement on 
1131 is reflected also in the uverugearedundancy length (i.e., 
the sum of runlengths of check symbols in a codeword, 
averaged over all codewords) for a wide range of parame- 
ters d, k, and r. Note that the uniformity assumption on 
the check symbols should hold for sufficiently long codes, 
even if the information symbols have some other, nonuni- 
form stationary distribution (which will typically be the 
case in a well-designed (d,k)-encoder). Under the uni- 
formity assumption, the average length of a run represent- 
ing a check symbol will be d + ( ( p  + 11/21. Therefore, 
the average length, A(n, r; p ;  d, k), of all check symbols in 
a codeword of C ( n , r , a ; p )  over a (d,k)-constrained 
channel is given by 

(31) 
Returning to Example 5, we have, for the (2,8)-con- 

strained channel. 
1.2 

A(n,3;7;2,8) = O(1) + - log, n 
log, 7 

=: O(1) + 4.2710g2 n, 
whereas a similar analysis for the construction in 1131 
yields average redundancy length O(1) + @/log, 3) 
log, n = O(1) + 5.05 log, n. The gain in length is not just 
asymptotic; extending the construction of [13] to short- 
ened BCH codes over GF(3) (to allow a denser range of 
lengths) shows that A(n, 3; 7; 2,8) turns out to be smaller 
for 28 I n I 343. For the (1,7)-constrained channel, we 
have 

10 
A(n,3;7; 1,7) = O(1) + - 

log27 log’ 
s O(1) + 3.5610g, n, 
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whereas the construction in [13] has average redundancy 
length O(1) + (6/log, 3)log, n = O(1) + 3.79108, n. A 
similar redundancy gain exists also for the code described 
in Example 6. 

We remark that, in general, the redundancy given in 
(31) can be shown to be times the redundancy of the 
construction in [13] for sufficiently large d, k, and n, 
whenever k < 2d or r -z d.  This is in addition to being 
able to deal with e-bitshift errors for e > 1 as well. 

The preceding discussion illustrates some of the differ- 
ences between Lee-metric codes and Hamming-metric 
codes aimed at correcting bitshift and synchronization 
errors. It should also be pointed out that SECM codes can 
be adapted to channels with 1-synchronization errors by 
means of a precoding operation, and the comparison with 
Lee-metric-based codes for synchronization error correc- 
tion will follow similar lines to those in the examples 
above. 

Finally, we note that drop-ins and drop-outs can be 
detected by an external means and, if desired, flagged for 
erasure decoding by an outer, burst-correcting code, as 
described in the context of SECM codes in [131. 

B. Algebraic Decoding of Integer Spectral-Null Codes 
As was mentioned in Section IV, the 2r lower bound on 

the minimum Lee distance for the base-field codes 
C(n, r, a; p )  implies such a bound for the codes C(n, r, a) 
over the integer ring. In particular, the bound applies to 
codes with an rth-order spectral null at zero frequency 
WI, [HI, [251 (see (5)). 

One application of integer spectral-null codes is to 
improve the reliability of information transmission over 
noisy partial-response channels. As shown in [ll], the 
application of a code with Kth-order spectral null at zero 
frequency to a partial-response channel with Lth-order 
spectral null at zero frequency (i.e., transfer polynomial 
h(D) divisible by (1 - OIL) ensures a minimum Lee dis- 
tance no smaller than 2(K + L). When used in this con- 
text, the code is referred to in ill3 as a matched-spectral- 
null code. We will consider the integer codes C(n, K )  for 
transmission over the channel h(D) = (1 - D)L. During 
the transmission process, a codeword of C(n,K) is sent 
through the channel, followed by L consecutive zeros. 
Assuming that the initial channel memory is all-zero, the 
corresponding noiseless output words in the channel will 
be codewords of C(n + L, K + L), i.e., they will have a 
( K  + L)th-order spectral null at zero frequency. 

When the channel noise samples are independent, and 
identically distributed according to a bilateral exponential 
density, 

Y 
2 

having zero mean and variance equal to 2y-,, maximum- 
likelihood decoding is equivalent to finding a channel 
noiseless output word which is at the smallest Lee dis- 
tance from the received word. Since the noiseless output 
words are codewords of C(n + L, K + L), the algorithm 
of Section V, when applied to C(n + L, K + L), performs 

f ( x )  = -e-YIXI, 

an efficient decoding with respect to the Lee metric for all 
error patterns in such a channel with Lee weight up to 
K + L  - 1. , 
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